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Abstract 

High dataset dimensionality poses challenges for machine learning 

classifiers because of high computational costs and the adverse consequences 

of redundant features. Feature reduction is an attractive remedy to high 

dimensionality. Three different feature reduction strategies (subsumption, 

Relief F, and principal component analysis) were evaluated using four 

machine learning classifiers on a high dimension dataset with 474 unique 

features, 20 diagnoses, and 364 instances.  All three feature reduction 

strategies proved capable of significant feature reduction while maintaining 

classification accuracy.  At high levels of feature reduction, the principal 

components strategy outperformed Relief F and subsumption. Subsumption is 

a novel strategy for feature reduction if features are organized in a hierarchical 

ontology. 

 
Keywords: Machine Learning, Feature Reduction, Neurology, Ontology, 

Principal Components, Relief, subsumption 

 

Introduction And Previous Work 

Electronic health records (EHRs) hold vast clinical data (Esteva et al., 

2019). Some of the value of this data can be unlocked by machine learning 

(Xiao, Choi, & Sun, 2018; Miotto, Wang, Wang, Jiang, & Dudley, 2018). 

Healthcare datasets are of high dimensionality with hundreds or thousands of 
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unique features. Although much hospital data is numerical (e.g., laboratory 

results), admission notes, progress notes, and discharge summaries are 

challenging to convert to a computable form. One approach to making the 

signs and symptoms of patients computable is deep phenotyping. With deep 

phenotyping, signs and symptoms are converted to concepts from an ontology 

such as the Human Phenotype Ontology (HPO) (Kohler et al., 2017, 2019; 

Groza et al., 2015). One application of deep phenotyping is classifying patients 

into disease categories based on signs and symptoms (Xiao et al., 2018).  

Feature selection (dimension reduction) is important to machine 

learning. Feature selection can improve model accuracy, reduce over-fitting, 

eliminate irrelevant features, reduce computational costs, and enhance model 

interpretability (Kuhn, Johnson, et al., 2013; Kuhn & Johnson, 2019). Feature 

reduction strategies include filter methods, wrapper methods, ensemble 

methods, principal components analysis, and genetic algorithms (Kuhn et al., 

2013; Visalakshi & Radha, 2014; Kuhn & Johnson, 2019; Al-Jabery, 

Obafemi-Ajayi, Olbricht, & Wunsch II, 2020).  Ontologies offer an 

opportunity for feature reduction due to their hierarchical structure. Most 

medical ontologies are based on a subsumptive containment hierarchy with 

classes organized from the more specific to the more general. Each child class 

inherits properties from its parent class. This inheritance of properties is called 

subsumption. For example, the child concepts micrographia, masked face, 

impaired turns, decreased arms swing, reduced blink rate inherit the concept 

of slowness of movement from their parent concept bradykinesia (Fig. 1). Fine 

tremor, resting tremor, action tremor, postural tremor, voice tremor, senile 

tremor inherit tremor from their parent concept tremor. The hierarchical 

structure of ontologies makes an ontology well-suited for feature reduction. 

We use the term subsumption to describe this novel feature reduction strategy. 
Table 1.  Codes and counts for neurological diagnoses with their common findings 

Code N Disease Common Findings 

ALS 23 amyotrophic lateral 

sclerosis 

weakness, spasticity, hyperreflexia, muscle 

atrophy 

ALZ 17 Alzheimer disease dementia, memory loss, impaired insight, 

forgetfulness, disorientation 

CJD 12 Creutzfeldt Jacob disease  dementia, myoclonus, personality change, 

confusion, ataxia 

FTD 13 fronto-temporal dementia aphasia, personality change, disinhibition, 

socially inappropriate behavior 

GBS 22 Guillain Barre syndrome ascending weakness, hyporeflexia, 

dysautonomia, facial weakness 

HD 17 Huntington disease personality change, chorea, athetosis, 

confusion, memory loss 

HSE 16 herpes simplex 

encephalitis 

confusion, fever, stiff neck, aphasia, 

disorientation 

IIH 14 intracranial hypertension headache, blurred vision, transient visual 

obscurations 
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LR 16 lumbar radiculopathy foot weakness, pain, absent ankle reflex, 

