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Abstract 

The phenotyping of neurological patients involves the conversion of 

signs and symptoms into machine readable codes selected from an appropriate 

ontology. The phenotyping of neurological patients is manual and laborious. 

MetaMap is used for high throughput mapping of the medical literature to 

concepts in the Unified Medical Language System Metathesaurus (UMLS). 

MetaMap was evaluated as a tool for the high throughput phenotyping of 

neurological patients. Based on 15 patient histories from electronic health 

records, 30 patient histories from neurology textbooks, and 20 clinical 

summaries from the Online Mendelian Inheritance in Man repository, 

MetaMap showed a recall of 61-89%, a precision of 84-93%, and an accuracy 

of 56-84% for the identification of phenotype concepts. The most common 

cause of false negatives (failure to recognize a phenotype concept) was an 

inability of MetaMap to find concepts that were represented as a description 

or a definition of the concept. The most common cause of false positives 

(incorrect identification of a concept in the text) was a failure to recognize that 

a concept was negated. MetaMap shows potential for high throughput 

phenotyping of neurological patients if the problems of false negatives and 

false positives can be solved. 
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Introduction  

Valuable clinical data is held in electronic health records in the form 

of unstructured text (Esteva et al., 2019). To unlock the value of this data, it 

must be converted to a computable form (Xiao, Choi, & Sun, 2018; Miotto, 

Wang, Wang, Jiang, & Dudley, 2018). One approach to making unstructured 

clinical data computable has been called deep phenotyping (Kohler et al., 

2019). Deep phenotyping is the conversion of the signs and symptoms of a 

patient to concepts from a target ontology (Kohler et al. 2014; Robinson 2012). 

Phenotyping is important to the precision medicine initiative that 

individualizes treatment and prognosis to specific patients (Collins & Varmus, 

2015). Although phenotyping can be done by manual methods, high 

throughput methods are needed to phenotype large numbers of patients in 

precision medicine (Robinson, 2012). High throughput phenotyping depends 

on the rapid extraction of signs and symptoms from large text sources. The 

text mining of electronic health records relies on methods of named entity 

recognition (NER) derived from natural language processing (Marrero, 

Urbano, Sanchez-Cuadrado, Morato, & Gomez- Berbıs, 2013; Kimia, Savova, 

Landschaft, & Harper, 2015). Fu et al. (2020) defined concept extraction as a 

two-stage process in which medical concepts are first identified in text and 

then mapped to a concept in a disease ontology. 

MetaMap is a natural language processing (NLP) tool developed by 

the National Library of Medicine that utilizes linguistic and statistical methods 

to recognize medical terms in text and map them to concepts in the UMLS 

Metathesaurus (Aronson & Lang 2010; Aronson, 2000, 2001a, 2001b; Mork 

& Aronson, 2006). MetaMap works by detecting sentence boundaries, 

tokenizing words, tagging parts of speech, and parsing sentences into smaller 

phrases. Candidate phrases are compared to strings in the UMLS 

Metathesaurus and similarity scores are calculated. In a final processing stage, 

word disambiguation occurs, negation is evaluated, and the best concept 

matches are selected. Although the primary purpose of MetaMap is to index 

the scientific literature, MetaMap has been re-purposed for other uses, 

including the identification and extraction of medical concepts in electronic 

medical records, text mining of clinical concepts in various doucments, 

identification of medical concepts in clinical guidelines, and the extraction of 

medical concepts from email (Fu et al., 2020, Bashyam et al., 2009, Osborne 

et al., 2007, Brennan & Aronson, 2003, Gooch & Roudsari, 2011). 

This study explores the utility of MetaMap for the high throughput 

phenotyping of neurological patients. We have previously phenotyped 

neurological patients by manual methods (Hier et al., 2020, Hier & Brint, 
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2020). The phenotyping process involves converting a neurological history 

and examination in narrative form to concepts and machine-readable codes 

selected from an appropriate ontology (NCBO BioPortal, 2021). The process 

of deep phenotyping is illustrated with this patient with multiple sclerosis. 

