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Abstract 

A deep phenotype is the detailed description of the observable signs 

and symptoms, the mode of onset, the clinical course, and the response to 

treatment that characterizes a human disease. With advances in high-

throughput phenotyping based on natural language processing and other 

automated algorithms, it is possible to calculate the distances between cohorts 

of patients and calculate the distances between individual patients. Vector 

representations of phenotypes allows the quantitative characterization of 

disease phenotypes, helps to identify phenotypic features with the highest 

diagnostic value, facilitate the recognition of disease variants, and supports 

progress towards precision medicine. This focused review introduces the 

underlying concepts of deep phenotype, ontology, disease repository, disease 

mimic, disease chameleon, patient distance, computable phenotype, and 

phenomics and provides illustrative examples from neurology. In closing, 

future advances in the application of deep phenotyping will depend on 

improved methods for the high-throughput phenotyping of large numbers of 

patients based on the unstructured text that is held in electronic health records. 
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health records, deep phenotyping 

 

Introduction 

The Precision Medicine Initiative utilizes clinical, genomic, metabolic, 

and environmental data to personalize treatment at the level of the individual 

patient (Collins & Varmus, 2015). The key to this effort is making the clinical 

phenotype of each patient computable (Tasker, 2017). The clinical phenotype 

is each patient's externally observable disease characteristics, including signs, 

symptoms, mode of onset, course progression, and response to treatment. Most 

of the data needed for phenotyping for precision medicine is stored in 

electronic health records as free text and is in a non-computable format. 

Unlocking the value of unstructured clinical data in electronic health records 

depends on the successful development of high-throughput methods to create 

computable phenotypes (Tasker, 2017). In this focused review, we examine 

the status of deep phenotyping, emphasizing examples from neurology. We 

define deep phenotyping as the detailed description of the signs and symptoms 

of a disease utilizing concepts from a suitable ontology with corresponding 

machine-readable codes (Robinson, 2012). 

 

Methods 

For our focused review of deep phenotyping, we searched the titles of 

articles in the Ovid Medline database (1946 to November 12, 2021) using the 

search terms detailed in Table 1. Priority was given to articles focused on the 

deep phenotyping of neurological diseases 
Table 1: Documents retrieved by Ovid Medline database 

Search Terms Retrieved Reviewed Retained 

phenomics 266 22 3 

pathognomonic sign 56 2 3 

phenotyping AND (deep OR high throughput) 523 35 13 

disease AND (variant OR subtype) 154 17 10 

patient AND (distance or similarity) 240 22 4 

phenotype AND ontology 57 28 8 

phenotype AND repository 76 12 6 

Totals 1372 138 53 

 

This review was focused on introducing important concepts such as 

deep phenotype, disease ontology, high throughput phenotyping, disease 

entities, variants, mimics, and chameleons, computable phenotypes, and 

patient distances.  The phenotype vectors for the Parkinson patient shown in 

Table 2 were based on methods described in Hier et al. (2020). The disease 

vectors shown in Table 3 are based on data and methods described in Hier & 

Wunsch (2021).  Inter-disease distances shown in Table 4 are cosine distances 
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based on the vectors in Table 3 and by methods described in Hier et al. (2020).  

Information gain based on feature selection for different neurologic diseases 

is based on data from Wunsch & Hier (2021) and the feature selection widget 

from Orange (Demsar et al. 2013).  The MDS map in Figure 2 is based on the 

distances in Table 4 and the MDS widget from Orange (Demsar et al. 2013). 

 

What is deep phenotyping? 

The phenotype of a disease is the collective observable manifestations 

of a disease. Traditionally, the phenotype was characterized by signs (findings 

elicited by the physician) combined with the symptoms (patient complaints). 

More recently, the concept of disease phenotype has been enlarged to 

encompass age at onset, mode of onset (acute, subacute, or insidious), rate of 

progression (static, progressive, relapsing, indolent), and response to 

medication and therapy (good, fair, or poor) (Robinson, 2012; Delude, 2015). 

Some have further enlarged phenotypes to include biomarkers, radiological 

findings, and electrophysiological findings (Bycroft et al., 2018). We use the 

term phenotype (Robinson, 2012) "...as the precise and comprehensive 

analysis of phenotypic abnormalities in which the individual components of 

the phenotype are observed and described, often for scientific examination of 

human disease". Consider a patient with Parkinson's disease that presents with 

the following history (Figure 1). 

A 75-year-old man comes to the office complaining of increasing 

slowness and stiffness (Figure 1). Neurologic examination shows a 

resting tremor in both hands, a stooped posture, cogwheel rigidity, and 

a festinating shuffling gait. In the past, he has demonstrated an 

excellent response to levodopa therapy. 

