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Abstract

A deep phenotype is the detailed description of the observable signs
and symptoms, the mode of onset, the clinical course, and the response to
treatment that characterizes a human disease. With advances in high-
throughput phenotyping based on natural language processing and other
automated algorithms, it is possible to calculate the distances between cohorts
of patients and calculate the distances between individual patients. Vector
representations of phenotypes allows the quantitative characterization of
disease phenotypes, helps to identify phenotypic features with the highest
diagnostic value, facilitate the recognition of disease variants, and supports
progress towards precision medicine. This focused review introduces the
underlying concepts of deep phenotype, ontology, disease repository, disease
mimic, disease chameleon, patient distance, computable phenotype, and
phenomics and provides illustrative examples from neurology. In closing,
future advances in the application of deep phenotyping will depend on
improved methods for the high-throughput phenotyping of large numbers of
patients based on the unstructured text that is held in electronic health records.

Keywords: Phenotype, ontology, precision medicine, disease, disease variant,
patient similarity, patient distance, high-throughput phenotyping, electronic
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health records, deep phenotyping

Introduction

The Precision Medicine Initiative utilizes clinical, genomic, metabolic,
and environmental data to personalize treatment at the level of the individual
patient (Collins & VVarmus, 2015). The key to this effort is making the clinical
phenotype of each patient computable (Tasker, 2017). The clinical phenotype
is each patient's externally observable disease characteristics, including signs,
symptoms, mode of onset, course progression, and response to treatment. Most
of the data needed for phenotyping for precision medicine is stored in
electronic health records as free text and is in a non-computable format.
Unlocking the value of unstructured clinical data in electronic health records
depends on the successful development of high-throughput methods to create
computable phenotypes (Tasker, 2017). In this focused review, we examine
the status of deep phenotyping, emphasizing examples from neurology. We
define deep phenotyping as the detailed description of the signs and symptoms
of a disease utilizing concepts from a suitable ontology with corresponding
machine-readable codes (Robinson, 2012).

Methods

For our focused review of deep phenotyping, we searched the titles of
articles in the Ovid Medline database (1946 to November 12, 2021) using the
search terms detailed in Table 1. Priority was given to articles focused on the

deep phenotyping of neurological diseases
Table 1: Documents retrieved by Ovid Medline database

Search Terms Retrieved |[Reviewed [Retained
phenomics 266 22 3
pathognomonic sign 56 2 3
phenotyping AND (deep OR high throughput) 523 35 13
disease AND (variant OR subtype) 154 17 10
patient AND (distance or similarity) 240 22 4
phenotype AND ontology 57 28 8
phenotype AND repository 76 12 6

Totals 1372 138 53

This review was focused on introducing important concepts such as
deep phenotype, disease ontology, high throughput phenotyping, disease
entities, variants, mimics, and chameleons, computable phenotypes, and
patient distances. The phenotype vectors for the Parkinson patient shown in
Table 2 were based on methods described in Hier et al. (2020). The disease
vectors shown in Table 3 are based on data and methods described in Hier &
Wunsch (2021). Inter-disease distances shown in Table 4 are cosine distances
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based on the vectors in Table 3 and by methods described in Hier et al. (2020).
Information gain based on feature selection for different neurologic diseases
is based on data from Wunsch & Hier (2021) and the feature selection widget
from Orange (Demsar et al. 2013). The MDS map in Figure 2 is based on the
distances in Table 4 and the MDS widget from Orange (Demsar et al. 2013).

What is deep phenotyping?

The phenotype of a disease is the collective observable manifestations
of a disease. Traditionally, the phenotype was characterized by signs (findings
elicited by the physician) combined with the symptoms (patient complaints).
More recently, the concept of disease phenotype has been enlarged to
encompass age at onset, mode of onset (acute, subacute, or insidious), rate of
progression (static, progressive, relapsing, indolent), and response to
medication and therapy (good, fair, or poor) (Robinson, 2012; Delude, 2015).
Some have further enlarged phenotypes to include biomarkers, radiological
findings, and electrophysiological findings (Bycroft et al., 2018). We use the
term phenotype (Robinson, 2012) "...as the precise and comprehensive
analysis of phenotypic abnormalities in which the individual components of
the phenotype are observed and described, often for scientific examination of
human disease”. Consider a patient with Parkinson's disease that presents with
the following history (Figure 1).

