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Abstract 

In this paper are analyzed behavior and properties for different Krylov 

methods applied in different categories of problems. These categories often 

include PDEs, econometrics and network models, which are represented by 

large sparse systems. For our empirical analysis are taken into consideration 

size, the density of non-zero elements, symmetry/un-symmetry, eigenvalue 

distribution, also well/ill-conditioned and random systems. Convergence, 

approximation error and residuals are compared for the full version of 

methods, some restarted methods and preconditioned methods. Two 

preconditioners are considered respectively, ILU(0) and IC(0) by using at least 

five preconditioning techniques. In each case, empirical results show which 

technique is best to use based on properties of the system and are backed up 

by general theoretical information already found on Krylov space methods. 

 
Keywords: Krylov methods, numerical experiments, sparse linear systems, 

preconditioning 

 

Introduction 

Krylov methods are a large class of iterative algorithms that work with 

finite matrices and vectors in real and complex arithmetic. Many applications, 

which include solving linear systems, eigenvalue problems, and singular value 
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problems. Mathematically, these methods are based on projection methods. 

The main idea behind the Krylov subspace and of a projection process in 

general is to find the approximated solution of a potentially very large and/or 

sparse 𝐴𝑥 =  𝑏 system by solving a much smaller system. Also, this idea has 

been used to design several effective algorithms for large eigenvalue 

problems. Such methods can have several different applications creating 

different algorithms, which are mathematically equivalent.  

Let 𝐴𝑥 = 𝑏 be a linear system where the general system matrix 𝐴 ∈
ℂ𝑁×𝑁, 𝑏 ∈ ℂ𝑁and 𝑥0 the initial approximation of the solution with its initial 

residual approximation 𝑟0 = 𝑏 − 𝐴𝑥0. The Krylov subspace approach 

generates solutions 𝑥𝑚 by the recursion 𝑥𝑚 ∈ 𝑥0 + 𝐾𝑚(𝐴, 𝑟0) where 

𝐾𝑚(𝐴, 𝑟0) = 𝑠𝑝𝑎𝑛{𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑚−1𝑟0 } is the 𝑚-th Krylov subspace 

generated by 𝐴 from 𝑟0.  

Since 𝐾𝑚 ⊆ ℂ𝑁 or 𝐾𝑚 ⊆ ℝ𝑁 (if the data are real) and based on the 

same recursion as 𝑥𝑚 for the 𝑚-th residual 𝑟𝑚 = 𝑏 − 𝐴𝑥𝑚 the implication 

𝑟𝑚 ∈ 𝑟0 + 𝐴𝐾𝑚(𝐴, 𝑟0) ⊂ 𝐾𝑚+1(𝐴, 𝑟0) occurs. The purpose is to find the 

approximation with short recursions very close the real (direct) solution 𝑥𝑟𝑒𝑎𝑙 

in few iterations (based on the limited computer memory). Also, to 

approximate 𝑟𝑚 as small as possible, by elements of 𝐴𝐾𝑚. 

Different versions of Krylov space methods come from different 

choices of the 𝑚 dimensional subspace and by the way the system is 

preconditioned (meaning to condition a given problem into a form that is more 

suitable for numerical solution methods by reducing its conditional number 

and applying a transformation of the original problem into another similar 

problem). Although all techniques offer the same type of polynomial 

approximations, the constraints used to construct these approximations will 

have a significant effect on the iterative techniques. The determination of some 

types of preconditions is related to the construction of an invariant subspace 

of coefficients matrix 𝐴 corresponding to the eigenvalues closest to zero. 

The priority of the implemented algorithms addressed in the paper 

consists in the ability for all of them to use multi preconditioning techniques 

(explained further in the article). This makes the decision of choosing an 

appropriate technique based on properties of 𝐴 far easier compared to methods 

that only use one specific technique such as just right or just left 

preconditioning (Aditi Ghai et al., 2018). 

 

Methodology 

First, are considered two different types of sparsity for large coefficient 

matrix 𝐴, respectively less than 1% and 30% of non-zero elements. The most 

relevant Krylov methods are implemented in Matlab software and applied in 

both cases. Experiments have been performed by using basic methods, their 
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restarted version, and then by applying different types of preconditioning. 

Since the matrix properties variate, different behaviors in each case are 

observed. 