 

Three cardinal features of Parkinson disease are bradykinesia, resting 

tremor, and cogwheel rigidity (Table 1). No individual patient is a perfect 

match to a disease phenotype, but most with a given disease will have most 

of the important features of that disease (Caplan, 1982. Caplan, 2021). The 

signs and symptoms of this patient (Table 2)  can be converted to machine-

readable codes from the UMLS Metathesaurus (Bodenreider, 2004). These 

signs and symptoms are a close but not perfect match to the known signs and 

symptoms of Parkinson disease. 

 

 

  

http://www.eujournal.org/


European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431 February 2022 

Computational Intelligence Applications in Medicine and Biology 

www.eujournal.org   7 

Figure 1: Drawing by Sir William Gowers of the patient with Parkinson disease 

illustrating rigidity, resting tremor, masked face, and stooped posture from his 1886 

textbook A  Manual of  Diseases of the Nervous System (Work is in the public domain). 

  

What ontologies are available for phenotyping? 

Disease ontologies are carefully constructed limited vocabularies that 

include the terms needed to describe knowledge in a restricted domain 

(Gruber, 2018; Jepsen, 2009). Each entry in the ontology is called a concept 

and has a distinct meaning different from all other concepts. Most disease 

ontologies are organized as subsumptive hierarchies with more specific 

concepts subsumed by more general concepts. For example, in a neurological 

ontology (Hier & Brint, 2020), hand weakness is subsumed by limb weakness, 

which is subsumed by motor findings. Clinical phenotyping is the process of 

converting disease manifestations to concepts in a disease ontology. Disease 

ontologies contain disease concepts, their descriptions, and their machine-

readable codes. Some disease ontologies are comprehensive and have more 
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concepts than needed to phenotype a typical patient with a given disease. The 

UMLS Metathesaurus (Bodenreider, 2004) has over 4.4 million concepts, and 

the SNOMED CT ontology has 361,588 concepts (SNOMED CT, 2021). 

Smaller ontologies are available for phenotyping patients with human 

diseases, such as the Human Phenotype Ontology with 19,618 concepts 

(Robinson & Mundlos, 2010) and the Mendelian Inheritance of Disease in 

Man ontology with 94,261 concepts (McKusick, 2007). We have developed a 

small ontology for encoding the signs and symptoms of the neurological 

examination (Hier & Brint, 2020). Ideally, a disease ontology has one entry 

for each unique disease feature. If brisk ankle reflex and brisk Achilles reflex 

are exact synonyms, they are consolidated into a single concept with a unique 

machine-readable code. 
Table 2: Phenotype of Parkinson disease in general compared to phenotype of a specific 

patient 

Sign or Symptom CUI 

Code 

Disease 

Phenotype 

This Patient 

Phenotype 

resting tremor C0750937 1 1 

bradykinesia C0151889 1 1 

cogwheel rigidity C0339662 1 1 

stooped posture C0344232 1 1 

micrographia C0422917 1 0 

festinating gait C0231686 1 1 

expressionless face C0234632 1 0 

freezing of gait C0860515 1 0 

good response to levodopa C1846868 1 1 

1 indicates the feature is present 

0 indicates the feature is absent 

 

What phenotype repositories are available? 

Three large phenotype repositories are freely available online and 

allow the detailed characterization of human diseases by their phenotypic 

features. The Human Phenotype Ontology (HPO) has over 10,000 human 

disease phenotype profiles (Groza et al., 2015), including rare and common 

diseases. The Online Mendelian Inheritance in Man (OMIM) repository has 

phenotype profiles for over 9,500 primarily heritable diseases (McKusick, 

2007). Orphanet is a repository of genotypic and phenotypic data on 9346 rare 

diseases (Maiella et al., 2013). All three repositories are searchable by 

phenotype, gene, or disease, and each supports correlations between 

phenotype and genotype. 

 

What is high throughput phenotyping? 

High throughput methods allow hundreds or thousands of patient 

samples to be rapidly processed by automated methods. High throughput 

methods are available for genomics, proteomics, and metabolomics. These 
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methods allow large numbers of patients to be characterized quickly according 

to their genetic, protein, and metabolic profiles. The clinical phenotyping of 

individual patients remains primarily a manual process of extracting signs and 

symptoms (Fu et al., 2020). Several software tools are emerging to assist in 

this process, including PhenoTips  (Girdea et al., 2013), Phenolyzer  (Yang, 

Robinson, & Wang, 2015), and Phenomizer  (K¨ohler et al., 2009). These 

software tools partially automate taking clinical text and converting it to 

phenotype concepts from a suitable ontology such as the Human Phenotype 

Ontology (HPO). Coding experts do phenotyping manually (the collection of 

clinical features and their conversion into machine readable codes from a 

disease ontology). Even among expert coders, agreement on code phenotypic 

features is not perfect (Chiang et al., 2006; Andrews, Richesson, & Krischer, 

2007). Houle, Govindaraju, & Omholt (2010) emphasize that "gathering 

phenomic data is currently expensive and time-consuming; technical advances 

can increase phenomic throughput and lower costs." 

