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Abstract: 
Background: Cord blood is established as a source of stem cells for hemopoeitic reconstitution.  Cord 
blood transplants have been performed for more than 20 years now.  However, cord blood stem cells 
as a source for regenerative medicine is still under trial.  The availability of cord blood and its banking 
facilities make it a very useful source of hepatocytes for support of endstage liver disease.  Cord blood 
contains a number of stem cell subsets:  CD34+, CD133+, and mesenchymal stem cells (MSCs). 
Objectives: This study was conducted to compare between these subsets in hepatocyte 
transdifferentiation efficiency.  Hepatocyte lineage commitment was evaluated by alpha-fetoprotein 
(AFP) expression and albumin synthesis. 
Methods: Cord blood is assayed for viability. Magnetic separation was done for CD34+ve, CD133+ve 
populations, MSCs were separated by culture on plastic flasks.  Each cell fraction (CD34+ve, 
CD133+ve and MSCs) was cultured in liquid culture containing hepatocyte growth factor for 7 days.  
 AFP expression was done using immunocytochemistry, albumin synthesis was measured in culture 
supernatant using microalbumin assay kit. 
Results: All three populations showed heptocyte transdifferentiation; although with varying 
percentages. There was no statistically significant difference in AFP expression with MSCs showing 
31% positivity, CD133+ve30% followed by CD34+ve showing 28.8%.  Also, MSCs population 
showed the highest albumin synthesis levels, followed by CD34+ then CD133+ cells.   
Conclusion: Induction of hepatocyte-like cells is possible with all three stem cell subsets of the cord 
blood.  However, establishment of functional hepatic cells is higher in MSCs population. 
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Introduction 

Liver diseases have been increasing worldwide and are a considered a leading cause of death 
due to the prevalence of viral induced and other intractable liver diseases as primary cirrhosis and 
primary sclerosing cholangitis (Kim et al., 2002; Tanikawa, 1992).  Most liver diseases lead to 
hepatocyte dysfunction with the possibility of eventual organ failure (Sellamuthu et al., 2011).   

Egypt has the highest incidence of hepatitis C virus (HCV) worldwide with estimated anti-
HCV antibody prevalence of 14.7% and the number of chronically infected Egyptians 9.8%, 
according to the most recently published Egyptian Demographic Health Survey  in 2009, which was a 
national probability sample of the resident Egyptian population (El-Zanaty and Way 2009). HCV is a 
major health problem in Egypt  and is the most common cause of chronic hepatitis, liver cirrhosis, 
hepatocellular carcinoma, and liver transplantation in the country ( Nguyen and Keeffe 2005; Abdel-
Aziz et al., 2000). 

The need for liver transplantation worldwide is always increasing which is hindered by the 
shortage of donated organs leading to critical condition. In addition, liver transplantation is associated 
with significant morbidity and mortality to both the donor and the recipient. Therefore, increased 
needs for developing alternative therapies for the treatment of liver disease especially end stage liver 
disease are emerging and necessary (Fox and Chowdhury 2004).  Cellular therapies replacing the 
diseased hepatic cells by stem cells are the main approach in liver directed cell therapy (Sellamuthu et 
al., 2011).  
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Stem cells sources are the bone marrow of an adult person, the peripheral blood of an adult person and 
the umbilical cord blood (UCB) of a newborn baby (Sellamuthu et al., 2011). As a source of stem 
cells for regenerative medicine, UCB has certain advantages over the bone marrow and peripheral 
blood as UCB has a high concentration of highly proliferative stem cells, can be easily collected 
without any harm to the mother or the baby and have a low rate of infection with cytomegalovirus 
(McAdams et al.1996, Bromeyer 1995). In addition, UCB- derived cells are more primitive than bone 
marrow cells which makes it more suitable cell source for cell-based therapies, regenerative medicine 
and tissue engineering (Lee et al., 2010). 