Methods used are the following: 
 

gmres=modified_GMRES(x0,MaxIt,tol,A,b,method,K1,K2,restart); 

 

The GMRES algorithm is modified to be implemented with or without 

the ‘restart’ parameter using 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 = 1 for full GMRES, or to consider 

preconditioning or not by using inputs ‘K1’ & ‘K2’. Also, the ‘method’ input 

is used to choose between two versions of GMRES as described by (Henk A. 

vander Vorst, 2003), with 𝑚𝑒𝑡ℎ𝑜𝑑 = 1 corresponding to GMRES with 

modified Gram-Schmidt orthogonalization and 𝑚𝑒𝑡ℎ𝑜𝑑 = 2 corresponding 

GMRES algorithm for complex systems.  
 

[x,~,~,iter]=minres(A,b,tol,MaxIt,K1,K2,x0); 

 

The MINRES algorithm is modified to consider preconditioning or not 

by using inputs ‘K1’ & ‘K2’, since its vulnerability to rounding errors and 

especially in the case of ill-conditioned matrices (Henk A. vander Vorst, 

2003). 
 

[x,R,H,Q]=FOM(A,b,x0,K1,K2,restart); 

 

The un-preconditioned FOM algorithm uses the modified Gram-

Schmidt procedure (L. Giraud & S. Gratton, 2006-2007) and a maximum 

number of iterations same as 𝑁. Then is considered preconditioning or not by 

using inputs ‘K1’ & ‘K2’. FOM is modified to be implemented with or without 

the ‘restart’ parameter. 
 

bicg=BiCG(x0,MaxIt,tol,A,b,K); 

 

The BiCG algorithm (Yousef Saad, 2003) is modified to consider 

preconditioning or not by using input ‘K’. 
 

[x,~,~,iter]=QMR(A,b,tol,MaxIt,K1,K1,x0); 

 

The un-preconditioned QMR algorithm uses the two-sided Lanczos 

iteration (Yousef Saad, 2003) and it has been modified to consider 

preconditioning or not by using inputs ‘K1’ & ‘K2’. 
 

[x,~,~,iter]=BiCGstab(A,b,tol,MaxIt,K1,K2,x0); 
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The un-preconditioned BiCGStab algorithm described by (Henk. A. 

van der Vorst, 1992) and it has been modified to consider preconditioning or 

not by using inputs ‘K1’ & ‘K2’. 

 

Preconditioning 

Preconditioner 𝐾 is an operator close to 𝐴 and if properly selected, 

when applied Krylov methods, it would need only a few iterations that lead to 

a good enough approximation of the system 𝐴𝑥 = 𝑏. The difficulty to find a 

good preconditioner consists in the approximation, missing information about 

the behavior of the solution or the spectral properties of A.  

Precondition techniques used are Incomplete Cholesky Factorization 

(IC) and Incomplete LU Factorization (ILU), both with zero fill-ins. To see 

which preconditioner works more efficiently are used different 

implementations: Left-preconditioning, Right-preconditioning and Two-sized 

preconditioning.  

 

Numerical Experiments 

The first two cases use 𝜀 = 0.0001 tolerance and 2500 maximal 

number of iterations. As vector 𝑏 is generated a random vector of length 𝑁 

and as an initial approximation of the solution 𝑥0 is used vector 𝟏 of the same 

length. The difference between direct and approximate solutions is evaluated 

to compare iterative methods.  

 

Case I: 

At first it is used a large symmetric positive definite matrix, that its 

coefficients represent variables of a neural network problem, 

A=load('494_bus.mat').Problem.A. It has a density of 0.6827% non-zero 

elements and it is ill-conditioned. In figure 1 it is shown a visual representation 

of the 494 × 494 matrix with 1666 non-zero elements. 
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Figure 1. 0.6827% density matrix. 

 

The full version of all six Krylov methods is applied, with no restart 

parameter and no preconditioning. Overall results are, GMRES ends with 250 

iterations and an approximation error of 0.0012. MINRES converges after 908 

iterations and an approximation error of 0.0013. FOM uses 𝑁 = 494 

maximum number of iterations which gives an approximation error of 

0.3888e-06. BiCG converges after 880 iterations with an approximation error 

of 0.0088. Followed by QMR and BiCGStab with approximation errors 

0.0012 and 0.00694, which converge respectively after 1026 and 1034 

iterations.  

It is FOM method that makes a noticeable difference in the 

approximation error in this case, but it is pointed out that FOM is not very 

stable depending on the properties of the system 𝐴𝑥 = 𝑏. BiCGStab is a very 

more stable alternate with a good enough approximation of the solution. 