A 75-year-old man comes to the office complaining of increasing
slowness and stiffness (Figure 1). Neurologic examination shows a
resting tremor in both hands, a stooped posture, cogwheel rigidity, and
a festinating shuffling gait. In the past, he has demonstrated an
excellent response to levodopa therapy.

Three cardinal features of Parkinson disease are bradykinesia, resting
tremor, and cogwheel rigidity (Table 1). No individual patient is a perfect
match to a disease phenotype, but most with a given disease will have most
of the important features of that disease (Caplan, 1982. Caplan, 2021). The
signs and symptoms of this patient (Table 2) can be converted to machine-
readable codes from the UMLS Metathesaurus (Bodenreider, 2004). These
signs and symptoms are a close but not perfect match to the known signs and
symptoms of Parkinson disease.

www.eujournal.org 6



http://www.eujournal.org/

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431 February 2022
Computational Intelligence Applications in Medicine and Biology

Figure 1: Drawing by Sir William Gowers of the patient with Parkinson disease
illustrating rigidity, resting tremor, masked face, and stooped posture from his 1886
textbook A Manual of Diseases of the Nervous System (Work is in the public domain).

What ontologies are available for phenotyping?

Disease ontologies are carefully constructed limited vocabularies that
include the terms needed to describe knowledge in a restricted domain
(Gruber, 2018; Jepsen, 2009). Each entry in the ontology is called a concept
and has a distinct meaning different from all other concepts. Most disease
ontologies are organized as subsumptive hierarchies with more specific
concepts subsumed by more general concepts. For example, in a neurological
ontology (Hier & Brint, 2020), hand weakness is subsumed by limb weakness,
which is subsumed by motor findings. Clinical phenotyping is the process of
converting disease manifestations to concepts in a disease ontology. Disease
ontologies contain disease concepts, their descriptions, and their machine-
readable codes. Some disease ontologies are comprehensive and have more
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concepts than needed to phenotype a typical patient with a given disease. The
UMLS Metathesaurus (Bodenreider, 2004) has over 4.4 million concepts, and
the SNOMED CT ontology has 361,588 concepts (SNOMED CT, 2021).
Smaller ontologies are available for phenotyping patients with human
diseases, such as the Human Phenotype Ontology with 19,618 concepts
(Robinson & Mundlos, 2010) and the Mendelian Inheritance of Disease in
Man ontology with 94,261 concepts (McKusick, 2007). We have developed a
small ontology for encoding the signs and symptoms of the neurological
examination (Hier & Brint, 2020). Ideally, a disease ontology has one entry
for each unique disease feature. If brisk ankle reflex and brisk Achilles reflex
are exact synonyms, they are consolidated into a single concept with a unique

machine-readable code.
Table 2: Phenotype of Parkinson disease in general compared to phenotype of a specific

patient
Sign or Symptom CuUl Disease This Patient
Code Phenotype Phenotype
resting tremor C0750937 1 1
bradykinesia C0151889 1 1
cogwheel rigidity C0339662 1 1
stooped posture C0344232 1 1
micrographia C0422917 1 0
festinating gait C0231686 1 1
expressionless face C0234632 1 0
freezing of gait C0860515 1 0
good response to levodopa C1846868 1 1

1  indicates the feature is present
0 indicates the feature is absent

What phenotype repositories are available?

Three large phenotype repositories are freely available online and
allow the detailed characterization of human diseases by their phenotypic
features. The Human Phenotype Ontology (HPO) has over 10,000 human
disease phenotype profiles (Groza et al., 2015), including rare and common
diseases. The Online Mendelian Inheritance in Man (OMIM) repository has
phenotype profiles for over 9,500 primarily heritable diseases (McKusick,
2007). Orphanet is a repository of genotypic and phenotypic data on 9346 rare
diseases (Maiella et al., 2013). All three repositories are searchable by
phenotype, gene, or disease, and each supports correlations between
phenotype and genotype.

What is high throughput phenotyping?

