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Abstract 

This article compared single to combined forecasts of wind run using 
artificial neural networks, decomposition, Holt-Winters’ and SARIMA 
models. The artificial neural networks utilized the feedback framework while 
decomposition and Holt-Winters’ approaches utilized their multiplicative 
versions. Holt-Winters’ performed best of single models but ranked fourth, of 
all fifteen models (single and combined). The combination of decomposition 
and Holt-Winters’ models ranked best of all two-model combinations and 
second of all models. Combination of decomposition, Holt-Winters’ and 
SARIMA performed best of three-model combinations and ranked first, of all 
models. The only combination of four models ranked third of all models. The 
accuracy of single forecast should not be underestimated as a single model 
(Holt-Winters’) outperformed eleven combined models. It is therefore, evident 
that inclusion of additional model forecast does not necessarily improve 
combined forecast accuracy. In any modeling situation, single and combined 
forecasts should be allowed to compete. 
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Introduction 
Courtesy of improved availability of computing facilities, it has 

become the practice to analyze time series data using a number of models. 
Because of inadequacies of single models in generating forecasts with desired 
level of accuracy sometimes, researchers have devised ways of improving the 
forecasts. Such efforts include combining forecasts from various models to 
arrive at single forecasts. The forecasts can be combined in various ways. 
Simple arithmetic mean and the median are some of the methods in the 
literature. Research involving combinations of forecasts include Bates and 
Granger (1969), Newbold and Granger (1974), Reid in Kendall and Ord 
(1990), Palm and Zelner (1992), and Aksu and Gunter (1992). More recent 
efforts include Zou and Yang (2004), Chen (2011), Clements and Harvey 
(2011), Constantini and Kunst (2011). Mancuso and Werner (2013) and 
Firmino, Neto and Ferreira (2014) provide good reviews of methods for 
combining forecasts. 

  Efforts at modeling wind run include Mohandes, Halawani, Rehman, 
and Hussain (2004), Jiang, Qin, Wu, and Sun (2015), Ambach (2016), 
Doucoure, Agbossou and Cardinas (2016),  Iversen, Morales, Moller and  
Madsen (2016), Niu, Wang, Zhang and Du (2018). Others are Qureshi, Khan,. 
Zameer, and Usman (2017), Sun and Wang (2018), Sun, Jiang, Cheng, Liu, 
Wang, Fu and He (2018), Zhang, Yang, Guo and Zhao (2019), Jiang, Li and 
Li (2019), Nie, Bo, Zhang and Zhang  (2020), Aslam (2020), Behnken, and 
Wächter and Peinke (2020). Although several methods for combining 
forecasts appear to be appealing, the fact remains that a simple average of 
forecasts might just be sufficient a combination for attaining desired level of 
accuracy. 

  The question of whether a single or a combined forecast is desirable 
depends on the data in question. Model performance does not also depend on 
sophistication. In modeling, parsimony is key. Emphasis should be on not just 
performance but also on simplicity. The simpler a model is, the more stable it 
tends to be. Complicated models can be very erratic. The logic behind 
combining forecasts is to improve accuracy by exploiting strength inherent in 
the individual models from which forecasts are generated. Elegance is clearly 
not the reason for combining forecasts. As fundamental as the decomposition 
method may appear to be, it could outperform sophisticated methods like 
SARIMA and its variants and even artificial neural networks models in a 
particular modeling situation. The performance of forecasts (based on a clearly 
defined criterion) on out-of-sample data is paramount. When single and 
combined forecasts are compared, the decision as to whether a single or 
combined forecast is appropriate can be objectively taken. 

The focus of the article is to investigate the performance of four 
univariate time series models (Artificial neural networks (ANN), 
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Decomposition, Holt-Winters’ and SARIMA) and their combinations on wind 
run data. 

The remainder of this article is arranged as follows: Section 2 presents 
the Theoretical Framework while Section 3 presents the Methodology. Results 
and Discussion is presented in Section 4 while the last section presents the 
Conclusion. 
 