Although QMR, GMRES and MINRES do not differ a lot from one another, 

GMRES makes the slightest difference in converging faster based on the 

number of iterations.  
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Table 1. Restarted methods with parameter 1 to 10. 

Method GMRES MINRES BiCG QMR BiCGStab FOM 

Restart Error It. Error It. Error It. Error It. Error It. Error 

1 0.0012 250 0.0013 908 0.0088 880 0.0012 1026 6.94e-04 1034 3.888e-07 

2 0.0011 1 0.0013 1 0.0099 7 0.0012 1 6.94e-04 1 2.00e-10 

3 0.0011 1 0.0013 1 0.0083 3 0.0012 1 6.94e-04 1 2.00e-10 

4 0.0011 1 0.0013 1 0.0078 3 0.0012 1 6.94e-04 1 2.00e-10 

5 0.0011 1 0.0013 1 0.0099 14 0.0012 1 6.94e-04 1 2.00e-10 

6 0.0011 1 0.0013 1 0.0072 3 0.0012 1 6.94e-04 1 2.00e-10 

7 0.0011 1 0.0013 1 0.0068 3 0.0012 1 6.94e-04 1 2.00e-10 

8 0.0011 1 0.0013 1 0.0053 3 0.0012 1 6.94e-04 1 2.00e-10 

9 0.0011 1 0.0013 1 0.0063 3 0.0012 1 6.94e-04 1 2.00e-10 

10 0.0011 1 0.0013 1 0.0084 2 0.0012 1 6.94e-04 1 2.00e-10 

 

Furthermore, the restarting process is applied to the same methods. In 

Table 1 it is noted as expected that increasing the restarting parameter, it does 

not affect the approximation accuracy and most methods converge after the 

first iteration, except for BiCG method as it is pretty sensitive to the initial 

approximation. It is proceeded by applying different preconditioning 

techniques using ILU and IC factorizations for each method (M. Benzi, 2002) 

& (Henk A. vander Vorst 2003). It is used parameter K1 to set Right ILU 

Preconditioning, parameter K2 to set Left ILU Preconditioning, parameter 

K = L’ to set the Right IC Preconditioning (where A = LL’ + E) and parameter 

K’ to set Left IC Preconditioning. Results are shown below in Table 2: 
Table 2. Preconditioning Techniques Case 1. 

Method Two-sized ILU Right ILU Left ILU Right IC Left IC 

GMRES - - - - - 

MINRES 0.0011, 80 17.8680 18.1915 - - 

BiCG - - - - - 

QMR 0.0011, 80 0.0012, 865  0.0012, 113 9.6295e-04, 254 0.0010, 231  

BiCGStab 8.5883e-04, 59 8.0051e-04, 823 3.5014e-04, 72 0.0011, 269 0.0011, 269 

 

GMRES and BiCG convergence is not improved at all with both ILU 

and IC factorization, error increases greatly. This is an exact case where 

preconditioning makes things worst, due to specific properties of matrix A (a 

very sparse one). MINRES convergence on the other hand is improved with 

two-sized ILU preconditioning by reducing the number of iterations at 80 from 

908. K1 (right) and K2 (left) preconditioning not so successful. Both 

successful improvements in convergence speed and error are not always 

possible. QMR method has the same accuracy as no-preconditioning with a 

noticeable reduction of the number of iterations using two-sized ILU 

preconditioning although right IC preconditioning can cause a more drastic 

decrease in error approximation. When preconditioning is applied for 
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BiCGStab method, the most effective technique is left-preconditioning with 

ILU factorization. It affects both the accuracy and speed of the method. 

 

Case II: 

In the next experiment a random matrix by increasing size to 𝑁 =
1000 and density up to 30%, is considered: 
A = sprand(n, n, density); 

A = 100*A - 50*spones(A); 

 
Figure 2. 30% density matrix 

 

As expected, since the matrix is neither symmetric nor positive 

definite, random and has a very high condition number 𝜅(𝐴) = 6.1951𝑒 +
04, different behavior from the same methods is shown. GMRES is the only 

method that shows stability, with a satisfactory approximation error of 

2.3017𝑒 − 13and 1000 number of iterations. No restart and no precondition 

FOM had an unexpected result considering sensibility to ill-condition 

problems, in this case, after GMRES it has an error of 2.9153𝑒 − 13. 

Applying the restart process once more it does not improve the approximation 

accuracy and convergence. Preconditioning with ILU and IC Factorization, 

using the same techniques as in Table 2 does not improve the results, leading 

to search for other successful preconditioning techniques.  