High throughput methods allow hundreds or thousands of patient
samples to be rapidly processed by automated methods. High throughput
methods are available for genomics, proteomics, and metabolomics. These
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methods allow large numbers of patients to be characterized quickly according
to their genetic, protein, and metabolic profiles. The clinical phenotyping of
individual patients remains primarily a manual process of extracting signs and
symptoms (Fu et al., 2020). Several software tools are emerging to assist in
this process, including PhenoTips (Girdea et al., 2013), Phenolyzer (Yang,
Robinson, & Wang, 2015), and Phenomizer (K ohler et al., 2009). These
software tools partially automate taking clinical text and converting it to
phenotype concepts from a suitable ontology such as the Human Phenotype
Ontology (HPO). Coding experts do phenotyping manually (the collection of
clinical features and their conversion into machine readable codes from a
disease ontology). Even among expert coders, agreement on code phenotypic
features is not perfect (Chiang et al., 2006; Andrews, Richesson, & Krischer,
2007). Houle, Govindaraju, & Omholt (2010) emphasize that "gathering
phenomic data is currently expensive and time-consuming; technical advances
can increase phenomic throughput and lower costs."

What is a disease entity?

Finding a concise and satisfying definition of a disease entity is
surprisingly difficult (Aronowitz, 2001; Magid, 2001; Hucklenbroich, 2014).
As Magid (2001) has noted, "the concept of disease is inherently ambiguous
and elusive." Traditionally disease entities have been defined as a complex of
signs and symptoms that have diagnostic, prognostic, and therapeutic utility
(Aronowitz, 2001; Hucklenbroich, 2014). The current trend is to define
disease entities by their underlying genetic, physiologic, and metabolic causes.
Yet, most clinicians continue to identify disease entities based on recognizable
complexes of signs and symptoms. For example, clinicians continue to
recognize Alzheimer disease as progressive dementia with memory loss and
impaired insight, myasthenia gravis as fatigable muscle weakness with eyelid
ptosis and diplopia, Huntington disease as a heritable disease with chorea,
incoordination, and personality change, etc. Increasingly, consensus
conferences are being used to build precise working definitions of disease
entities such as Alzheimer disease, frontotemporal dementia, and Lewy body
dementia (Khachaturian, 2011; McKeith et al., 2017; McKhann et al., 2001).

What is the difference between a disease entity and a disease variant?
Many diseases, and some neurological diseases, have recognizable
variants that differ from the typical disease phenotype. For example, the
typical amyotrophic lateral sclerosis phenotype is hyperreflexia, muscle
weakness, muscle atrophy, spasticity, extensor plantar responses, and
fasciculations (Grad, Rouleau, Ravits, & Cashman, 2017). A primary lateral
sclerosis variant that lacks atrophy and fasciculations is recognized, as is a
progressive muscle atrophy variant that lacks spasticity and hyperreflexia
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(Grad et al., 2017). Similarly, the typical frontotemporal dementia phenotype
includes behavioral and aphasic features. A behavioral variant of FTD, which
lacks aphasic features, and an aphasic variant that lacks behavioral features is
recognized (Laforce Jr, 2013). Although myasthenia gravis is characterized by
fatigable generalized weakness, about 20% of patients have variant ocular
myasthenia with weakness confined to the muscles of the eyes and eyelids
(Sommer, Melms, Weller, & Dichgans, 1993).

What are disease mimics and disease chameleons?

Both disease mimics and disease chameleons pose diagnostic
challenges for clinicians. A disease mimic is a disease that has a phenotype
similar to another disease and which may be confused diagnostically with the
disease diagnosis under consideration. For example, disease mimics for
Parkinson disease include diseases with a similar phenotype such as Lewy
body dementia, progressive supranuclear palsy, essential tremor, multiple
system atrophy, dystonic tremor and others (Ali et al., 2015). Similarly,
disease mimics for amyotrophic lateral sclerosis include hereditary spastic
paraparesis, motor predominant chronic inflammatory demyelinating
polyradiculopathy, neuralgic amyotrophy, primary progressive multiple
sclerosis and others. Disease chameleons are atypical presentations of a
disease with a non-standard phenotype such as Parkinson disease presenting
as a pain syndrome or as a REM sleep disorder. Amyotrophic lateral sclerosis
may present atypically as a flail arm or flail leg syndrome which challenges
the acumen of the diagnostician (Turner & Talbot, 2013).

How can a phenotype be made computable?