sensory loss over foot 

MED 16 median nerve neuropathy sensory loss in hand, pain 

MEN 24 meningitis stiff neck, fever, confusion, headache 

MG 18 myasthenia gravis diplopia, weakness, muscle fatigue, eyelid 

ptosis 

MS 24 multiple sclerosis spasticity, hyperreflexia, weakness, optic 

neuritis 

MYL 35 myelopathy sensory level, weakness, sphincter 

dysfunction 

MYO 18 myopathy proximal muscle weakness 

NPH 14 normal pressure 

hydrocephalus 

incontinence, dementia, gait apraxia 

PAR 20 Parkinson disease bradykinesia, cogwheel rigidity, resting 

tremor 

PN 19 polyneuropathy sensory loss, hyporeflexia, distal weakness 

PSP 9 progressive supranuclear 

palsy 

bradykinesia, poor upgaze, confusion 

SAH 17 subarachnoid hemorrhage headache, stiff neck, confusion, nausea, 

vomiting 

 

This paper examines the ability of subsumption to reduce the number 

of features in a high dimension dataset and compares it to Relief F and 

principal components analysis. Subsumption uses the hierarchical structure of 

an ontology to collapse narrowly defined features into broadly defined 

features. Relief F uses a distance metric to identify the best features that 

discriminate between cases of different classes. Principal components analysis 

creates new features from a linear weighted combination of existing features.  

 

Methods 

Overview 

The effects of different feature selection strategies on the accuracy of 

several machine learning classifiers were studied. We specifically examined 

subsumption, Relief F, and principal components analysis as feature reduction 

strategies. Four classifiers were tested (trees, SVM, kNN, and a multilayer 

perceptron neural network). Six lower dimension datasets were constructed by 

feature selection (ranging from 11 to 464 features). Each dataset was split 

80:20 into training and test sets. Validation accuracy was calculated by 5-fold 

cross-validation on the training set. Test accuracy was based on the withheld 

test dataset. Mean classification accuracy ± SD of 10 trials per classifier was 

calculated. 

 

Test dataset 

The test dataset consisted of 364 cases distributed between 20 different 

neurological diseases (Table 1). All cases were derived from 11 standard 
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textbooks of neurology (Bhatia and Erro,  and Stamelou, 2017; Noseworthy, 

2004; Gauthier & Rosa-Neto, 2011; Blumenfeld, 2010; Howard & Singh, 

2016; Toy, Simpson, & Tintner, 2012; Liveson, 2000; Hauser, Weiner, & 

Levitt, 1986; Solomon, Michael, Miller, & Kneen, 2019; Waxman, 2009; 

Pendlebury, Anslow, & Rothwell, 2007). For each entry into the dataset, the 

disease diagnosis was entered as the machine learning label. Symptoms (what 

the patient complains of) and signs (examination findings by the physician) 

were abstracted from the case histories and then mapped to one of 1435 

concepts in a neuro-ontology by previously described methods (Hier & Brint, 

2020; Hier et al., 2020). To capture all the signs and symptoms of the 364 

cases, 474 unique concepts were needed. Cases were represented as 475-

dimension vectors. The first element of the vector was the label (disease 

diagnosis), followed by 474 features (signs and symptoms). Features were 

binarized. The test dataset was a 364 (cases) x 475 (label + features) matrix. 

There was an average of 11.2 ± 3.5 features per case. 

 
Fig. 1. A small excerpt from the neuro-ontology. The neuro-ontology11 major branches below 

the root (seven are shown). Concepts in the ontology become increasingly specific at lower 

levels going from coarsest (least specific) to most granular (most specific) at the lowest level. 

The concept micrographia (dark blue) is most specific and subsumed by bradykinesia, then 

hypokinesia, then movement disorder, and finally by the least specific concept motor finding. 

Each color represents a different level in the concept hierarchy. 
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Fig. 2. A t-SNE map (Demsar et al., 2013) illustrates the complexity of the diagnosis 

classification task. The t-SNE is based on the 20 diagnoses, with each diagnosis shown as a 

different color. All 364 cases were mapped based on the entire 474 feature set. Although 

distinctive clusters by disease label are seen, note that there is overlap between diagnoses. For 

codes to abbreviations and common symptoms of each disease, see Table 1. 