Several stem cell subsets are present in UCB, including; CD34+ cells, CD133+cells and 
mesenchymal stem cells (MSCs). CD34 has been used as a human hematopoietic stem marker and 
most colony forming cells are present within the CD34+ population (Holyoake and Alcorn, 1994; 
Sutherland and Keating, 1992). CD 133 expression defines very early subset of progenitor cells, early 
hematopoietic progenitor cells express CD133, which is not expressed after differentiation (Walter 
and Dimmeler, 2002; Yin et al., 1997). MSCs are multipotent progenitors capable of differentiating 
towards other cell types as adipocytes, osteocytes (Kern et al., 2006), and hepatic cells (Campard et 
al., 2008; Lee etal., 2004)  with a low immunogenicity (Aggarwal and Pittenger, 2005). 

 In our study, we compared the transdifferentiation potential of each of these subsets into 
hepatic cells. Transdifferentiation to hepatic cells was assessed by alpha-fetoprotein (AFP) expression 
as AFP is one of the earliest markers for endodermal differentiation (Hammer et al., 1987), hepatic 
metabolic function was assessed by albumin secretion as albumin production is a specific test for the 
presence and metabolic activity of hepatocytes (Dunn et al., 1991).  
Subjects and Methods 

Ten umbilical cord blood samples were obtained with oral consent of the mother and the 
approval of Cairo University ethical committee. Samples were collected from the umbilical vein ex 
utero after spontaneous delivery of the placenta following full-term vaginal delivery. Ex utero 
collections are less invasive, and there is better control over technique. The cord blood was collected 
in a bag containing citrate phosphate dextrose anticoagulant. Mononuclear cells were isolated by 
centrifugation of cord blood over Ficoll-Hypaque density gradient (density 1.077, Biochrom KG, 
Berlin). 

Isolated mononuclear cells (MNC) were assessed for viability using Trypan blue dye 
exclusion test. Mononuclear cells were mixed with Trypan blue dye and incubated at 37ºC for 5 
minutes. Two hundred cells were counted using a light microscope at low power. Cells not taking the 
dye were counted as viable, whereas cells taking the dye were considered nonviable. 

MNC were then divided into three parts for magnetic separation of CD133+, CD34+ cells and 
MSCs separation by culture on plastic flasks. 

Magnetic separation was done using The MiniMACS™ Separation System (Miltenyi Biotec, 
Germany). 1 x 106 MNC were suspended in a final volume of 80 µL MACS (Miltenyi Biotech) buffer 
and labeled with 20 µL of microbeads with FITC (fluorescein isothiocyanate) conjugated mouse anti-
human CD34/ CD133 antibodies (QBEND/10). The cells were mixed well and incubated at 4ºC for 15 
min in dark. After incubation the cells were washed thrice with 500 µL of MACS buffer by spinning 
at 300xg for 10 min. The cells were resuspended in 500 µL of buffer and used for magnetic sorting. 
The column was washed with 500 µL of MACS buffer. The magnetically labeled cells were passed 
through the column. The cells with magnetic microbeads are retained within the column and those 
that are unlabelled  eluted out. The eluted fraction was collected as negative fraction. The column was 
washed thrice with 500 µL of MACS buffer. Then the column was removed from the magnetic field. 
The retained cells in the column were firmly flushed out by applying pressure on the matrix of the 
column by a plunger supplied with the kit. These were the positive fractions which were washed twice 
with MACS buffer by spinning at 300xg for 5 min and resuspended in 500 µL of MACS buffer. Both 
fractions, magnetic and non -magnetic, were completely recovered.  

Fluorescence-activated cell sorting analysis of the separated cells fractions; CD133+, CD34+ 
was done. Tubes were prepared for analysis; were samples were mixed with fluorescein 
isothiocyanate-conjugated mouse monoclonal antibody against CD133 and CD34 (Dako, Glostrup, 
Denmark) and with appropriate isotype-matched control monoclonal antibody. Cells were incubated 
with monoclonal antibody for 30 min at 4°C, washed once with phosphate-buffered saline, and 
resuspended in a small volume of phosphate-buffered saline for analysis by means of fluorescence-
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activated cell sorting (FACScan) flow cytometer (Coulter Epics Elite, Miami, FL). Forward and side 
scatter gates were established to exclude cell debris and clumps before analysis for expression of 
CD133 and CD34. 

MSCs separation was done by culture of the separated mononuclear cells into 25-cm2 flask in 
complete culture media. After 24 hours of culture, non-adherent cells were washed out. Fresh medium 
was replaced every three days. At 70% monolayer confluence, the MSCs were enzymatically 
detached using 0.25% trypsin-EDTA (GIBCO BRL Grand Island, NY, USA). 