Detailed descriptions of a disease phenotype are easily accessible in
medical textbooks. For example, Parkinson's disease is characterized by the
triad of bradykinesia, cogwheel rigidity, and resting tremor (Table 2). If
disease signs and symptoms are mapped to concepts in a disease ontology (see
Table 3), and each feature is binary coded (0 for absent and 1 for present),
patients or diseases can be converted into computable vectors (Hier et al.,
2020; Hier & Brint, 2020; Wunsch & Hier, 2021). For example, in Table 3,
Parkinson disease is the vector [0,0,1,0,0,0,0,1,0,1,1] and Alzheimer disease
is the vector [1,0,0,1,0,0,1,0,0,0,0].
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Table 3: Example Disease Vectors based on Disease Phenotype

Finding Parkinson | Lewy body | Alzheimer | normal pressure | frontotemporal
disease disease dementia disease hydrocephalus dementia

o
[uny
-

1

-

amnesia
aphasia
bradykinesia
confusion
delusions
disinhibition
disorientation
gait disorder
incontinence
rigidity
tremor

PORrOOOORrO
PORPRRFRPRORRLRRPFRO

OO0 O0ORrOORr OO
ORrRPRRPRPFPROORRLRO
OO0 O0ORrRR,ROOR

[N
[N

Each wvertical column is a disease vector so that Parkinson disease is
[0,0,1,0,0,0,0,1,0,1,1]

1 indicates finding is present.

0 indicates findings are absent.

How are patient distances and patient similarities calculated?

Once a patient phenotype is converted to a vector, various distance
metrics are available, including Manhattan, Cosine, Minkowski, Euclidean,
Jaccard, Hamming, and others (Hier et al., 2020; Choi, Cha, & Tappert, 2010).
In Table 4, the disease vectors from Table 3 have been converted into inter-
disease distances. Parkinson disease is closest to Lewy body dementia and
most distant to frontotemporal dementia; Alzheimer disease is closest to
normal pressure hydrocephalus and most distant to Parkinson disease (Table
4). Once disease distances are known, multidimensional scaling (MDS) allows
disease distances to be visualized in an arbitrary two-dimensional Cartesian
space (Figure 2). The concepts of patient distances and patient similarity are
closely intertwined so that if patient distances and patient similarities are
normalized on a scale of 0 to 1.0, the patient distance is just the complement
of the patient similarity (Hier et al., 2020; Parimbelli, Marini, Sacchi, &

Bellazzi, 2018), i.e., a patient distance of 0.8 is a patient similarity of 0.2.
Table 4: Example Patient Distances based on vectors from Table 3.

Disease PD |LBD|AD| NH |FTD

Parkinson disease (PD) 0.00|2.00|2.65|2.24|2.83

Lewy body dementia (LBD) 2.00/0.00|2.24|1.73|2.83
Alzheimer disease (AD) 2.65|2.2410.00|2.00 | 2.24
normal pressure hydrocephalus (NPH) 2.24|1.73]2.00|0.00 | 3.00
frontotemporal dementia (FTD) 2.83|2.83|2.24|3.00{0.00

0.00 is closest, 3.00 is most distant. Distances are Cosine distances. Note the
distance of disease to itself is 0.0. Inspection of this table shows which disease
is closest and most distant to each of the other diseases.
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What is a pathognomonic sign?

Since the 19th century, there has been significant interest in finding
pathognomonic signs and symptoms that accurately predict the presence of a
disease (Janeway, 1884). A pathognomonic sign or symptom is defined as "a
sign or symptom that is so characteristic of a disease that it can be used to
make a diagnosis” (MedicineNet, 2021). For example, the Kayser-Fleischer
ring has been considered pathognomonic of Wilson disease and Lhermitte sign
pathognomonic of multiple sclerosis (Liu, Cohen, Brewer, & Laibson, 2002;
Khare & Seth, 2015). Most of these attempts to find pathognomonic signs in
neurology have proven prone to error (Barrows & Bennett, 1972). When
phenotypic features are converted to vectors (Table 3), machine learning
methods such as feature selection can be used to determine which features are
most diagnostic of a disease (Wunsch & Hier, 2021; Kuhn & Johnson, 2019).
When large disease datasets are available, information gain (Azhagusundari et
al., 2013) and other feature selections algorithms can determine which
phenotypic features are most diagnostic (i.e., most highly predictive of a given
diagnosis). We have developed methods for classifying patients according to
phenotypic features using machine learning (Hier et al., 2020; Wunsch & Hier,
2021). Using information gain as a selection criterion, we can ascertain which
phenotypic features are most diagnostic of a given neurological diagnosis
(Table 5). The best phenotypic features for diagnosing Huntington disease,
Parkinson disease, Alzheimer disease, and frontotemporal dementia are
chorea, resting tremor, forgetfulness, and anomia. None of these phenotypic
features are pathognomonic in the classic sense, yet machine learning offers
insights into which phenotypic features are quantitatively the most diagnostic.
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Figure 2: Multidimensional scaling of distances from Table 4 converted into 2-dimensional
Cartesian space (Demsar et al., 2013). Note the proximity of Parkinson disease (PARK),
normal pressure hydrocephalus (NPH), and Lewy body dementia (LBD) which all have
features of a gait disorder and hypokinesia. Note the proximity of Lewy body dementia to
Parkinson disease, which both show prominent tremors. With its dementia features, the
frontotemporal dementia (FTD) body is closest to Alzheimer disease (AD).
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What is phenomics?