 

What is a disease entity? 

Finding a concise and satisfying definition of a disease entity is 

surprisingly difficult (Aronowitz, 2001; Magid, 2001; Hucklenbroich, 2014). 

As Magid (2001) has noted, "the concept of disease is inherently ambiguous 

and elusive." Traditionally disease entities have been defined as a complex of 

signs and symptoms that have diagnostic, prognostic, and therapeutic utility 

(Aronowitz, 2001; Hucklenbroich, 2014). The current trend is to define 

disease entities by their underlying genetic, physiologic, and metabolic causes. 

Yet, most clinicians continue to identify disease entities based on recognizable 

complexes of signs and symptoms. For example, clinicians continue to 

recognize Alzheimer disease as progressive dementia with memory loss and 

impaired insight, myasthenia gravis as fatigable muscle weakness with eyelid 

ptosis and diplopia, Huntington disease as a heritable disease with chorea, 

incoordination, and personality change, etc. Increasingly, consensus 

conferences are being used to build precise working definitions of disease 

entities such as Alzheimer disease, frontotemporal dementia, and Lewy body 

dementia (Khachaturian, 2011; McKeith et al., 2017; McKhann et al., 2001). 

 

What is the difference between a disease entity and a disease variant? 

Many diseases, and some neurological diseases, have recognizable 

variants that differ from the typical disease phenotype. For example, the 

typical amyotrophic lateral sclerosis phenotype is hyperreflexia, muscle 

weakness, muscle atrophy, spasticity, extensor plantar responses, and 

fasciculations (Grad, Rouleau, Ravits, & Cashman, 2017). A primary lateral 

sclerosis variant that lacks atrophy and fasciculations is recognized, as is a 

progressive muscle atrophy variant that lacks spasticity and hyperreflexia 
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(Grad et al., 2017). Similarly, the typical frontotemporal dementia phenotype 

includes behavioral and aphasic features. A behavioral variant of FTD, which 

lacks aphasic features, and an aphasic variant that lacks behavioral features is 

recognized (Laforce Jr, 2013). Although myasthenia gravis is characterized by 

fatigable generalized weakness, about 20% of patients have variant ocular 

myasthenia with weakness confined to the muscles of the eyes and eyelids 

(Sommer, Melms, Weller, & Dichgans, 1993). 

 

What are disease mimics and disease chameleons? 

Both disease mimics and disease chameleons pose diagnostic 

challenges for clinicians. A disease mimic is a disease that has a phenotype 

similar to another disease and which may be confused diagnostically with the 

disease diagnosis under consideration.  For example, disease mimics for 

Parkinson disease include diseases with a similar phenotype such as Lewy 

body dementia, progressive supranuclear palsy, essential tremor, multiple 

system atrophy, dystonic tremor and others (Ali et al., 2015).  Similarly, 

disease mimics for amyotrophic lateral sclerosis include hereditary spastic 

paraparesis, motor predominant chronic inflammatory demyelinating 

polyradiculopathy, neuralgic amyotrophy, primary progressive multiple 

sclerosis and others.  Disease chameleons are atypical presentations of a 

disease with a non-standard phenotype such as Parkinson disease presenting 

as a pain syndrome or as a REM sleep disorder.  Amyotrophic lateral sclerosis 

may present atypically as a flail arm or flail leg syndrome which challenges 

the acumen of the diagnostician (Turner & Talbot, 2013). 

 

How can a phenotype be made computable? 

