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Abstract 
Agriculture is considered one of the most vulnerable sectors to climate 

change. In addition to rainfed agriculture, irrigated crops such as rice have 
been developed in recent decades along the Senegal River. This new crop 
requires reliable information and monitoring systems. Remote sensing data 
have proven to be very useful for mapping and monitoring rice fields. In this 
study, a rice classification system based on machine learning to recognize and 
categorize rice is proposed. Physical interpretations of rice with other land 
cover classes in relation to the spectral signature should identify the optimal 
periods for mapping rice plots using three machine learning methods including 
Support Vector Machine (SVM), Random Forest (RF), and Classification and 
Regression Trees (CART). The database is composed of field data collected 
by GPS and high spatial resolution (10 to 30 m) satellite data acquired between 
January and May 2018. The analysis of the spectral signature of different land 
cover show that the ability to differentiate rice from other classes depends on 
the level of rice development. The results show the efficiency of the three 
classification algorithms with overall accuracies and Kappa coefficients for 
SVM (96.2%, 94.5%), for CART (97.6%, 96.5%) and for RF (98% 97.1%) 
respectively. Unmixing analysis was made to verify the classification and 
compare the accuracy of these three algorithms according to their 
performance.

 
Keywords: Rice agriculture, Senegal River Delta, Machine Learning, 
sentinel-2, Google Earth Engine 
 
Introduction 

Rice is one of the most important crops in the world, and it is the food 
staple for nearly 40% of the world's population (Lacharme, 2001). Senegal is 
one of the largest consumers of rice in West Africa. The average annual rice 
consumption per person is between 60 and 90 kg (Mendez Del Villar et al., 
2011). Rice is grown mainly in the Senegal River valley in the north and in 
the Anambée basin in the south of the country. According to projections, 
production in the river valley should cover 57% of the country's needs, given 
the favorable conditions for double-cropping rice based on the SAED Final 
Report (2019). 
Earth Observation data are increasingly becoming a real source of information 
for monitoring rice crops (Kuenzer & Knauer, 2013; Le Toan et al., 1997). 
Indeed, different methods of discrimination analysis related to rice varieties 
are presented in the scientific literature (Belder et al., 2004; Bouman et al., 
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2007; Kshirsagar & Pandey, 1995; Kuenzer & Knauer, 2013; Radanielina et 
al., 2013; Singh et al., 2000; Tuong et al., 2005; Wassmann et al., 2004). 
Research in this area can still be improved. Remote sensing promises scalable, 
low-cost, and unbiased estimates of rice area to support, augment, improve, or 
even replace survey and statistical methods (Gumma et al., 2014). However, 
there are technical challenges to the development of rice information systems 
at the national scale. 
The aim of this study is to evaluate different machine learning methods for 
optimizing rice crop monitoring in northern Senegal using land observation 
data. 

In Senegal, rice production systems are largely dominated by small-
scale family farms. Therefore, there are three main types of rice production in 
Senegal: 
- Traditional or rainfed lowland or upland rice production in the southern 
regions (Fatick, Ziguinchor, Sédhiou, Kolda, Tambacounda, and Kédougou). 
- Irrigated rice cultivation in the Senegal River valley and in the Anambé 
basin. 

Rice is an herbaceous plant with a round stem covered with flat sessile 
leaves and a terminal panicle. Under favorable and exceptional climatic 
conditions, the plant can grow for more than one year. The overall growth 
duration of a rice variety can be divided into 4 components: a basic vegetative 
phase, a phase of sensitivity to photoperiodism (if the variety is 
photoperiodic), a phase of sensitivity to temperature, and a reproductive phase 
from panicle initiation to maturity (Lancashire et al., 1991). 