 

A 55-year-old woman with multiple sclerosis complains 

of fatigue and blurred vision. Examination shows 

increased reflexes in all limbs, decreased visual acuity 

in the right eye, appendicular ataxia in the left arm, an 

unsteady gait, an afferent pupil defect in the right eye, 

and bilateral extensor plantar responses. 

 

The patient can be phenotyped using concepts and CUI codes 

selected from the UMLS Metathesaurus (Table 1). 
Table 1: Example Phenotype of a multiple sclerosis patient 

Sign or Symptom CUI code  

appendicular ataxia C0750937 

hyperreflexia C0151889 

afferent pupil defect C0339662 

blurred vision C0344232 

bilateral extensor plantar 

responses  

C0422917 

unsteady gait C0231686 

decreased visual acuity C0234632 

fatigue C0015672 

 

Methods 

MetaMap as a tool to extract concepts from for phenotyping was 

evaluated on three different types of text files. The first file consisted of the 

brief histories and examinations of 30 neurology cases from two electronic 

textbooks (Gondolo, 2005; Ubogu, 2005). The second file consisted of de-

identified progress notes from 15 neurology outpatients seen in the Multiple 

Sclerosis Clinic of the University of Illinois at Chicago. The third file 

consisted of 20 clinical descriptions of inherited neurological diseases selected 

from the Online Mendelian Inheritance of Man (OMIM) (Hamosh, Scott, 

Amberger, Valle, & McKusick, 2000; Amberger & Hamosh, 2017). 

Text files were spell-checked. Run-on words and separated words were 

eliminated. Each file was batch entered into MetaMap (Table 2). The negation 

option and the word disambiguation options were used to reduce false 

negatives and false positives. Semantic types were restricted to those relevant 

to phenotyping. Each concept identified in the files by MetaMap was 

compared to concepts in a target neuro-ontology (Hier & Brint, 2020; NCBO 

BioPortal, 2021). The neuro-ontology is a subset of 1531 concepts from the 
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UMLS Metathesaurus. Concepts were marked relevant to phenotyping if they 

were in the target ontology and were marked extraneous if they were not 

(Table 3). Extraneous concepts were excluded from further analysis. An expert 

coder reviewed all assignments using these criteria: 

1) Ground truth positives were concepts identified by the expert coder in 

the textfiles. 

2) Ground truth negatives were all negated concepts found by MetaMap 

and confirmed by the expert coder plus false positives. 

3) False positives were concepts found by MetaMap that the expert 

coder did not confirm. 

4) True negatives were concepts that were correctly negated by 

MetaMap.  

5) False negatives were concepts missed by MetaMap and added by the 

expert coder. 

6) True positives were concepts found by MetaMap in the text and that 

were confirmed by the expert coder. 

 

Errors (false positives or false negatives) were further classified as follows 

(Table 4). 

 

Failure to recognize a concept as a definition or description. 

Some phenotypic concepts were described or defined without 

explicit mention of the concept name. Consider the UMLS 

concept anomia which is a disorder of naming. MetaMap 

recognizes anomia as a valid concept but may fail to recognize its 

description in the text "she can name none of the everyday items 

that are shown to her." 

 

Failure to recognize colloquialisms or figures of speech. 

MetaMap recognizes the concept ankle reflex but may not 

recognize the colloquialism ankle jerk. Similarly, MetaMap 

recognizes the concept extensor plantar response and its synonym 

Babinski sign but may not recognize the colloquial expression 

upgoing toe. 

 

Failure to join coordinated concepts. When encountering two 

concepts from the UMLS Metathesaurus, MetaMap will 

sometimes fail to join two coordinated concepts into a more 

specific concept. For example, when MetaMap processes the 

phrase ataxic gait, it may decompose it into gait and ataxia but 

fail to join these two concepts into the more specific concept  

(ataxia + gait = ataxic gait). 
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Errors in assessing negation. For purposes of this paper, we use 

negation in a restricted sense. When phenotyping, the focus is on 

collecting abnormal findings (weakness, incoordination, 

imbalance, etc.), and normal findings are ignored (normal balance, 

normal sensation, normal strength, normal coordination, etc.) 