Detailed descriptions of a disease phenotype are easily accessible in 

medical textbooks. For example, Parkinson's disease is characterized by the 

triad of bradykinesia, cogwheel rigidity, and resting tremor (Table 2). If 

disease signs and symptoms are mapped to concepts in a disease ontology (see 

Table 3), and each feature is binary coded (0 for absent and 1 for present), 

patients or diseases can be converted into computable vectors (Hier et al., 

2020; Hier & Brint, 2020; Wunsch & Hier, 2021).  For example, in Table 3, 

Parkinson disease  is the vector [0,0,1,0,0,0,0,1,0,1,1] and Alzheimer disease 

is the vector [1,0,0,1,0,0,1,0,0,0,0]. 
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Table 3: Example Disease Vectors based on Disease Phenotype 

Finding 

disease 

Parkinson 

disease 

Lewy body 

dementia 

Alzheimer 

disease 

normal pressure 

hydrocephalus 

frontotemporal 

dementia 

amnesia 0 1 1 1 1 

aphasia 0 0 0 0 1 

bradykinesia 1 1 0 1 0 

confusion 0 1 1 1 0 

delusions 0 1 0 0 1 

disinhibition 0 0 0 0 1 

disorientation 0 1 1 1 0 

gait disorder 1 1 0 1 0 

incontinence 0 0 0 1 0 

rigidity 1 1 0 1 0 

tremor 1 1 0 0 0 

Each vertical column is a disease vector so that Parkinson disease is 

[0,0,1,0,0,0,0,1,0,1,1] 

1 indicates finding is present. 

0 indicates findings are absent. 

 

How are patient distances and patient similarities calculated? 

Once a patient phenotype is converted to a vector, various distance 

metrics are available, including Manhattan, Cosine, Minkowski, Euclidean, 

Jaccard, Hamming, and others (Hier et al., 2020; Choi, Cha, & Tappert, 2010). 

In Table 4, the disease vectors from Table 3 have been converted into inter-

disease distances. Parkinson disease is closest to Lewy body dementia and 

most distant to frontotemporal dementia; Alzheimer disease is closest to 

normal pressure hydrocephalus and most distant to Parkinson disease (Table 

4). Once disease distances are known, multidimensional scaling (MDS) allows 

disease distances to be visualized in an arbitrary two-dimensional Cartesian 

space (Figure 2). The concepts of patient distances and patient similarity are 

closely intertwined so that if patient distances and patient similarities are 

normalized on a scale of 0 to 1.0, the patient distance is just the complement 

of the patient similarity (Hier et al., 2020; Parimbelli, Marini, Sacchi, & 

Bellazzi, 2018), i.e., a patient distance of 0.8 is a patient similarity of 0.2. 
Table 4: Example Patient Distances based on vectors from Table 3. 

Disease PD LBD AD NH FTD 

Parkinson disease (PD) 0.00 2.00 2.65 2.24 2.83 

Lewy body dementia (LBD) 2.00 0.00 2.24 1.73 2.83 

Alzheimer disease (AD) 2.65 2.24 0.00 2.00 2.24 

normal pressure hydrocephalus (NPH) 2.24 1.73 2.00 0.00 3.00 

frontotemporal dementia (FTD) 2.83 2.83 2.24 3.00 0.00 

 

0.00 is closest, 3.00 is most distant. Distances are Cosine distances. Note the 

distance of disease to itself is 0.0. Inspection of this table  shows which disease 

is closest and most distant to each of the other diseases. 
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What is a pathognomonic sign? 

Since the 19th century, there has been significant interest in finding 

pathognomonic signs and symptoms that accurately predict the presence of a 

disease (Janeway, 1884). A pathognomonic sign or symptom is defined as "a 

sign or symptom that is so characteristic of a disease that it can be used to 

make a diagnosis" (MedicineNet, 2021). For example, the Kayser-Fleischer 

ring has been considered pathognomonic of Wilson disease and Lhermitte sign 

pathognomonic of multiple sclerosis (Liu, Cohen, Brewer, & Laibson, 2002; 

Khare & Seth, 2015). Most of these attempts to find pathognomonic signs in 

neurology have proven prone to error (Barrows &  Bennett, 1972). When 

phenotypic features are converted to vectors (Table 3), machine learning 

methods such as feature selection can be used to determine which features are 

most diagnostic of a disease (Wunsch & Hier, 2021; Kuhn & Johnson, 2019). 

When large disease datasets are available, information gain (Azhagusundari et 

al., 2013) and other feature selections algorithms can determine which 

phenotypic features are most diagnostic (i.e., most highly predictive of a given 

diagnosis). We have developed methods for classifying patients according to 

phenotypic features using machine learning (Hier et al., 2020; Wunsch & Hier, 

2021). Using information gain as a selection criterion, we can ascertain which 

phenotypic features are most diagnostic of a given neurological diagnosis 

(Table 5). The best phenotypic features for diagnosing Huntington disease, 

Parkinson disease, Alzheimer disease, and frontotemporal dementia are 

chorea, resting tremor, forgetfulness, and anomia. None of these phenotypic 

features are pathognomonic in the classic sense, yet machine learning offers 

insights into which phenotypic features are quantitatively the most diagnostic. 