In the transplanted system, the rice plants are grown in a seedbed for 
about 20 days, with transplanting in a hillside configuration. Before 
transplanting, the rice field is flooded with water to depths ranging from 2 to 
15 cm (Boschetti et al., 2014). This deliberate agronomic flooding is a key 
component of most remote sensing rice detection algorithms (Veloso et al., 
2017) . After transplanting, the recommended practice is to maintain the water 
level at about 3 cm and gradually increase it to 5-10 cm with increasing plant 
height. For rice established by direct seeding, rice seeds are sown at a higher 
density per unit area directly into moist soil or soil with a water level of 2-5 
cm (Torbick et al., 2017). Due to the higher population density under direct 
seeding, tillers production is suppressed (Yoshida et al., 1971). The increase 
in leaf volume in the canopy is mainly due to the appearance and growth of 
leaves from the main culms. Keeping the water level low for the first 10 days 
after transplanting or for 21 days of direct seeding is recommended for crop 
management. 
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Materials and Methods 
Presentation of the Study Area 

The Senegal River Delta (Figure 1) extends from Dagana to the mouth 
of the river and covers an area of 394,530 ha. It is characterized by a Sahelian 
climate dominated by a short rainy season (July to October) and a long dry 
season (November to June). Rainfall is low and highly variable with annual 
totals of about 200 mm. (Touré, 2018). The average annual temperature is 
relatively high, sometimes exceeding 40°C in Podor department (ANDS, 
2020). 

The Senegal River delta is made up of a mosaic of morphological units 
ranging from dune formations, inter-dunes, levees, settling basins, mud flats, 
and littoral units (strips and beaches) (Michel and Sall). The ecosystems of the 
delta, like all ecosystems, are dependent on rainfall. It is a very dynamic area 
because many hydro-agricultural developments have been carried out there 
over the past decades for rice production. The area to be studied covers the 
rice plots located in the commune of Diama and Ronkhe in the department of 
Dagana. 

 
Figure 1. Map of study area 

 
The Data 

A total of 38 blocks of rice (one or more sticky fields), sown at different 
dates (in red in Figure 1), were digitized to serve as a training and test base 
(Table 1). These are field boundaries (or groups of fields) delineated in the 
field with a GPS (Figure 2). The rice field samples were divided into three 
blocks according to the date of sowing (see Table 1). For each land use type 
as well (Rice, soil bare, water, urban and other vegetation consisting of other 
crops and natural vegetation), training zones are labeled based on visual 
interpretation on Google Earth platform images. 
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Sentinel-2 optical data of level1 C/S2 are used in this study. These data 
were taken between January 1 and May 31, 2018, for a total of 66 images 
(Table 2). The access to these data and their pre-processing are made from the 
Google Earth Engine (GEE) platform. For each decade, a synthesis image 
(average image) is calculated (see Table 2). 

Table 1. The Data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Rice polygon sample 

Block 
number 

Number of 
parcels 

Sowing dates Total Sown 
Parcels 

 
 
Block 1 

02 2018/02/04  
 
46 
 
 

06 2018/02/10 
26 2018/02/11 
01 2018/02/12 
03 2018/02/13 
07 2018/02/14 

 
 
 
Block 2 

11 2018/02/15  
 
 
66 

02 2018/02/17 
35 2018/02/19 
08 2018/02/20 
03 2018/02/21 
05 2018/02/22 
02 2018/02/24 

 
 
 
 
Block 3 

121 2018/02/25  
 
 
 
667 

42 2018/02/26 
03 2018/02/27 
187 2018/02/28 
144 2018/03/01 
61 2018/03/02 
23 2018/03/03 
56 2018/03/04 
30 2018/03/05 
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Table 2. Satellite and field data 

 
Method 
The method is based on the following phases: 

1. Compute a number of spectral indices for each pixel 
(NDVI, NDWI and EVI): 

NDVI (Normalized Difference Vegetation Index (Rouse Jr et al., 1974)) is the 
most commonly used vegetation index in remote sensing: 

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =
𝑵𝑵𝑵𝑵𝑵𝑵 − 𝑵𝑵𝑹𝑹𝑵𝑵
𝑵𝑵𝑵𝑵𝑵𝑵 + 𝑵𝑵𝑹𝑹𝑵𝑵