However, negation reverses the meaning of a phrase. For example, 

balance is normal is a normal finding. However, imbalance, poor 

balance, impaired balance, and no balance are abnormal findings. 

Some concepts are intrinsically abnormal such as alexia which 

means unable to read. Thus, the phrases no alexia and able to read 

are normal findings. MetaMap has a built-in option called NeGex, 

which assists in evaluating negated concepts.  Negex marks 

negated concepts in text with the symbol N. 

 

Failure to disambiguate between homographs. Homographs are 

words that are spelled the same but have different meanings. For 

example, MetaMap might fail to disambiguate looking blue 

(hypoxic) from feeling blue (depressed). We used the word 

disambiguation option in MetaMap. 

 

Failure to recognize acronyms or abbreviations. MetaMap may 

fail to recognize a concept expressed as an acronym. For example, 

MetaMap may not recognize that ON is an acronym for optic 

neuritis.  

 

Attribution error. An attribution error occurs when a finding that 

belongs to someone other than the patient (e.g., a family member) 

is attributed to the patient. For example, hypertension in the father 

of the patient can be erroneously allocated to the patient. 

 

Standard formulas were used to calculate recall, precision, accuracy, 

and specificity (Table 5). Confusion matrices (Table 6) and performance rates  

(Table 7) were calculated separately for the textbook neurology cases, the 

EHR neurology notes, and the OMIM clinical diseases synopses. 
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Table 2. MetaMap Batch Mode Settings 

Option Setting 

relaxed model -C 

enable negex –negex 

allow concept gaps -g 

use word disambiguation -y 

ignore word order -i 

single line delimited input 

show CUIs 

-l 

restrict semantic types -J 

conjunction processing –conj 

composite phrases -Q 

restricted semantic types acquired abnormality, disease or syndrome, 

finding, mental or behavioral dysfunction, 

sign or symptom, mental process 

restricted vocabulary sources MTH, MSH, HPO, OMIM, MEDCIN 

ICD10CM, SNOMEDCT US † 

† For vocabulary sources, see 

https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html 

 
Table 3. Formulas for recall, precision, and accuracy 

recall TP/(TP + FN) 
precision TP/(TP+FP) 
accuracy TP+TN/(TP+FP+TN+FN) 

 

Results 

MetaMap identified UMLS concepts in the three different types of 

text files: neurological case histories from textbooks, physician notes from 

an EHR, and neurological clinical summaries from the OMIM. On 

average, each textbook case had 38 UMLS concepts, each EHR physician 

note had 138 UMLS concepts, and each OMIM clinical summary had 126 

UMLS concepts. Most of the concepts identified were not relevant to the 

phenotyping process (identified concepts were valid UMLS concepts 

but were not signs or symptoms) and were extraneous to the phenotyping 

(Table 4). Examples of extraneous concepts include d cognition, eye, 

ocular, death, short-term memory, diagnosed, patient outcome, problem, 

and many others. These extraneous concepts appear in the UMLS 

Metathesaurus but are  not in the limited ontology of 1531 neurological 

concepts used for phenotyping (Hier & Brint 2020). Extraneous concepts 

were filtered out and excluded from the calculations of accuracy, 

precision, and recall. 
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True positives were defined as concepts that were valid signs and 

symptoms as identified by the expert coder. MetaMap had a hit rate for 

these true positives of 69% on the textbook cases, 76% on the EHR notes, 

and  87% on the OMIM clinical summaries (Table 4). 

Most of the false negatives (4.8-6.2 per case) occurred due to a 

failure of MetaMap to recognize concepts expressed as a definition of a 

concept (e.g., unable to read for alexia) or as a description of a concept 

(e.g., the patient could not swallow food for dysphagia) (Table 4). 