 

  

http://www.eujournal.org/


European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431 February 2022 

Computational Intelligence Applications in Medicine and Biology 

www.eujournal.org   13 

Figure 2: Multidimensional scaling of distances from Table 4 converted into 2-dimensional 

Cartesian space (Demsar et al., 2013).  Note the proximity of Parkinson disease (PARK), 

normal pressure hydrocephalus (NPH), and Lewy body dementia (LBD) which all have 

features of a gait disorder and hypokinesia. Note the proximity of Lewy body dementia to 

Parkinson disease, which both show prominent tremors. With its dementia features, the 

frontotemporal dementia (FTD) body is closest to Alzheimer disease (AD). 

 

What is phenomics? 

Garan) coined the term phenomics to describe the systematic study of 

phenotypes on a genome-wide scale while integrating basic, clinical, and 

information sciences (Jin, 2021. Houle et al. (2010) have emphasized that 

phenomics "is the acquisition of high-dimensional phenotypic data on an 

organism-wide scale" and that the analysis of these high dimensionality 

datasets (feature-rich) requires new methods and approaches.  They conclude 

that "phenomics should be recognized and pursued as an independent 

discipline to enable the development and adoption of high-throughput and 

high-dimensional phenotyping." Recently, Springer has initiated a new 

journal dedicated to phenomics (Jin, 2021). 
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Table 5: Information gain towards Correct Diagnosis by Phenotypic Feature 

Huntington Info Parkinson Info Alzheimer Info Frontotemporal Info 

disease gain disease gain disease gain dementia gain 

chorea 0.23 resting tremor 0.18 forgetful 0.12 anomia 0.06 

choreic gait 0.08 cogwheel rigidity 0.15 memory loss 0.11 disinhibition 0.06 

irritable 0.08 masked face 0.15 getting lost 0.11 poor hygiene 0.04 

paranoia 0.04 bradykinesia 0.15 poor insight 0.06 unkempt 0.04 

 

The top four features (most diagnostic) for each diagnosis are shown 

based on information gain (Azhagusundari et al., 2013). Phenotypic features 

have been converted to vectors (See (Wunsch & Hier, 2021)). Inspection of 

this table shows that the two most diagnostic phenotypic features are chorea 

for Huntington disease (0.23) and resting tremor for Parkinson disease (0.18). 

 

Discussion 

Precision medicine offers great promise to improve patient outcomes 

by integrating genomics, phenomics, metabolomics, and proteomics (Collins 

& Varmus, 2015). Key to this effort is the precise and computable 

characterization of the signs, symptoms, onset, and course of large cohorts of 

patients (Weng, Shah, & Hripcsak, 2020). This effort has been named high-

throughput deep clinical phenotyping (Robinson, 2012; Delude, 2015). 

Although deep phenotyping efforts began in earnest in 2006 (Robinson, 2012), 

and the precision medicine initiative was introduced in 2015 (Collins & 

Varmus, 2015), deep phenotyping is just beginning to yield tangible results. 

Phenotype-based searches of online databases of Mendelian disorders such as 

HPO (Robinson & Mundlos, 2010) and OMIM (McKusick, 2007) are not yet 

performed routinely in the clinical setting (Fellner et al., 2021). Deep 

phenotyping of patients facilitates the conversion of unstructured clinical data 

into computable vectors that allow the calculation of patient distance and 

similarity needed for precision medicine (Brown, 2016; Parimbelli et al., 

2018). Electronic health records have emerged as the most important source 

of phenotypic features (Curcin, 2020). A major limitation to gaining insights 

from deep phenotyping has been the bottleneck created by the time-consuming 

process of manually phenotyping patient data held in electronic health records 

(Curcin, 2020). Further advances in deep phenotyping may depend on 

improved methods to do high throughput deep phenotyping on the 

unstructured text of large numbers of patients that are held in electronic health 

records (Yehia & Eng, 2019; Yu et al., 2015; Zheng et al., 2020; Chen et al., 

2013; Weng et al., 2020; Fu et al., 2020; Gehrmann et al., 2018). 

This review has several limitations.  Firstly, our review of the literature 

was focused rather than systematic.  We reviewed 1372 articles and selected 

53 for inclusion. Secondly, we chose examples of deep phenotyping solely 
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from the domain of neurology. Other domains are worthy of review as well. 

Thirdly, our focused review was designed as an intermediate-level 

introduction to the most important concepts of deep phenotyping. Each topic 

reviewed,  including phenotype ontologies, phenotype repositories, 

computable phenotypes, disease variants, phenotype subtypes, high 

throughput phenotyping, and the algorithm-guided extraction of phenotype 

features from electronic health records, is worthy of exploration in greater 

detail than was practical in this focused review. 
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