=
𝑩𝑩𝟖𝟖 − 𝑩𝑩𝟒𝟒
𝑩𝑩𝟖𝟖 + 𝑩𝑩𝟒𝟒

         (𝟏𝟏) 
The NDWI (Normalized Difference Water Index (Gao, 1996)) is an index that 
uses the mid-infrared band instead of red, which varies with the water content 
of the vegetation: 

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 =
𝐍𝐍𝐍𝐍𝐍𝐍 − 𝐒𝐒𝐍𝐍𝐍𝐍𝐍𝐍
𝐍𝐍𝐍𝐍𝐍𝐍 + 𝐒𝐒𝐍𝐍𝐍𝐍𝐍𝐍

=
𝐁𝐁𝟖𝟖 − 𝐁𝐁𝟏𝟏𝐁𝐁
𝐁𝐁𝟖𝟖 + 𝐁𝐁𝟏𝟏𝐁𝐁

        (𝐁𝐁) 
The Enhanced Vegetation Index (EVI) is designed to minimize saturation and 
background effects in NDVI (Huete et al., 2002): 

𝐄𝐄𝐄𝐄𝐍𝐍 = 𝐁𝐁.𝟓𝟓 × �
(𝐍𝐍𝐍𝐍𝐍𝐍 − 𝐍𝐍𝐄𝐄𝐍𝐍)

(𝐍𝐍𝐍𝐍𝐍𝐍 + 𝟔𝟔 × 𝐍𝐍𝐄𝐄𝐍𝐍 − 𝟕𝟕.𝟓𝟓 × 𝐁𝐁𝐁𝐁𝐁𝐁𝐄𝐄 + 𝟏𝟏)�     (𝟑𝟑) 

2. Extract from the Google Earth Engine (GEE) platform 
the pixel values (for all calculated bands and indices) of the control 
plots for all images (between January and May) using 20069 training 
polygons. For each block, the pixel values over the entire period and 
for all bands and indices are extracted for the spectral analysis. 

3. Analyze the spectral profiles of the different classes at 
different phases of rice cultivation (January to May) to identify the 
most discriminating bands and the optimal period to better differentiate 
rice from other classes (bare soil, built-up, other vegetation and water). 
As a reminder, the spectral signature represents the measurement of 
energy in relation to the different wavelengths returned by a target. 

Satellite images 66 Images Sentinel-2   Level-1C 
Month January February March April May 
 
 
Dates of acquisition 

////////////////// 2018/02/02(3) 2018/03/04(3) 2018/04/03 (2) 2018/05/03 (3) 
2018/01/08(3) //////////////// 2018/03/09(3) 2018/04/08 (1) 2018/05/08 (3) 
////////////////// 2018/02/12(3) 2018/03/14(3) 2018/04/13 (3) 2018/05/13 (3) 
2018 /01/18(3) 2018/02/17(2) 2018/03/19(3) 2018/04/18 (2) 2018/05/18 (3) 
2018/01/23(3) 2018/02/22(3) ////////////////// //////////////// 2018/05/23 (3) 
2018/01/28(3) 2018/02/27(3) 2018/03/29(2) ///////////////// 2018/05/28 (3) 

Images divide into 
decades 

j1 :1st decad 
j2: 2nd decad 
j3: 3rd decad 

f1: 1st decad 
f2: 2nd decad 
f3: 3rd decad 
 

ms1 :1st decad 
ms2 :2nddecad 

a1: 1st decad 
a2: 2nd decad 

ma1: 1st decad 
ma2: 2nd decad 
ma3: 3rd decad 
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Each object has its own spectral signature. Thus, this step consists of 
determining the most suitable period for classification and selection of 
the images of the most discriminating period but also the most relevant 
bands and/or indices. 

4. Do the unmixing which consists, for each pixel, to 
estimate the contribution of each of the five classes.  This linear 
spectral mixing model is based on the assumption that each pixel is a 
mixture of "pure" spectra.  The pure spectra, called endmembers, are 
estimated from the values of the training areas. 