After filtering out extraneous concepts, the specificity of 

MetaMap was high (98-99%) due to a high true negative rate and a low 

false-positive rate (Table 5). False positives had several causes, 

including failure to recognize that a concept was negated correctly, failure 

to disambiguate homographs, failure to join concepts into a more specific 

concept (some have called these errors in post-coordination of concepts 

(Brown 2001, Hedeler et al. 2014, Nasvas et al. 2010) and errors in 

attribution (attributing a concept to the wrong person). 
Table 4: Textfile sources used for MetaMap evaluation 

Measure Textbook 

Source 

EHR 

Source 

OMIM 

Source 

Number of cases 30 15 20 

Word per cases 120.2 616.6 963.1 

Lines per case 23.7 137.9 126.1 

MetaMap concepts found per case 38.1 302.6 206.2 

Extraneous concepts per case 30.7 290.7 165.3 

 
Table 5. Analysis of Errors made by MetaMap 

FP# due to error in interpreting negation 0.5 1.4 0.7 

FP due to attribution to the wrong person 0.3 0.0 0.1 

FP due to failure to join concepts 0.3 0.3 0.0 

FP due to failure to disambiguate homographs 0.3 0.0 1.6 

FN† due to failure to recognize colloquialism 0.3 0.0 0.0 

FN due to failure to recognize the description of 

the concept 

3.2 3.5 3.3 

FN due to failure to join concepts 0.9 0.8 0.3 

FN due to error in interpreting negation 0.1 0.1 0.0 

FN due to failure to disambiguate homographs 0.4 0.1 0.0 

# False positives  (FP) were concepts found by MetaMap in the target neuro-ontology that the 

expert coder did not confirm. 

† False negatives (FN) were concepts missed by MetaMap and added by the expert coder. 
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Table 6. Confusion Matrix for MetaMap 

Source 

 Ground 

Truth 

Coder 

Assignment 

MetaMap 

Positive 

MetaMap 

Negative 

Textbook Positive 12.5 TP (7.6) FN (4.9) 

 Negative 1.7 FP (1.4) TN (0.3) 

EHR Positive 16.4 TP (11.9) FN (4.5) 

 Negative 2.6 FP (1.7) TN (0.9) 

OMIM Positive 34.7 TP (31.1) FN (3.6) 

 Negative 2.9 FP (2.4) TN (0.5) 

Where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives 

 
Table 7. Performance metrics for MetaMap Neurology Phenotyping Task 

Rates 

Textbook 

Source 

EHR 

Source 

OMIM 

Source 

Recall 60.8% 72.6% 89.6% 

Accuracy 55.6% 67.4% 84.0% 

Precision 83.9% 87.5% 92.8% 

 

Discussion and Conclusions 

The results suggest that MetaMap can extract clinical concepts for 

neurological phenotyping from electronic health records, published 

neurological case studies, and online clinical summaries (Table 7). Its most 

important limitation is that recall of the ground truth concepts is only 60.8-

89.6% depending on the file type. The most important reason for misses was 

the failure of MetaMap to recognize concepts when they appeared as a 

description of the concept or as a definition of the concept. MetaMap had the 

best recall on the OMIM clinical summaries and the worst recall on the 

textbook neurology cases. The better performance of MetaMap on the OMIM 

clinical summaries compared to the textbook cases reflects different writing 

styles. The OMIM clinical summaries are written concisely with less use of 

descriptive text. For example,  one of the neurology textbooks writes that "his 

wife stated that he had progressive weakness in the left face and upper 

extremity with milder involvement of the lower extremity for about three 

weeks." MetaMap finds the concept of facial weakness but misses arm 

weakness and leg weakness. The more economical writing style of the OMIM 

summaries, such as "additional features included central hypoventilation, 

postural hypotension, bladder incontinence, and myoclonus," allowed 

MetaMap to correctly recognize all four phenotypic concepts: central 

hypoventilation, urinary incontinence, myoclonus, and orthostatic 

hypotension. False positives (spuriously added concepts) were unusual with 

MetaMap. Although many UMLS concepts in the text files are irrelevant to 

phenotyping, two strategies to reduce false positives were used. First, semantic 

types were restricted to concepts relevant to phenotyping (Table 2). Second, 
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the use of a small target neuro-ontology permitted a filtering of extraneous 

concepts (Table 4).  