Theoretical Framework 
Artificial Neural Networks (ANN) Model  

Traditional methods for analyzing time series include decomposition, 
exponential smoothing, SARIMA which are linear in nature. Meanwhile, not 
all series have linear underlying data generating process. To overcome the 
inability of linear models to capture nonlinearity that characterizes some time 
series data sets, ANN models among others came into being. It is a recent 
development and is gaining patronage by researchers owing to its capacity to 
model nonlinear phenomena. ANN models are a flexible, soft computing 
framework for modeling a broad range of non-linear problems (Zhang, 2003). 
They are termed universal approximators owing to their capacity to 
approximate a broad range of functions with high accuracy. Because of their 
capacity to model complex nonlinear systems, they have been identified as a 
viable alternative to traditional time series methods. According to Zhang, 
Patuwo and Hu (1998), a single hidden layer feedback network is the most 
widely used for modeling and forecasting time series. This network typically 
has an input layer, a hidden layer and an output layer. The relationship between 
the input yt-i (t=1, 2, …, p) and the output yt for a one-output layer feedback 
model has the form 
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where 

)...,2 ,1 ;...,2 ,1 ,0(  , hjpiiji ==βα  are model parameters often called 
connection weights; f and g are respectively activation functions for hidden 
and output layers.  
 
Decomposition Model 

This is one of the oldest time series models. It is based on the theory 
that the time series variable is made up of four components (trend (T), seasonal 
(S), cyclical (C) and irregular (I)) which interact multiplicatively resulting in 
the multiplicative model 

ICSTyt ...=                                                                                   (2) 
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or additively yielding 

ICSTyt .+++=                                                                         (3) 
 

Whenever it is desired to model seasonal data, emphasis is on seasonal 
rather than cyclical and hence, the cyclical component is merged into the 
irregular so that (2) becomes 

ISTyt ...=                                                                                     (4) 
 

and (3) translates to 
ISTyt .++=                                                                              (5) 

 
Cyclical component is emphasized for nonseasonal data modeling. Unlike 

several time series models whose parameters do not lend themselves readily 
to meaningful interpretation, the decomposition model parameters have clear 
and meaningful interpretations.  
 
Holt-Winters’ (H-W) Model 

The exponential family of time series models started with the 
development of a single exponential smoothing model. The model was 
extended to incorporate trends by Holt (1957). This is called Double 
exponential smoothing model. Winters (1960) extended Holt (1957) model to 
include seasonal components resulting in H-W model. This model has two 
variants, namely the additive and the multiplicative version. 

The additive version is of the form 
))(1()( 11 −−− +−+−= ttpttt blsyl αα

                                             (6a) 
11 )1()( −− −+−= tttt bllb ββ

                                                                  (6b) 
ptttt slys −−+−= )1()( δδ

                                                                    (6c) 
pktttkt skbly −−+ ++=ˆ

                                                                                (6d) 
 

where 10  10 ;10 <<<<<< δβα and  ; δβα    , and   are smoothing 
constants accounting for the level, trend and the seasonal components 
respectively).  lt, bt and st are smoothed estimates of the level, trend and the 
seasonal components at time t respectively. p is seasonality and equals 12 and 

4 respectively for monthly and quarterly data. kty +ˆ is the k-step-ahead forecast. 
The H-W method requires initial values to begin the estimation 

process. The values are 
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The multiplicative version of the H-W model is of the form 
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The initial values for the multiplicative model differ from those of 

additive model in respect of the seasonal component, si. In this case, 

p

i
i l

y
s =

   i = 1, 2, …, p 
 
SARIMA Model 

SARIMA model is a linear model in which the time series variable yt 
is assumed to be a function of its lagged values and some random shocks. The 
model was developed by Box and Jenkins (1976).  
SARIMA (p, d, q) X (P, D, Q) is of the form 

t
s

Qqt
Dsds

Pp BByBBBB εθφ )()()1()1)(()( Θ=−−Φ
                                 (8) 

 
where p, d, q are integers and represent the number of autoregressive 

parameters, the order of nonseasonal differencing and number of moving 
average parameters in the model respectively. P, D and Q are seasonal 
counterparts of p, d and q. When P, D and Q are all zero, SARIMA becomes 
ARIMA. This is appropriate when data is not seasonal. If in addition, d = 0, 
ARIMA becomes ARMA implying that no differencing is required on the data 
to attain stationarity.         
 Fitting SARIMA models is iterative in nature and entails the following:  

i) Postulate general class of models 
ii) Identify a tentative model 
iii) Estimate parameters of identified model 
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iv) Perform diagnostic checking 
v) Use model for forecasting and control. 