5. Use GEE to perform supervised classification using the 
most relevant data. The first step is to manually create different 
training data. Using the geometry tools and the Sentinel-2 composite 
as a background, digitize the training polygons. This known sample set 
will be partitioned into training and test sets. For this purpose, 2/3 of 
the samples are used as training base. Finally, evaluate the accuracy of 
each of the three classifications using 1/3 of the field samples as a 
validation basis. Indeed, in this study, the field samples are divided 
into two bases: 70% as training base and 30% as test data (Genuer & 
Poggi, 2017). This makes it possible to estimate the errors of each 
model. 
Three types of pixel-based classifications are tested in this study: 

• Classification And Regression Trees (CART), introduced by 
Breiman et al. (1984), which builds tree-based predictors for 
both regression and classification. CART is a machine learning 
algorithm that can take non-linear patterns in the data. The 
general principle of CART is to recursively partition the input 
data X (X: pixel value) in a binary fashion, and then determine 
an optimal sub-partition for prediction. It uses in situ data to 
build a descriptive and predictive model of a relationship 
between a set of predictors and a categorical variable 
(Steinberg et al., 2012). 

• The Random Forest classifier is a collection of random trees 
whose predictions are used to compute a mean (regression) or 
vote on a label (classification). The only parameter of the 
classifier is the number of trees (k). The RF creates different 
trees using a number of subsets of features. Each tree produces 
a classification result, and the classification model result 
depends on the majority of votes (Liu et al., 2012). 

• Support vector machines (SVM) were initially proposed by 
Vapnik (1999) to solve classification and regression analysis 
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problems (Jha & Ragha, 2013). SVM is a supervised learning 
technique that is trained to classify different categories of data 
from various disciplines. SVM creates a hyperplane or multiple 
hyperplanes in a high-dimensional space, and the best 
hyperplane among them is the one that optimally divides the 
data into different classes with the largest separation between 
classes (Schiilkop et al., 1995). The theory and detailed 
mathematical explanation of SVMs have been demonstrated in 
many previous studies (Ben-Hur & Weston, 2010; Cortes & 
Vapnik, 1995; Foody & Mathur, 2004). The basic linear SVM 
was used. All simulations were performed using the freely 
available LibSVM package (Chang & Lin, 2011). 

This paper proposes a rice classification system based on machine 
learning to recognize and categorize rice. Physical interpretations of rice with 
other land cover classes in relation to the spectral signature should identify the 
optimal periods for mapping rice plots using three learning methods including 
Support Vector Machine (SVM), Random Forest (RF), and Classification and 
Regression Trees (CART). The database is composed of field collection and 
Sentinel-2 multispectral imager (MSI) Level-1C satellite data. Although the 
classification can correctly detect most rice-growing areas, certain types of 
vegetation cover can lead to classification errors. Wet or seasonal areas subject 
to drying followed by sudden vegetation growth can contribute to increased 
omission errors. The solution is to use multi-temporal optical images acquired 
at appropriate times, often outside the rice growing season, to exclude some 
non-rice growing areas. Furthermore, this study examines the suitability of 
sentinel-2 optical spatial data and the effectiveness of three machine learning 
methods in predicting the appropriate period for rice field mapping. 
 

 
Figure 3. Flow chart of the method 

 

http://www.eujournal.org/


European Scientific Journal, ESJ                             ISSN: 1857-7881 (Print) e - ISSN 1857-7431 
May 2022 edition Vol.18, No.17 
 

www.eujournal.org   222 
 
 
 
 
 
 
 

Results and Discussions 
Temporal Analysis of the Spectral Signatures of the Different Classes 
The curves in Figure 4 show the distributions of radiometric values for each 
land cover class for each decade from January to May 2018. 