Hepatocyte differentiation; 5x104 cells/mL of each cell fraction (CD34+ve, CD133+ve and 
MSC) were cultured in Dulbecco's modified Eagle’s medium (GIBCO, Sigma, St. Louis, MO) 
supplemented with 20% fetal calf serum (GIBCO BRL Grand Island, NY), penicillin (10,000 
units/mL), streptomycin (10 mg/mL; GIBCO BRL Grand Island, NY), and 20 ng/mL hepatocyte 
growth factor (HGF; R&D Systems GmbH, Wiesbaden-Nordenstadt, Deutschland). Samples were 
incubated at 37 °C in a 5% CO2 atmosphere for 7 days. 

Cytospins and immunocytochemistry; on the7th day, cells were harvested from cultures. 
Cytospins were prepared by centrifugation of the cell suspension (400xg for 10 min) and cellular 
pellets were applied to a glass slide. For AFP immunocytochemical testing, the cells were fixed by 
dipping in absolute alcohol for 2 min. After slide rehydration, blockage of endogenous peroxidases 
was done with 3 % H2O2. To reduce nonspecific hydrophobic interactions between the primary 
antibodies and the fixed cells, the slides were incubated with a blocking solution (1:50 normal horse 
serum in phosphate-buffered saline). The slides were incubated with primary antibodies in incubation 
buffer over night at 4 °C (Biogenex, SanRamon, CA). Then incubated with secondary antibodies for 
30 min (R&D Systems) followed by incubation with one to three drops of high sensitivity 
streptavidin-horseradish peroxidase (HRP) conjugate for 20 min (R&D Systems). One to five drops of 
diaminobenzidine chromogen solution (R&D Systems) were applied for 8 min (colored precipitate 
localizes to the sites of antigen expression as the chromogenic substrate was converted by HRP 
enzyme into insoluble end product). Slides were counterstained with nuclear counterstain hematoxlin 
(Sigma). Visualization of the stained cells was done under a microscope using a bright-field 
illumination. Quantitative evaluation of alpha fetoprotein-positive cells (AFP + cells) was done using 
Leica Qwin 500 image analyzer computer system (England). The numbers of AFP + ve cells were 
counted/HPF in ten fields of each culture specimen and the mean percentages were obtained. 

Albumin concentration was determined in the culture supernatant using enzyme linked 
immunosorbent assy kit (DRG International Inc., USA) according to the manufacturer instructions. 
Results 

The viability of cells was estimated by using the Trypan blue dye exclusion test. The result 
obtained revealed that the viability of the cells was high. Mean cell viability after mononuclear cell 
separation was 98.8± 1.12 viable cells. 
  CD34+ and CD133+ cells were isolated from UCB MNC fractions by incubation with 
microbeads, followed by passage through Mini- MACS columns. Fluorescence-activated cell sorting 
analysis with anti-CD34 and CD133 antibodies was performed to determine the percentage purity of 
the positive fraction. Positive selection of CD133 cells yielded 52.67 ± 11.77 CD133+ cells, while 
positive selection of CD34 cells yielded 51.76 ± 3.04 CD34+ cells. 

We examined the expression of hepatic protein markers; albumin and AFP. Albumin and AFP 
are liver cell functional markers used to determine and characterize hepatic cell population. The 
presence of albumin is a prominent feature of mature hepatocytes as the liver is the site for albumin 
synthesis (Sellamuthu et al., 2011). 

After 7 days in culture media for hepatocyte differentiation, the cultured cells showed positive 
expression of AFP with varying percentages; although statistically non- significant (p >0.05). MSCs 
showed 31% ± 1.65 positivity, CD133+ cells 30% ± 2.21 followed by CD34+ cells showing 28.8% ± 
2.91.  
Fig (1): Mean Alfa fetoprotein Expression after 7 day Culture 
 Alfa fetoprotein (%) P-value 
MSCs 31 ± 1.65  