The main causes of false positives were errors in evaluating 

negation, failure to join multiple concepts into a more specific concept( 

e.g., absent + ankle + reflex = absent ankle reflex), attribution errors in 

which the concept was assigned to the wrong person (e.g., hypertension in 

the father of the patient is attributed to the patient), and errors due to a 

failure to disambiguate homographs (Table 5). Disambiguation of 

homographs (i.e., failure to distinguish “fall down” from “Fall season”)  

has proven to be a difficult problem in NLP (Schuemie, Kors, & Mons, 

2005; Agirre & Edmonds,  2007). Although MetaMap uses rule-based 

methods to resolve word mean ambiguity, a few false positives and false 

negatives occurred due to word meaning ambiguity (Table 5). 

The primary reason for false negatives (Table 5) was the inability 

of the MetaMap to reliably recognize concepts encoded as either a 

description of the concept or a definition of the concept. For example, 

MetaMap can recognize concepts such as bradykinesia or hypomimia 

when stated explicitly but may fail to recognize concepts expressed as a 

description such as " movements were slow and halting" (bradykinesia) or 

“the face was minimally expressive" (hypomimia). Friedlin & Overhage 

(2011) noted that some false negatives occurred due to an unexplained 

inability to recognize a concept that is in the UMLS Metathesaurus. They 

also found that valid concepts in the text were sometimes absent from the 

UMLS. Baud et al. (2004) have commented that variability in how 

concepts are represented in medical text contributes to false negatives. 

They tested MetaMap on 25 variants of the expressions scapular fracture 

and found that MetaMap recognized only 68-88% of the variants as valid. 

Divita et al. (2004) evaluated the ability of MetaMap to find UMLS 

concepts in genetic condition documents of the National Library of 

Medicine. They found a recall of 53% and that most false negatives were 

due to failure to identify definitional phrases and failure to recognize 

concepts that had been expressed implicitly. These findings mirror our 

findings. Similarly, Pratt & Yetisgen-Yildiz (2003) examined the ability 

of MetaMap to find UMLS concepts in medical article titles. They found 

a 53-93% recall that depended upon the stringency of their evaluation 

criteria. Okumura & Tateisi (Okumura & Tateisi, 2012) and Cohen et al. 

(2011) have evaluated MetaMap for high throughput phenotyping. 

Other causes of error by MetaMap included failure to recognize 

colloquialisms (upgoing toes for Babinski sign) and failure to recognize 

figures of speech (feeling blue for depression). Paterson et al. (2010) have 

emphasized that just as medical English is a sub-language of English, each 

medical subspecialty has its own sub-language. For example, in orthopedics, 
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a pin is a device for fixing a fracture, whereas, in neurology, a pin is a device 

for testing sensation. Knowledge of which medical sub-language is in use 

(neurology, orthopedics, etc.) might help recognize concepts represented as 

colloquialisms, figures of speech, or ambiguous terms. Using a target ontology 

limited to a specific specialty could improve precision and accuracy without 

reducing recall. 

We are exploring whether additional pre-processing of input to 

MetaMap or post-processing of output from MetaMap can improve 

phenotyping accuracy. Some failures of MetaMap may be addressable with 

additional NLP processing. We are currently investigating whether hybrid 

methods that combine rule-based algorithms with neural networks can 

improve the recall of phenotypic concepts by MetaMap. The recognition of 

phenotypic concepts as definitions or descriptions poses a special challenge 

for rule-based NLP methods like MetaMap. The potential advantages of 

specialty ontologies (for example, the neuro-ontology) for phenotyping 

patients from a specific disease class such as neurology needs further 

exploration. If accuracy could be improved to 95% or better high throughput 

phenotyping of electronic health record clinical notes using MetaMap could 

become workable. 

 

Human Studies 

The Institutional Review Board of the University of Illinois 

approved this study (Neuroimmunology Biobank Study protocol 2017-

0520). 
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