In January (the pre-sowing period), the reflectance of the rice fields 
merges with that of the urban and natural vegetation except for strips B2 to 
B5, where the natural vegetation has a lower response than the rice fields. This 
reflectance corresponds to the period when the fields are plowed and 
developed, and others are occupied by grasses. From February onwards, there 
is a decrease in rice reflectance, particularly for strips B7, B8, B8A, B11 and 
B12, with a wide distribution of values. This may be due to the fact that during 
this period, some rice fields are sown (early sowing) and not recommended, 
while others remain uncultivated. The same situation was observed in March 
and until early April. From the second dekad of April, the distribution of 
radiometric values of the rice fields remains low compared to the vegetation, 
with a spectral signature quite identical to that of the other vegetation, but with 
lower values. This phase is the reproductive phase where the temporal 
signature of the canopy is similar to that of rice. This shows that the 
development of rice goes hand in hand with that of the vegetation. However, 
weed control makes the rice plots more open and therefore less reflective than 
the other vegetated areas. 
This difference in reflectance between rice and vegetation is reduced in the 
last decade of May, becoming almost zero in early June, corresponding to the 
maturity of the rice. 
These curves show that during the vegetative period of rice, it is possible to 
discriminate rice with spectral bands B6, B7, B8, B8A, B11, and B12. 

Indeed, the reflectance spectrum of the vegetation cover is the result of 
a complex relationship between its biophysical and biochemical attributes 
(Yang et al., 2007). As a result, the analysis of the separability of the 
radiometric values of rice fields with other land cover classes should help 
identify the optimal periods for mapping rice plots. The structure of a 
vegetation cover is not related to plant organs, but concerns the plant or stand. 
It takes into account both canopy structure parameters, such as leaf area index 
or leaf tilt angle, and the spatial organization of stands, their arrangement, 
density, as well as the rate of ground cover according to phenological stage. It 
should be noted that the life span of tropical rice varies from 110 - 120 days 
to 150 days (Jay & David, 2002; Le Toan et al., 1997; Nguyen, 2016), from 
germination to maturity in general. 
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Figure 4. Distributions of radiometric values of each land cover class for each 

decade from January to May 
Class Separability Analysis 

The spectral analysis of the different land cover classes is not sufficient 
as a result to discriminate rice from other land cover classes. This is because 
rice discrimination appears to be quite difficult. One solution is to analyze the 
separability index of rice from other classes, given by the following formula: 
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑵𝑵𝑰𝑰𝑰𝑰𝑺𝑺𝑰𝑰
= 𝑺𝑺𝑺𝑺𝒂𝒂 � �(𝒎𝒎𝑺𝑺𝑺𝑺𝑰𝑰𝑺𝑺𝑺𝑺𝒓𝒓𝑺𝑺 −𝒎𝒎𝑺𝑺𝑺𝑺𝑰𝑰𝒐𝒐𝑺𝑺𝒐𝒐𝑺𝑺𝑺𝑺𝒓𝒓𝑺𝑺𝑺𝑺𝒂𝒂𝒂𝒂)�(𝑺𝑺𝒓𝒓𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒓𝒓𝑺𝑺 − 𝑺𝑺𝒓𝒓𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒐𝒐𝑺𝑺𝒐𝒐𝑺𝑺𝑺𝑺𝒓𝒓𝑺𝑺𝑺𝑺𝒂𝒂𝒂𝒂)�� (𝟒𝟒) 
For two classes to be separable, their separability index must be greater than 
one (01), and the greater the separability index, the more easily the two classes 
can be separated. 
 
Pre-sowing Analysis 
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In the pre-sowing period (January), plots planned for rice cultivation 
are indistinguishable from urban areas and other crops. With the exception of 
the NDVI and NDWI indices, the separability index between rice plots and 
other vegetation is greater than two (02). However, these two indices, like the 
NDVI, mix rice fields with bare soil. It was also noted that for band B4 and 
the EVI, rice-growing areas are mixed with water. This can be explained by 
the fact that the rice plots are flooded before the planting period (see Figure 
5). 