 
Methodology 
Data 

Average monthly wind run data covering January 2000 to December 
2015 were collected from NCRI, Baddegi, Bida, Niger State, Nigeria. Data for 
January 2000 to December 2014 were used for modeling while the remaining 
data were used for out-of-sample model performance. 
 
Model and Estimation 

Four models (ANN, Decomposition, H-W and SARIMA) were 
involved in the study.  
 
ANN Model 

The ANN model fitted is of the form stated in (1). Six different model 
architectures: 

ANN (12, h, 1) h =1, …, 6 
 were fitted. 

The models were estimated (trained) by a method known as 
backpropagation learning algorithm. The activation function for the hidden 
and the output layer is  bipolar sigmoid function defined: 

)exp(1
)exp(1)(

x
xxf

−+
−−

=
                                                                           (9) 

 
Decomposition Model 

The multiplicative model of form (4) was fitted. The trend was 
represented by a simple linear model whose parameters were estimated by 
ordinary least squares while the seasonal component was estimated by ratio-
to-moving average method. 
 
Holt-Winters’s Model 

The multiplicative version of the Holt-Winters’ model specified in (7a) 
to (7d) was fitted. 

The smoothing parameters were each allowed to take on 0.1, 0.2,…, 
0.9. A total of 729 parameter combinations were involved and the best 
combination was selected on the basis of 1-step-ahead mean square error. The 
resulting model was then used for forecasting. 
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SARIMA Model 
SARIMA model of the form specified in (8) was fitted. Model 

parameters were estimated by nonlinear least squares. Diagnostic procedure 
adopted Ljung-Box statistics due to Ljung and Box (1978). Just like the other 
diagnostic tests, it is based on the principle that for model adequacy, the 
residuals should behave like a white noise process. 
 
Principle for Combining Forecasts 

Forecasts were combined by taking arithmetic mean of single 
forecasts. This remains the most employed method for combining forecasts.  

The naming nomenclature for the models follows: 
ANN: A 

Decomposition: D 
H-W: H 

SARIMA: S 
A combination of models was indicated by ‘+’, sign. For example, 

A+D implies a combination of ANN and decomposition models. 
 
Results and Discussion 

Results of analysis are hereby, condensed and discussed. 
           
 
 
 
 
 
 
 
 

 
 
Fig.1 presents the time plot of the wind run data. The data exhibit 

marked seasonality. Except for an obvious spike, the pattern is consistent. 
 

Table 1. Mean square errors of ANN models 
Model MSE 

ANN(12, 1, 1) 1841.443 
ANN(12, 2, 1) 1290.777 
ANN(12, 3, 1) 1286.062 
ANN(12, 4, 1) 1256.616 
ANN(12, 5, 1) 1254.338* 

ANN(12, 6, 1) 1404.694 
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Table 1 presents the mean square errors for the six fitted ANN models. 

ANN (12, 5, 12) has produced the least MSE and was hence used to forecast 
values for January to December 2015. The forecasts are presented in Table 2. 
                            
 
 
 
 
 
 
 
 
 

Actual values and forecasts (for January to December 2015) of single 
models are presented in Fig. 2.  The forecasts expectedly portray a mixture of 
underestimation and overestimation by the individual models. Some of the 
forecasts are widely different between models. 

Table 2. Forecasts, MSE and overall ranking of single models 
  Model 

Period Actual value ANN DECOMP H-W SARIMA 
Jan 68.18 62.3907 55.3048 64.3429 81.538 
Feb 92.7 93.7621 71.3321 87.8622 101.951 
Mar 109.12 127.7325 102.8621 109.4224 140.150 
Apr 119.09 136.9394 154.3041 154.7129 133.915 
May 152.70 128.4807 127.1996 143.0960 87.404 
Jun 108.07 124.1186 102.4828 107.4531 88.968 
Jul 86.92 122.1879 93.5010 99.9193 87.404 