 

Feature reduction by subsumption 

Features in the test dataset are concepts from a neuro-ontology (Hier 

Brint, 2020). The neuro-ontology is a subsumptive hierarchy that supports IS-

A  relationships. Subsumption can repeatedly reduce the number of features 

by consolidating child concepts with parent concepts. Since the neuro-

ontology is at most eight levels deep, we had a potential of eight steps of 

subsumption for feature reduction. However, some branches of the neuro-

ontology were only 3 or 4 levels deep. We used Python to traverse the neuro-

ontology (Hier & Brint, 2020) from each of its 1435 terminal nodes to the root 

node (Fig. 1). We created 1435 ordered lists (one for each concept) of length 

n=8 where the last element in the list was the penultimate concept (last node 

before root node), and the first element in the list was the terminal concept. If 
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the list was less than eight elements long, it was back-filled to 8 elements by 

repeating the first element (terminal node) until all lists were equal in length.  

Using the ordered lists as a reference, eight new datasets were created by the 

serial selection of features from the lists eight times. Two of the new datasets 

showed a minimal reduction in features and were eliminated from the analysis. 

The remaining six datasets had 11, 76, 245, 360, 424, and 464 features 

respectively. 

 

Feature reduction by principal components 

Principal components analysis (PCA) is a popular multivariate 

statistical technique for feature reduction that creates new linear combinations 

of existing variables (Hotelling, 1933). The goal of PCA is to reduce the 

number of features while retaining as much information as possible (Ringner, 

2008; Abdi & Williams, 2010). With PCA, the original variables are replaced 

with a smaller number of variables called factor scores (weighted linear 

combinations of the actual variables). Factor scores were calculated by the 

factor analysis module of SPSS 28 (IBM Corporation, Chicago IL) with 

extraction by principal components, rotation by Varimax, and Kaiser 

normalization to create new datasets with 11, 76, 245, 360, 424, and 464 

features to parallel the dimensionality of the subsumption datasets. 

 

Feature reduction by Relief F 

The Relief algorithm for feature selection was described by Kira & 

Kendell (1992) and later modified as Relief F by Kononenko et al. (1997). 

Relief F is a filter-based method that evaluates each feature independently of 

other features. The algorithm is based on finding index cases in the dataset and 

then examining matching nearest neighbors (hits) and non-matching neighbors 

(misses). It uses a difference function to find features that best distinguish the 

hits from the misses. The Relief F ranking widget from Orange data mining 

(Demsar et al., 2013) was used to create six subsets of 11, 76, 245, 360, 424, 

and 464 features respectively. 
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Fig. 3. Comparative accuracy of four different kNN classifiers utilizing 76 features. The four 

kNN classifiers performed similarly except for the coarse kNN, which performed significantly 

worse than the other three for all three feature reduction strategies. (One-way ANOVA with 

post hoc Bonferroni test, p < .05. The cosine kNN classifier was used for subsequent analyses.) 

Fig. 4. Comparative accuracy of three different tree classifiers utilizing 76 features. For all 

three feature reduction strategies, Fine outperformed medium; medium outperformed coarse, 

one-way ANOVA with post hoc Bonferroni test, p<.05. For additional analyses,  the fine tree 

classifier was used. 
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Fig. 5. Comparative accuracy of three different SVM classifiers utilizing 76 features. All three 

SVM classifiers performed similarly, although performance was lower with the PCA feature 

reduction strategy (One-way ANOVA, p <0.05). For additional analyses, a linear SVM 

classifier was selected.) 

Fig. 6. The average across all feature levels shows that the NN classifier performed best for 

all three feature reduction strategies (One-way ANOVA, post hoc Bonferroni test, p< 0.05). 

The low average accuracy for PCA for all classifiers reflects the pooling of high accuracy at 

low dataset dimensionality with low accuracy at high dimensionality). 
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Fig. 7. The NN classifier outperforms the other classifiers at all levels of dataset 

dimensionality, performing best near 76 features. Results are pooled across all three feature 

reduction strategies.  

Fig. 8. Results are pooled across all four classifiers. At lower feature levels, the PCA 

dimension reduction strategy performed best. 
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Fig. 9. With feature reduction by Relief accuracy dropped below 76 features. The NN 

classifier performed best; the tree classifier performed worst. 

Fig. 10. With the PCA feature reduction strategy, all classifiers performed better at 11 

features than a higher number of features. The NN classifier performed best, and SVM 

performed worst with the PCA strategy. 
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Fig. 11. NN classifier performs best, and tree classifier performs worst with the subsumption 

strategy. With feature reduction by subsumption, accuracy begins to drop below 76 features. 