 
 

Figure 5. Index of separability between rice and other classes before sowing 
 
Analysis During and After Sowing 

- Block 1: Sowing date from February 2 to 14 (first and second dekad 
of February). During the sowing period, the observation was the same as 
before sowing, i.e., only the NDVI and NDWI indices make it possible to 
discriminate rice fields from other vegetation. However, from the first dekad 
after sowing (3rd dekad of February), all the separability indices between rice 
and other land uses are higher than 01 for bands B6, B7, B8, B8A, and NVDI. 
This situation continues until the third dekad of March. At the beginning of 
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April, it was observed that almost all the bands and indices discriminate rice 
from the other classes, except for band B5, which confuses it with water, and 
NDVI and EVI, which confuse rice with other vegetation. From the month of 
May, corresponding to the 7th dekad since the start of sowing in this block, 
the confusion between rice and other vegetation becomes significant and 
concerns almost all bands and indices except B2, B3, B4, and B5 (see Figure 
6). 

- Block 2: Sowing between February 15 and 24 (2nd and 3rd dekad of 
February). The curves of the first dekad of February, which belongs to the 
period before sowing, are identical to those of January. From the third dekad 
of February, corresponding to the end of sowing for this block, it was noted 
that there was a positive evolution of rice separability with the separability 
indices of bands B6, B7, B8, B8A, and the NDVI higher than 01. This situation 
is maintained throughout March and until the first dekad of April, when all the 
bands from B2 to B8A and the NDVI discriminate well between rice and the 
other classes, except for water in band B5. Beyond this period, it is no longer 
possible to separate rice from other vegetation (see Figure 6). 

- Block 3: Sowing between February 25 and March 5 (between the 3rd 
dekad of February and the 1st dekad of March). The observation before and 
during sowing remains the same as that observed on the first two blocks. 
However, unlike the first two blocks, only the first dekad of April here is 
favorable for differentiating rice from the other classes which are from bands 
B6, B7, B8, and B8A. Unfortunately, the lack of data during the third dekad 
of March due to clouds means that it is not possible to analyze the situation in 
the second dekad after the end of planting for this block. 
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Figure 6. Separability index between rice and other classes before sowing (gray) during 

sowing (yellow) and after sowing (blue and green). The blue is the optimal period to 
discriminate. 
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It can be concluded that during the pre-sowing period (Figure 4), there 
is no band or index to discriminate rice-growing areas from other land-use 
classes. Mapping the area sown before the sowing period is therefore not an 
easy task using Sentinel-2 data. In summary, however, analysis of Figure 5 
shows that the second dekad of April is the best time to map rice plots in this 
area of the Delta. The images acquired during this dekad will be used for 
classification according to the three selected classifier models (SVM, RF, 
CART). 

 
Results of the Classification 

The comparison of the three Machine Learning methods shows the 
result with different accuracies for each land use class (Table 3). This phase 
of validation of the 30% of the tested samples helped to obtain the results of 
precisions and kappa coefficients of each model. 

Table 1. Comparing the accuracies of the three methods 
Algorithm Rice (0) Soil bare (1) Water (2) Other Vegetation 

CART 91,33 99,22 99,78 98,04 
RF 90,88 99,70 99,78 98,81 

SVM 81,25 99,76 1 97,90 

 
For the RF method (Azzari & Lobell, 2017; Huang et al., 2017; Parente 

et al., 2019; Teluguntla et al., 2018; Zhang et al., 2018), it was noted that there 
were some confusion between the rice class and other vegetation (9100 square 
meter of rice is considered vegetation). There are also confusions between rice 
and other classes such as bare soil (3200 square meter of bare soil are classified 
as rice). There is also confusion between water and vegetation due to the 
presence of aquatic vegetation in the area. The results show that the RF 
algorithm gives an overall accuracy of 98% with a kappa index of 97.1% 
(Figure 7). 