Aug 57.77 112.5253 93.3998 102.2596 88.968 
Sept 63.0 89.5391 91.8983 93.1742 82.716 
Oct 61.64 68.6437 68.4629 60.6469 55.328 
Nov 37.8 57.8023 42.3627 51.4530 52.407 
Dec 50.34 57.4463 38.9580 44.0435 39.987 
MSE - 582.4781 410.6553 390.4711 649.8144 
Rank  14 8 4 15 

 
Table 2 presents the actual values and forecasts for January to 

December 2015, the period set aside for comparison purposes. Out of four 
single models, Holt-Winters’ produced the least mean square error of 
390.4711 based on forecasts for 12 months. Holt-Winter’s is next, followed 
by ANN and SARIMA is the last. The Holt-Winter’s model is ranked fourth 
however, of the fifteen cases (single and combined) considered. The simpler 
models (Decomposition and Holt-Winter’s) have outperformed the 
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sophisticated models in this instance. This implies that model performance in 
a particular situation does not depend on sophistication but rather on suitability 
for the data. Simpler models can outperform more sophisticated models in 
several instances. 
 
                      
 
 
 
 
 
 
 
 
 

Fig. 3 is a plot of actual values and forecasts for six 3-model 
combinations involved. The scenario portrayed is a little different from that of 
single models. Differences between forecasts have closed up. 

Table 3. Forecasts, MSE and overall ranking of combinations of two models 

 
Combined forecasts for two-model combinations are presented in 

Table 2. Model (D+H), signifying combination of Decomposition and Holt-
Winters’ forecasts outperformed other models in this category. The 
combination is ranked second of all cases under consideration. It has 
outperformed all single model forecasts. This implies that combined forecasts 
do not necessarily outperform single forecasts. For instance, decomposition 

  Model 
Perio

d 
Actual 
value 

A+D A+H A+S D+H D+S H+S 

Jan 68.18 58.8478 63.3668 71.9644 59.8239 68.4214 72.9405 
Feb 92.7 82.5471 90.8122 97.8566 79.5972 86.6416 94.9066 
Mar 109.12 115.2973 118.5775 133.9413 106.1423 121.5061 124.7862 
Apr 119.09 145.6218 145.8262 135.4272 154.5085 144.1096 144.314 
May 152.70 127.8402 135.7884 107.9424 135.1478 107.3018 115.25 
Jun 108.07 113.3007 115.7859 106.5433 104.968 95.7254 98.2106 
Jul 86.92 107.3007 111.0536 104.796 96.7102 90.4525 93.6617 

Aug 57.77 102.9626 107.3925 100.7467 97.8297 91.1839 95.6138 
Sept 63.0 90.7187 91.3567 86.1276 92.5363 87.3072 87.9451 
Oct 61.64 68.5533 64.6453 61.9859 64.5549 61.8955 57.9875 
Nov 37.8 50.0825 54.6277 55.1047 49.9079 47.3849 51.93 
Dec 50.34 48.2022 50.7449 48.7167 41.5008 39.4725 42.0153 
MSE - 419.1956 443.1515 494.4266 380.429 413.2819 399.2567 
Rank  11 12 13 2 9 6 
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and H-W models have individually performed better than all 2-model forecasts 
except combined decomposition and H-W models. This is understandable 
since the two models have performed better than other single models in their 
individual capacities. 
           
 
 
 
 
 
 
 
 
 
 

Only four 3-model cases are involved. The forecasts are depicted in 
Fig. 4. The figure portrays a scenario where forecasts are not radically 
different, similar to that of 2-model combinations.  

Table 4. Forecasts, MSE and overall ranking of combinations of three models 
  Model 

Period Actual value A+D+H A+D+S D+H+S A+H+S 
Jan 68.18 60.6795 66.4112 67.0619 69.4239 
Feb 92.7 84.3188 89.0151 87.0484 94.5251 
Mar 109.12 113.339 123.5815 117.4782 125.7683 
Apr 119.09 148.6521 141.795 147.644 141.8558 
May 152.70 132.9254 114.3614 119.2332 119.6602 
Jun 108.07 111.3515 105.1898 99.6346 106.8466 
Jul 86.92 105.2027 101.031 93.6081 103.1704 