 

Machine learning classifiers 

MATLAB (MathWorks, Natick MA) was used to construct the k-

nearest neighbor (kNN), support virtual machine (SVM), tree, and multilayer 

perceptron (NN) classifiers. Fine, medium and coarse kNN classifiers with 

Euclidean distance metrics corresponding to k=1, k=10, and k=100 nearest 

neighbors were evaluated. A cosine distance kNN classifier with k=10 nearest 

neighbors was also evaluated. Linear, quadratic, and cubic support vector 

machine (SVM) classifiers with hyperplane boundaries of orders 1, 2, and 3, 

respectively, were evaluated (Smola & Scholkopf, 2004). The SVM classifiers 

use a one-vs-one multi-class classification strategy and standardize predictor 

data by default. Fine, medium, and coarse classification trees with 

corresponding thresholds for the maximum number of splits set to 100, 20, 

and 4, respectively, were evaluated. The default splitting criterion was the Gini 

Diversity Index (Kingsford & Salzberg, 2008). A multilayer perceptron (NN) 

of 3 hidden layers was evaluated, each with 500 neurons. Each neuron utilized 

a hyperbolic tangent transfer function. Output layers used a SoftMax transfer 

function. The learning rate was set at 0.01 with a momentum constant of 0.1. 

Each trial of the NN was constrained to a maximum of 300 epochs as a 

precautionary measure (most trials ran for fewer than 60 epochs). Training 

ceased after six successive increases in a validation error. Training 
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performance was evaluated by cross-entropy, which consistently yielded 

higher classification accuracy than a mean-squared error performance metric 

(De Boer, Kroese, Mannor, & Rubinstein, 2005). 

 

Statistical testing 

  Based on the 20 possible diagnoses, a 20 x 20 confusion matrix was 

constructed for each classifier run. Accuracy was the number of cases on the 

diagonal (match between actual and predicted diagnosis) divided by the total 

number of cases. When accuracy is calculated based on the entire multi-class 

confusion matrix, precision, recall, and accuracy are equivalent so that only 

accuracy is reported (Mohajon, 2020). Average classification accuracy (mean 

± SD) was based on ten runs. Group comparisons were made across classifiers, 

feature reduction strategies, and ontology levels by one-way ANOVA with the 

F test and a significance level of p < 0.05  (SPSS 28, SPSS Inc, Chicago IL). 

Post hoc means comparisons of individual group means were by the 

Bonferroni method (Chen, Feng, & Yi, 2017). 

  

Results and Discussion 

  The features of the dataset are the signs and symptoms of patients with 

neurological diseases. The labels of the dataset are the disease diagnoses. All 

features were binarized. The dataset had high dimensionality (474 signs and 

symptoms) for 364 cases (Table 1).  Each classifier was evaluated on a multi-

class classification task that involved assigning each of the 364 cases to one 

of 20 classes (diagnoses) based on the available features. The task was 

repeated on all 6 data subsets of varying dimensionality.  The performance of 

variations of the kNN, tree, and SVM classifiers were evaluated. All variations 

of the kNN classifier performed similarly (across all feature reduction 

strategies) except for the coarse kNN classifier, which performed significantly 

worse than the others (Fig. 3). This is likely due to the smaller value of k for 

the coarse classifier. We selected the cosine kNN classifier for subsequent 

analyses, as it performed best. Fine tree classifiers performed better than 

medium tree classifiers, and medium trees performed better than coarse trees 

(Fig. 4). The fine tree classifier was chosen for subsequent analyses. The 

linear, cubic, and quadratic versions of the SVM classifier performed similarly 

(Fig. 5).  The linear SVM classifier was chosen for subsequent studies. 

  The neural network (NN) outperformed the other classifiers (Fig.  6, 7, 

10). As the number of features in the dataset was reduced from 464 to 11 

features, each feature reduction strategy behaved differently. Relief F 

maintained a high level of classification accuracy until the number of features 

reached 11, where accuracy dropped significantly (Fig. 8 and Fig. 9 ).  Like 

Relief F, subsumption maintained a high level of accuracy until the number of 

features dropped to 11 (Fig. 8 and Fig. 11). PCA classification accuracy 
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improved steadily as features were reduced from 424 to 11 (Fig. 8 and Fig. 