With the CART method, as with RF, there is confusion between the 
different classes with 9500 square meter of rice being confused with 
vegetation and 2200 square meter with bare soil. The CART algorithm gives 
an overall accuracy of 97.6% and a kappa index of 96.5% (Figure 7). It should 
be noted that while CART handles missing values well in prediction, random 
forests, which are unpruned sets of trees, essentially lose this property (Genuer 
& Poggi, 2017). 

For the SVM method, there was a strong confusion between the rice 
class and other vegetation with 19400 square meter of rice considered as other 
vegetation. 
SVMs are particularly attractive in the field of remote sensing because of their 
ability to generalize well even with limited samples, which is common in 
remote sensing applications. However, they also suffer from parameter 
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assignment problems that can significantly affect the results obtained. The 
SVM classifier has an overall accuracy of 96.2% and a kappa index of 94.5% 
(Figure 7). 

The classifiers (CART and RF) correctly predict rice at 91.33% and 
90.88% respectively (Table 3). Previous studies have suggested that the 
number of random drill decision trees is generally proportional to the accuracy 
of the classifier  (Rodriguez-Galiano et al., 2012). Foody and Mathur (2006) 
proposed to focus on mixed pixel training samples rather than the more tedious 
conventional pure pixel acquisition assuming an SVM classifier. The results 
of this study suggest that the Random Forest classifier performs as well as 
SVMs in terms of classification accuracy and training time. 
The performance of Random Forest improves as the number of trees increases. 
However, the performance improves when NDVI, NDWI, and EVI bands 
(Ferrant et al., 2017; Kuenzer & Knauer, 2013; Xiao et al., 2006) are added to 
the selected sentinel-2 bands for both SVM and RF. 

Previous classification results indicate that RF is reasonably suitable 
for classifying such data, as in some cases (Ferrant et al., 2017; Hong Son & 
Thai-Nghe, 2019), and it performed better than other classifiers because it has 
less error risk. The highest confusion was noted between rice and other 
vegetation in all three methods. This is due to the similarity of rice crops to 
natural vegetation. It is manifested by very similar reflectance values in 
relation to their shape. Thus, it is difficult to differentiate between vegetation, 
sugarcane crops and rice in the north, especially at this time of year. 

 

 
Figure 6. Results classification of the three methods 
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Analysis of the Classification 
To better analyze the results of the classification, the unmixing of the 

pixels was performed. This method available on the GEE platform consists of 
calculating the contribution of each class in the value of each pixel (see Figure 
8). 
For the pixels classified as rice, there is a low contribution of bare soil, water, 
and buildings between 0 and 30% compared to that of vegetation and other 
crops, which can be as high as 80%.  The contribution of rice in the value of 
pixels classified as other vegetation is quite significant, even exceeding 80%. 
For pixels with bare soil and water, the contribution of rice is very low, 
sometimes less than 10%. These results clearly show that the presence of 
vegetation in the rice fields, on the one hand, and the resemblance between 
rice and other crops or vegetation at certain periods of the rice crop cycle, on 
the other hand, have an impact on the quality of the classification. For this 
reason, deep learning (DeepLearning) could improve the results obtained, 
although the results obtained remain very satisfactory. 
 

 
Figure 7. The contribution of each land cover class 

 
Conclusion 

The sentinel-2 data performed well with all three algorithms. The 
CART method gives a good accuracy of rice with a value of 91.33%. This 
study proposes an approach for rice identification and classification with 
image processing algorithms and machine learning methods. Adding more 
classes to recognize and identify rice and comparing these models show that 
the proposed approach works well for this study. Based on the results of this 
study, it would be interesting to synergize the sentinel-1 and sentinel-2 data to 

Other Vegetation 
Ric

Soil bare Water 
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improve large-scale rice mapping in the Senegalese context. It should be 
remembered that the size of rice fields is small compared to the spatial 
resolution of Sentinel, which may be a limitation to the use of these data. 
However, a combination of optical-radar and Deep learning methods could 
help improve current methods of estimating rice area in the Sahelian context. 
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