>0.05 CD34+ cells 28.8 ± 2.91 
CD133+ cells 30 ± 2.21 
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Albumin secretion was detected in the culture supernatant at the 7th day culture; the mean albumin 
level was 0.51 mg/L ±0.016 in MSCs culture supernatant, 0.46 mg/L ±0.049 in CD34+ cells culture 
and 0.4 mg/L ±0.032 in CD133+ cells culture. MSCs showed the highest albumin level in the culture 
supernatant compared to CD34+ cells and CD133+ cells although statistically non-significant  (p 
>0.05). 
Fig (2): Mean Microalbumin Level after 7 day Culture 
 Microalbumin (mg/L) P-value 
MSCs 0.5 ±0.016  

>0.05 CD34+ cells 0.46 ±0.049 
CD133+ cells 0.4 ±0.032 
 
Discussion 

Umbilical cord blood (UCB) is a rich source of stem cells and progenitor cells, which makes 
it a target for extensive experimental and clinical trials. UCB derived cells being more primitive than 
BM- derived cells, are more suitable source for cell based therapies and regenerative medicine (Lee et 
al., 2010). 

Several types of cells have been addressed in the UCB including; hematopoietic stem cells, 
mesenchymal stem cells (MSCs) (Lee et al., 2004a, Lee et al., 2004b), unrestricted somatic stem cells 
(Ko¨gler et al., 2004), cord blood derived embryonic stem cells (McGuckin et al., 2004), and 
umbilical derived mutipotent progenitor cells (Lee et al., 2007).  

It has to be addressed, which cell population in the UCB is capable of differentiation into 
specific cell types. In our study we focused on hepatocyte differentiation, several UCB subsets were 
proposed by previous studies as being capable of differentiation into hepatic like cells. It has been 
reported that CD 45+ subpopulation of UCB cells were capable of generating hepatocytes (Ishikawa 
et al., 2003), CD34+ UCB cells differentiated into hepatocytes after transplantation into mouse 
recipient (Di Campli et al., 2006; wang et al., 2003, Danet et al., 2002). Also, MSCs isolated from 
UCB are capable of differentiation into hepatocyte like cells (Lee et al., 2004c). Also, other 
pluripotent somatic cells can be isolated from UCB and may be responsible for hepatocyte 
repopulation in the liver (Kögler et al., 2004). 

In our work, we studied the differentiation potential of UCB stem cell subsets; CD34+ cells, 
CD133+cells and MSCs into hepatic cells, comparing their ability to produce albumin and AFP. 
Hepatic metabolic function was assessed by albumin secretion as albumin production is a specific test 
for the presence and metabolic activity of hepatocytes (Dunn et al., 1991). AFP is one of the earliest 
markers for endodermal differentiation (Hammer et., 1987), produced primarily by the visceral 
endoderm of the yolk sac, as well as by hepatoblasts and more differentiated fetal hepatic cells (Chen 
et al., 1997, Tilghman, 1985), while it is not expressed in all adult stem cells (Hong et al., 2005, Lee 
et al., 2004c).  

Hepatocyte differentiation was induced by hepatocyte growth factor (HGF) which was 
considered one of the most hepatogenic-inducing functionality (Chivu et al., 2009). HGF plays an 
essential role in the development and regeneration of the liver (Wang et al., 2004). In previous 
studies, many different cytokines were studied in order to optimize conditions required for hepatic 
differentiation, and it was found that only fibroblast growth factor-4 (FGF-4) and HGF were able to 
promote hepatocyte differentiation. FGF-4 alone induced hepatocyte differentiation, however, the 
degree of differentiation measured by absence of immature markers such as AFP and cytokeratin-19 
was higher when cells were also treated with HGF. FGF-4 is important in initial endoderm patterning 
and may play a role in endoderm specification (Wells and Melton, 2000) while HGF induces 
differentiation of hepatocytes that are not actively proliferating (Oh et al., 2000; Hamamoto et al., 
1999; Yoon et al., 1999; Miyazaki et al., 1998). In a study by Tang et al., it was reported that HGF 
can promote the expansion of human umbilical cord blood stem cells and induce their differentiation 
into liver cells (Tang et al., 2006). 