10). For both the Relief F strategy and the subsumption strategy, the tree 

classifier performed least well at all levels of feature reduction compared to 

the other classifiers (Fig. 9 and Fig. 11). 

  Validation accuracy was compared to test set accuracy across all 

classifiers, features, and strategies. Although test set accuracy was lower than 

validation set accuracy across classifiers, methods, and feature levels, the fall-

off was not dramatic, suggesting that significant model overfitting did not 

occur. 

  The classification task was to assign one of 20 different labels 

(diagnoses) to each of the 364 cases based on the features. The features of the 

dataset were based on a subsumptive containment hierarchy (Hier & Brint, 

2020). Subsumption allowed for the successive reduction of the number of 

features in the dataset from 474 to 11, substituting more general concepts for 

more specific concepts.  Feature reduction by subsumption was compared to 

Relief F and principal components (PCA).  

  The goal of feature reduction is to find the minimal subset of features 

that maintains classifier accuracy and retains predicted class sizes reflective of 

the class sizes in the ground truth dataset (Dash & Liu, 1997; Tang, Alelyani, 

& Liu, 2014; Koller & Sahami, 1996). Two commonly used strategies to 

reduce dataset dimensionality include feature selection and feature extraction. 

Feature selection (filter methods, wrapper methods) emphasizes algorithms 

that reduce the number of features into the smallest subset that accurately 

predicts class membership. Feature extraction methods (principal components, 

linear discriminant analysis, etc.) emphasize collapsing many features into a 

smaller number of highly predictive features. The use of subsumption to 

collapse many features into a smaller number of features bears more 

resemblance to a feature extraction strategy than a feature selection strategy. 

Others have suggested using knowledge embedded in a hierarchical ontology 

as a feature reduction strategy (Corrales, Lasso, Ledezma, & Corrales, 2018). 

Our results indicate that Relief F, subsumption, and PCA are useful feature 

reduction strategies across various classifiers. In general, we found that NN, 

kNN, and SVM classifiers outperformed the tree classifiers (Fig. 7). 

Importantly, when very high levels of feature reduction are desired, the results 

suggest that PCA  outperforms both Relief F and subsumption (Fig. 8). 

  This work has limitations. First, the dataset was small, and future 

testing utilizing a larger dataset will be advantageous. Second, cases were 

based on textbooks examples rather than actual patient data from electronic 

health records. Third, class sizes were not perfectly balanced (Table 1). Fourth, 

due to asymmetries in the depth of the ontology, the subsumption strategy 

yielded only six different levels of feature reduction (464, 424, 360, 245, 76, 

and 11 features). Classification accuracy was evaluated only at six dataset 
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dimensions to make fair comparisons between feature reduction strategies. 

The performance of Relief F or PCA at other levels of dimensionality was not 

examined, although these strategies could have created additional datasets of 

varying dimensionality. Other studies have found that when different feature 

reduction strategies are compared, classifier performance depends on the 

nature of the dataset, the classifier utilized, and the feature reduction algorithm 

(Janecek, Gansterer, Demel, & Ecker, 2008). Lastly, we used the default 

settings for the hyperparameters for the MLP neural network. Additional 

investigation into fine-tuning the hyperparameters for the machine learning 

algorithms might improve classification accuracy.  
 

Conclusions 

Several conclusions can be drawn from these results. 

1) For all classifiers, PCA worked best at lower levels of dimensionality 

(Fig 8 and Fig. 10). Performance was best at 11 features and dropped 

at 76 features for tree and SVM and at 245 features for NN and kNN. 
2) Classification accuracy using Relief F (Fig. 9) and subsumption (Fig. 

11) did not decline until the number of features was reduced below 76. 

For all classifiers, accuracy was lower for subsumption and Relief F 

than for PCA at the 11 feature level. 
3) Test accuracy was close to validation accuracy across all experiments 

suggesting that classification models were robust and generalizable. 
4) When averaged across all feature reduction strategies, all classifiers 

performed best at 76 features (Fig. 7). 
5) When averaged across all feature reduction strategies, the NN 

classifier outperformed the SVM, kNN, and tree classifiers (Fig. 6). 
6) The results suggest that when features in a high dimension dataset are 

derived from a subsumptive hierarchical ontology, subsumption is a 

novel method for feature reduction that does not sacrifice classification 

accuracy until the highest levels of feature reduction are reached. 
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