Aug 57.77 102.7282 98.2977 94.8758 101.251 
Sept 63.0 91.5372 88.0511 89.2628 88.5395 
Oct 61.64 65.9178 64.1449 61.4928 61.5395 
Nov 37.8 50.5393 50.8573 48.7409 53.8874 
Dec 50.34 46.8159 45.4638 40.9962 47.1589 
MSE - 398.5755 407.1498 368.922 413.8417 
Rank  5 7 1 10 

 
Table 3 presents all possible combinations of three models. Model 

(D+H+S) is not only the best in this category, it is the overall best of all 
combinations as it is ranked first. Once again, the individual performances of 
decomposition and H-W have come into play. The two combined with 
SARIMA model have produced the overall best model. This is an interesting 
output of combination of simplicity with sophistication. 
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Table 5. Forecasts, MSE and overall ranking of a combination of four models 
Period Actual value A+D+H+S 

Jan 68.18 65.8941 
Feb 92.7 88.7269 
Mar 109.12 120.0418 
Apr 119.09 144.9679 
May 152.70 121.5451 
Jun 108.07 105.7556 
Jul 86.92 100.7531 

Aug 57.77 99.2882 
Sept 63.0 89.3319 
Oct 61.64 63.2704 
Nov 37.8 51.0063 
Dec 50.34 45.1087 
MSE - 383.238 
Rank  3 

 
The forecasts for the only four combined models are presented in Table 

5. The combination is ranked overall third. It has indeed justified efforts at 
combining the forecasts as it has performed better than all single model cases. 
Results have shown that combined forecasts are better as far as wind run 
forecasting is concerned. The best of single model has performed worse than 
the best of combined forecasts from two-model, three-model and four-model 
forecasts. It is therefore worthwhile to combine forecasts as doing so tends to 
improve accuracy. 

Table 6. Average ranks for different model structure (Case of 12-month forecasts) 
Model structure Average rank 

Single 10.25 
Double 8.83 
Triple 5.75 

Quadruple 3.00 
 

Average ranks presented in Table 6 suggest that the 4-model forecasts 
are typically better than others, followed by 3-model forecasts, then 2-model 
forecasts and lastly, single model forecasts. Combined forecasts have shown 
supremacy. 

Table 7. Absolute errors and ranks based on 1-step-ahead forecasts 
Model Absolute error Rank 

ANN (A) 5.7893 10 
DECOM (D) 12.8752 14 

H-W (H) 3.3178 6 
SARIMA (S) 13.358 15 

A+D 9.3322 13 
A+H 4.8132 9 
A+S 3.7844 7 
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D+H 8.3561 12 
D+S 0.2414 1 
H+S 4.7605 8 

A+D+H 7.4825 11 
A+D+S 1.7688 4 
D+H+S 1.1181 2 
A+H+S 1.2439 3 

A+D+H+S 2.2859 5 
 

Table 7 presents absolute errors for all cases based on 1-step-ahead 
forecast. Just like the earlier comparisons that were done on the basis of 
forecasts for 12 months, combined forecasts have shown once again its 
supremacy over single forecasts. Model (D+S) has performed best on basis of 
absolute error, followed by D+H+S and then A+H+S. The best performer of 
single models is Holt-Winters’ occupying the sixth position.  

Table 8. Average ranks for different model structure (1-step-ahead forecasts) 
Model structure Average rank 

Single 10.25 
Double 12.50 
Triple 5.00 

Quadruple 1.25 
 

Average ranks obtained from 1-step-ahead forecasts are presented in 
Table 8. The behavior is not radically different from that of 12-month forecasts 
displayed in Table 6 except that single models typically perform better than 2-
model forecasts in the case of 1-step-ahead forecasting.  
 
Conclusions 

This article has modeled wind run series using four different 
forecasting models and compared single to combined forecasts. Combined 
forecasts were found to be better than single forecasts on a short term and long 
term basis. The combination of decomposition, Holt-Winters’ and SARIMA 
models performed best. Holt-Winters’ model performed better than eleven 
combined models, suggesting that combined models are not always better. It 
is therefore evident that inclusion of additional model forecast does not 
necessarily improve combined forecast accuracy but tends to do so. In 
modeling situations, single and combined forecasts should be allowed to 
compete as doing so will assist in determining which of single and combined 
forecasts is appropriate. 
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