Albumin secretion and AFP expression were detected in the culture supernatant at the  day 7 
of culture; the mean albumin level was 0.51 mg/L ±0.016 in MSCs culture supernatant, 0.46 mg/L 
±0.049 in CD34+ and 0.4 mg/L ±0.032 in CD133+ culture. Many other groups have studied 
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hepatocyte differentiation from UCB and albumin expression was detected one week after the 
beginning of culture (Tang et al., 2006, Teramoto et al., 2005).  This showed the capability of 
albumin-positive cells derived from UBCs to proliferate into functional hepatocyte-like cells. 

The cultured cells showed positive expression of AFP with varying percentages; MSCs 
showed 31% ± 1.65 positivity, CD133+ cells 30% ± 2.21 followed by CD34+ cells showing 28.8% ± 
2.91. In the study by Tang et al, low level expression of AFP was detectable by day 7 and remained 
detectable up to day 35 (Tang et al., 2006). AFP is an early developmental marker gene of 
hepatoblasts (Hammer et al., 1987), indicating successful mRNA translation into specific proteins. 

Based on our results, we believe that UCB-MSCs have a strong potential for differentiating 
into hepatic lineage cells in vitro and may be a promising source of cell therapy in intractable liver 
diseases as they can be easily isolated and expanded in quantities relevant to clinical application and 
can be cryopreserved for long periods without losing their stem cell properties in addition to having a 
broad differentiation potential (Kim et al., 2004, Zuk et al., 2002, Reyes et al., 2001). UCB-MSCs 
have a major advantage in that it does not require invasive procedures that could be harmful to the 
donor and can be used universally across the HLA barrier. MSCs can repair injured tissue by 
differentiating into damaged cell types, secreting appropriate cytokines and growth factors, and 
undergoing cell fusion (Prockop et al., 2003, Spees et al., 2003, Terada et al., 2002). In addition, 
MSCs possess the unique ability to suppress immune responses, both in vitro (Krampera et al., 2003, 
Tse et al., 2003) and in vivo (Polchert  et al., 2008, Zappia et al., 2005, Ortiz et al., 2003). 

In a study by Burra et al, UCB-MSCs were transplanted in necrotic mouse liver. Cells were 
recruited in the injured tissue and were able to engraft the liver and to regulate the inflammatory 
process (Burra et al., 2012).  

Although, several studies had reported the ability of UCB-MSCs to differentiate into hepatic 
like cells, the application in clinical practice needs more thorough information on cell behavior in 
vivo. More investigations are needed to study the potential of frozen/cryopreserved cells to undergo 
proper differentiation into required cell type and its engraftment and cellular reconstitution ability.  
 
 
References: 
 
Abdel-Aziz F, Habib M, Mohamed MK, Abdel-Hamid M, Gamil F, Madkour S, et al. Hepatitis C 
virus (HCV) infection in a community in the Nile Delta: population description and HCV prevalence. 
Hepatology  2000, Jul; 32(1):111-5. 
 Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell 
responses. Blood 2005, 105:1815–1822.  
Bromeyer HE. Questions to be answered regarding umbilical cord blood hematopoietic stem and 
progenitor cells and their use in transplantation. Transfusion 1995, 35: 694–702. 
Burra P,  Arcidiacono D, Bizzaro D, Chioato T, Di Liddo R, Banerjee A, et al. Systemic 
administration of a novel human umbilical cord mesenchymal stem cells population accelerates the 
resolution of acute liver injury. BMC Gastroenterology 2012, 12:88. 
 Campard D, Lysy PA, Najimi M, Sokal EM. Native umbilical cord matrix stem cells express hepatic 
markers and differentiate into hepatocyte-like cells. Gastroenterology 2008, 134:833–848. 
Chen H, Egan JO, Chiu JF. Regulation and activities of alpha-fetoprotein. Crit Rev Eukaryot Gene 
Expr 1997, 7:11–41.  
Chivu M, Dima S, Stancu C, Dobrea C, Uscatescu V, Necula LG et al.In vitro hepatic differentiation 
of human bone marrow mesenchymal stem cells under differential exposure to liver-specific factors. 
Transl Res 2009, 154 (3):122–132.  
 
Danet GH, Luongo JL, Butler G, Lu MM, Tenner AJ, Simon MC, Bonnet DA. C1qRp defines a new 
human stem cell population with hematopoietic and hepatic potential. Proc Natl Acad Sci USA 2002, 
99:10441–10445. 
Di Campli C, Piscaglia AC, Pierelli L, Rutella S, Bonanno G, Alison MR, et al. A human umbilical 
cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis 2004, 36:603–
613. 