Garan) coined the term phenomics to describe the systematic study of
phenotypes on a genome-wide scale while integrating basic, clinical, and
information sciences (Jin, 2021. Houle et al. (2010) have emphasized that
phenomics "is the acquisition of high-dimensional phenotypic data on an
organism-wide scale” and that the analysis of these high dimensionality
datasets (feature-rich) requires new methods and approaches. They conclude
that "phenomics should be recognized and pursued as an independent
discipline to enable the development and adoption of high-throughput and
high-dimensional phenotyping.” Recently, Springer has initiated a new
journal dedicated to phenomics (Jin, 2021).
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Table 5: Information gain towards Correct Diagnosis by Phenotypic Feature

Huntington Info Parkinson Info Alzheimer  Info | Frontotemporal Info
disease gain | disease gain disease gain | dementia gain
chorea 0.23 resting tremor 0.18 | forgetful 0.12 | anomia 0.06
choreic gait 0.08 cogwheel rigidity 0.15 | memory loss 0.11 | disinhibition 0.06
irritable 0.08 masked face 0.15 | gettinglost 0.11 | poor hygiene  0.04
paranoia 0.04 bradykinesia 0.15 | poorinsight 0.06 | unkempt 0.04

The top four features (most diagnostic) for each diagnosis are shown
based on information gain (Azhagusundari et al., 2013). Phenotypic features
have been converted to vectors (See (Wunsch & Hier, 2021)). Inspection of
this table shows that the two most diagnostic phenotypic features are chorea
for Huntington disease (0.23) and resting tremor for Parkinson disease (0.18).

Discussion

Precision medicine offers great promise to improve patient outcomes
by integrating genomics, phenomics, metabolomics, and proteomics (Collins
& Varmus, 2015). Key to this effort is the precise and computable
characterization of the signs, symptoms, onset, and course of large cohorts of
patients (Weng, Shah, & Hripcsak, 2020). This effort has been named high-
throughput deep clinical phenotyping (Robinson, 2012; Delude, 2015).
Although deep phenotyping efforts began in earnest in 2006 (Robinson, 2012),
and the precision medicine initiative was introduced in 2015 (Collins &
Varmus, 2015), deep phenotyping is just beginning to yield tangible results.
Phenotype-based searches of online databases of Mendelian disorders such as
HPO (Robinson & Mundlos, 2010) and OMIM (McKusick, 2007) are not yet
performed routinely in the clinical setting (Fellner et al., 2021). Deep
phenotyping of patients facilitates the conversion of unstructured clinical data
into computable vectors that allow the calculation of patient distance and
similarity needed for precision medicine (Brown, 2016; Parimbelli et al.,
2018). Electronic health records have emerged as the most important source
of phenotypic features (Curcin, 2020). A major limitation to gaining insights
from deep phenotyping has been the bottleneck created by the time-consuming
process of manually phenotyping patient data held in electronic health records
(Curcin, 2020). Further advances in deep phenotyping may depend on
improved methods to do high throughput deep phenotyping on the
unstructured text of large numbers of patients that are held in electronic health
records (Yehia & Eng, 2019; Yu et al., 2015; Zheng et al., 2020; Chen et al.,
2013; Weng et al., 2020; Fu et al., 2020; Gehrmann et al., 2018).

This review has several limitations. Firstly, our review of the literature
was focused rather than systematic. We reviewed 1372 articles and selected
53 for inclusion. Secondly, we chose examples of deep phenotyping solely
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from the domain of neurology. Other domains are worthy of review as well.
Thirdly, our focused review was designed as an intermediate-level
introduction to the most important concepts of deep phenotyping. Each topic
reviewed, including phenotype ontologies, phenotype repositories,
computable phenotypes, disease variants, phenotype subtypes, high
throughput phenotyping, and the algorithm-guided extraction of phenotype
features from electronic health records, is worthy of exploration in greater
detail than was practical in this focused review.
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