 

Case III: 

In this case is considered a modification of a real un-symmetric matrix 

from transient stability analysis of Navier-Stokes solvers of order 𝑁 = 23560. 

The source of the matrix is The Matrix Market from National Institute of 
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Standards & Technology. A small perturbation analysis of a FD (finite 

difference) approximation of the Navier-Stokes equations is associated with 

the eigenvalues and corresponding eigenvectors of 𝐴. These equations 

represent flows over airfoils. Conditioning is applied by increasing the density 

of non-zero elements around the main diagonal as following: 
load airfoil 

x = pow2(x,-32); y = pow2(y,-32); n = max(max(i),max(j)); 

A = sparse(i,j,-1,n,n); A = A + A'; 

d = abs(sum(A)) + 1; 

A = A + diag(sparse(d)); 

 
Figure 3. Matrix of order 𝑁 = 23560, with 28831 non-zero elements 

 

Tolerance 𝜀 = 0.001 is used and 1000 maximal number of iterations. 

Vector 𝑏 equals vector 𝑦 and the condition number, in this case, is 19. GMRES 

error is stable with restarting after 7 iterations with an average 3% error and 

an average relative residual norm of 0.08% as shown in Figure 4. The best 

approximation is achieved with restarting after 4 iterations with a 1.6 % error 

and 0.05% relative residual norm, considering the maximum number of 

iterations or not. Decreasing error tolerance by 10% will lead to reducing 

relative residual norm from e-3 to e-5, but will maintain the same proportions 

concerning tolerance in each case, whereas the approximation error does not 

change. 
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Figure 4. GMRES restarting process 

 

QMR and MINRES have respectively error and relative residual norm 

of 2.58% and 0.07% for both methods. BiCG method compared to other 

methods has the highest error 3.09% and the highest relative residual norm 

0.09%. Meanwhile, BiCGStab has the smallest error of 1.95% and the smallest 

relative residual norm of 0.06%.   

By applying five different preconditioning techniques for each method, 

the following results were found:  

 GMRES with two-sized ILU reduces the error to 0.02% and relative 

residual norm to 1.49%.  

 Preconditioned QMR with Left-U technique reduces the error to 0.03% 

and relative residual norm to 1.20%. 

 Preconditioned MINRES does not show improvement with any of the 

five techniques.  

 Both Left-U & Right-U preconditioning for BiCG result in the 

reduction of the error to 0.03% and relative residual norm to 1.03%. 

 Preconditioned BiCBStab gives the smallest error of 0.03% and the 

smallest relative residual norm 1.15% with the IC decomposition. 

 

Figure 5 and Figure 6 show the error and the relative residual norm of 

Krylov methods for different preconditioning techniques. 
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Figure 5. Methods accuracy with different preconditioning techniques 

 
Figure 6. Relative residual norm with different preconditioning techniques 

 

Conclusion 

In the first case, where matrix 𝐴 is symmetric and positive definite of 

order 494, the most robust Krylov method is BiCGStab, which improves 

noticeably after preconditioning with Left-ILU (in most numerical 

experiments Right preconditioning is more effective). BiCGStab has smoother 

convergence compared to other methods used on symmetric systems such as 

CG or BiCG and with a good preconditioning technique BiCGStab is not 

likely to breakdown due to its Bi-Lanczos iteration. Full FOM in the first case 

also gives a convenient result.  

In the second case where 𝐴 is neither symmetric nor positive definite 

and random of order 1000, the effective method was full GMRES. All other 

methods stagnated. The preconditioning techniques taken into consideration 

do not improve the convergence of methods, leading us to try other 

preconditioning schemes such as ILU(k) with fill-in since 𝐴 has a random 
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distribution. In both first two cases increasing the restart parameter, slowed 

down the convergence drastically.  

The last experiment where 𝐴 is a matrix of order 23560 and un-

symmetric, all methods except MINRES give approximation errors below the 

given tolerance. BiCGStab has the smallest error and relative residual norm 

with no precondition. Preconditioning on the other hand by using different 

schemes gives BiCGStab and other methods, except QMR, similar 

performance and apparent error or residual oscillations. QMR is the most 

stable method after all preconditions. Overall, GMRES is the most robust 

method that shows improvement with restart and two-sized ILU 

preconditioning with the smallest average error and smallest average relative 

residual.  

The convergence of the most robust methods based on the experiments, 

GMRES and BiCGStab, depends on the distribution of the eigenvalues of 𝐴 

and its corresponding eigenvectors (O. Axelsson & G. Lindskog, 1986). 
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