1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal        - Proceedings- 

767 
 

Dunn JC, Tompkins RG, Yarmush ML. Long-term in vitro function of adult hepatocytes in a collagen 
sandwich configuration. Biotechnol Prog 1991, 7:237–245. 
El-Zanaty F, Way A. Egypt Demographic and Health Survey 2008. Egyptian: Ministry of Health (El-
Zanaty and Associates and Macro International, Cairo) 2009, pp 431. 
Fox IJ, Chowdhury JR. Hepatocyte transplantation. Amer J Transplant 2004, 4:7–13. 
Hamamoto R, Kamihira M, Iijima S. Growth and differentiation of cultured fetal hepatocytes isolated 
various developmental stages. Biosci Biotechnol Biochem  1999, 63:395–401. 
Hammer RE, Krumlauf R, Camper SA, Brinster RL and Tilghman SM. Diversity of alpha-fetoprotein 
gene expression in mice is generated by a combination of separate enhancer elements. Science 1987, 
235:53–58.  
Holyoake TL, Alcorn MJ. CD34? positive haemopoietic cells: biology and clinical applications. 
Blood Rev. 1994, 8:113–24. 
Hong SH, Gang EJ, Jeong JA, Ahn C, Hwang SH, Yang IH et al. In vitro differentiation of human 
umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys 
Res Commun 2005, 330:1153–1161. 
Ishikawa F, Drake CJ, Yang S, Fleming P, Minamiguchi H, Visconti RP et al. Transplanted human 
cord blood cells give rise to hepatocytes in engrafted mice. Ann NY Sci 2003, 996:174–185. 
Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells 
from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24:1294–1301. 
Kim JW, Kim SY, Prk SY, Kim YM, Kim JM, Lee MH et al. Mesenchymal progenitor cells in the 
human umbilical cord. Ann Hematol 2004, 83:733–738.  
Kim WR, Brown RS, Terrault NA and El-Serag H. Burden of liver disease in the United States: 
summary of a workshop. Hepatology 2002, 36:227–42. 
Ko¨gler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N et al. A new human somatic stem 
cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004, 
200:123– 35. 
Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E et al. Bone marrow mesenchymal 
stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. 
Blood 2003,101:3722–9. 
Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH et al. In vitro hepatic differentiation 
of human mesenchymal stem cells. Hepatology 2004 c, 40:1275– 1284.  
Lee MW, Choi J, Yang MS, Moon YJ, Park JS, Kim HC et al. Mesenchymal stem cells from 
cryopreserved human umbilical cord blood. Biochem Biophys Res Commun. 2004b, 320:268–73. 
Lee MW, Jang IK, Yoo KH, Sung KH, Koo HH. Stem and progenitor cells in human umbilical cord 
blood. Int J Hematol 2010, 92:45–51. 
Lee MW, Moon YJ, Yang MS, Kim SK, Jang IK, Eom Y, Park JS, Kim HC, Song KY, Park SC, Lim 
HS, Kim YJ. Neural differentiation of novel multipotent progenitor cells from cryopreserved human 
umbilical cord blood. Biochem Biophys Res Commun. 2007;358:637–43. 
Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multi-potent mesenchymal 
stem cells from umbilical cord blood. Blood 2004a, 103:1669–75.  
McAdams TA, Miller WM, Papoutsakis ET. Hematopoietic cell culture therapies. Trends Biotechnol 
1996, 14:388–396. 
McGuckin CP, Forraz N, Allouard Q, Pettengell R. Umbilical cord blood stem cells can expand 
hematopoietic and neuroglial progenitors in vitro. Exp Cell Res. 2004, 295:350–8. 
Miyazaki M, Mars WM, Runge D, Kim TH, Bowen WC, Michalopoulos GK. Phenobarbital 
suppresses growth and accelerates restoration of differentiation markers of primary culture rat 
hepatocytes in the chemically defined hepatocyte growth medium containing hepatocyte growth factor 
and epidermal growth factor. Exp Cell Res 1998, 241:445–457. 
 
Nguyen MH, Keeffe EB. Prevalence and treatment of hepatitis C virus genotypes 4, 5, and 6. Clin 
Gastroenterol Hepatol. 2005, Oct;3(10 Suppl 2):S97-S101. 
Oh SH, Miyazaki M, Kouchi H, Inoue Y, Sakaguchi M, Tsuji T et al. Hepatocyte growth factor 
induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro. Biochem 
Biophys Res Commun 2000, 279:500–504. 



1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal        - Proceedings- 

768 
 

Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, et al. Mesenchymal stem cell 
engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic 
effects. Proc Natl Acad Sci USA. 2003, 100:8407–11. 
Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E et al. IFN-c activation of 
mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol. 
2008, 38:1745–55. 
Prockop DJ, Gregory CA, Spees JL. One strategy for cell and gene therapy: harnessing the power of 
adult stem cells to repair tissues. Proc Natl Acad Sci USA. 2003, 100(Suppl. 1):11917–23. 
Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion 
of postnatal human marrow mesodermal progenitor cells. Blood 2001, 98:2615–2625.  
Sellamuthu S, Manikandan R,  Thiagarajan R, BabuG,  Dinesh D, Prabhu D et al. In vitro trans-
differentiation of human umbilical cord derived hematopoietic stem cells into hepatocyte like cells 
using combination of growth factors for cell based therapy. Cytotechnology 2011,  63:259–268. 
Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, Perry A et al. Differentiation, cell fusion, and 
nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow 
stroma. Proc Natl Acad Sci USA. 2003, 100:2397–402. 
Sutherland DR, Keating A. The CD34 antigen: structure, biology, and potential clinical applications. J 
Hematother.1992, 1:115–29. 
Tang XP, Zhang M, Yang X, Chen LM, Zeng Y. Differentiation of human umbilical cord blood stem 
cells into hepatocytes in vivo and in vitro. World J Gastroenterol 2006, 12(25):4014–4019. 
Tanikawa K. Indication of liver transplantation for hepatocellular carcinoma in Japan. Surg Today 
1992, 22:395–400. 
Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y et al. Bone marrow cells adopt the 
phenotype of other cells by spontaneous cell fusion. Nature. 2002, 416:542–5. 
Teramoto K, Asahina K, Kumashiro Y, Kakinuma S, Chinzei R, Shimizu-Saito K et al. Hepatocyte 
differentiation from embryonic stem cells and umbilical cord blood cells. J Hepatobiliary Pancreat 
Surg 2005, 12:196–202. 
Tilghman SM. The structure and regulation of the alpha-fetoprotein and albumin genes. Oxf Surv 
Eukaryot Genes 1985, 2:160–206.  
Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell 
proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003, 
75:389–97. 
Walter DH, Dimmeler S. Endothelial progenitor cells: regulation and contribution to adult 
neovascularization. Herz. 2002, 27:579–588. 
Wang PP, Wang JH, Yan P, Hu MY, Lau GK, Fan ST et al. Expression of hepatocyte- like 
phenotypes in bone marrow stromal cells after HGF induction. Biochem Biophys Res Commun 2004, 
320: 712–716. 
Wang X, Ge S, McNamara G, Hao QL, Crooks GM, Nolta JA. Albumin-expressing hepatocyte-like 
cells develop in the livers of immune-deficient mice that received transplants of highly purified 
human hematopoietic stem cells. Blood 2003, 101:4201–4208. 
Wells JM, Melton DA. Early mouse endoderm is patterned by soluble factors from adjacent germ 
layers. Development 2000, 127:1563– 1572. 
Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG et al. AC133, a novel 
marker for human hematopoietic stem and progenitor cells. Blood 1997, 90:5002–5012. 
Yoon JH, Lee HV, Lee JS, Park JB, Kim CY. Development of a non-transformed human liver cell 
line with differentiated hepatocyte and urea-synthetic functions: applicable for bioartificial liver. Int J 
Artif Organs 1999, 22:769–777. 
 
Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E et al. Mesenchymal stem 
cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005, 
106:1755–61. 
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al. Human adipose tissue is a 
source of multipotent stem cells. Mol Biol Cell 2002, 13:4279–4275.  
 
 


