

Well-being and climate change: Evidence for Portugal

Ary José A. Souza-Jr., Msc Pontifical Catholic University of Goiás, PUC-GO – Brazil

Doi:10.19044/esj.2022.v18n23p15

Submitted: 08 April 2022 Accepted: 28 June 2022 Published: 31 July 2022 Copyright 2022 Author(s) Under Creative Commons BY-NC-ND 4.0 OPEN ACCESS

Cite As:

Souza-Jr. A.J.A. (2022). *Well-being and climate change: Evidence for Portugal*. European Scientific Journal, ESJ, 18 (23), 15. <u>https://doi.org/10.19044/esj.2022.v18n23p15</u>

Abstract

This paper analyses the impact of air pollution, climate conditions, and extreme weather events on subjective well-being in Portugal, based on a regional analysis, through the estimation of an ordered probit model. The estimation applies data at the individual level from the 8th and 9th waves of the European Social Survey, along with an air quality indicator, environmental variables, national forest inventory, and a study about the possible future effects of the sea-level rise on vulnerable areas and people living therein. Even after controlling for socio-economic variables and personal traits, the results suggest the existence of differences between regional welfare levels. Air pollution has a negative impact on life satisfaction due to its bad impacts on health (aggravating the condition of individuals with heart and lung diseases). The paper's key finding is to show that at the regional level, both past (forest fires) and «possible» future (floods due to sea-level rise) extreme weather events may impact the current welfare level. Also, assessments of implicit willingness do to pay demonstrate that climate change effects have a relevant impact on their quality of life nowadays.

Keywords: Climate, Extreme, Region, Flood, Fire

Introduction

Assessments of environmental quality impact on subjective well-being (SWB)¹ commonly use multi-country spatial data (Apergis, 2018; Rehdanz &

¹ Subjective well-being is a broad concept that includes people's emotional responses, domain satisfactions, and global judgments of life satisfaction (Diener et al., 1999).

Maddison, 2005; Welsch, 2002), although analyses at the national level have a relevant role in explaining happiness across regions and may contribute to a successful implementation of environmental policies that take into account the specific characteristics of each region (Cuñado & Gracia, 2013). However, such analyses are frequently limited by data availability (Luechinger, 2009). This paper aims to contribute to filling this gap in the literature by studying the impact of climate conditions, air quality, and extreme weather events (EWEs) on welfare across Portuguese regions.

The use of environmental quality data at a more spatially disaggregated level can potentially improve the understanding of connections between welfare and the environment (MacKerron & Mourato, 2009), and the SWB literature provides evidence of this relationship at the regional level by NUTS 2 (in a multi-country analysis, Ferreira et al., 2013; or in a single country, Cuñado & Gracia, 2013), at the county level (Luechinger, 2009), and by respondents' location (MacKerron & Mourato, 2009, 2013). Regarding air pollution, Luechinger (2009) estimates the effects of air pollution in German counties, by using panel data at the individual level. His findings demonstrate a negative and highly significant impact of air pollution on SWB. Similarly, Cuñado & Gracia (2013) find the same effect across the Spanish regions. Based on data from Irish regions, one study about climate conditions shows that both the July maximum and January minimum temperatures have a positive and significant influence on life satisfaction, whereas precipitation has a negative effect (Ferreira & Moro, 2010). In addition, there is evidence that both occurred (in Barcelona, see Sekulova & van den Bergh, 2013) and expected (in Germany, Osberghaus & Kühling, 2016; and in several countries, Rehdanz & Maddison, 2005) EWEs impact life satisfaction. Lastly, happiness scores are useful to infer the monetary value of non-marketed goods, by estimating individuals' willingness to pay for changes in environmental factors (Ambrey et al., 2014; Welsch, 2002).

The *Biophilia* hypothesis explains the inherent human inclination to affiliate with other life features of the nonhuman environment, and there is evidence to support it, such as recovery from illness when having more contact with nature, and fewer social problems (Kellert, 2008; Wilson, 1984). Usually, this theory is the base to explain environmental attitudes regarding climate change and its impacts on SWB (Sekulova and van den Bergh, 2013).

In general, the concepts of happiness, subjective well-being, welfare, quality of life, or life satisfaction are considered to be synonyms, which allow researchers to use them interchangeably. The SWB approach thereby typically provides a global assessment of all aspects of a person's life (Diener, 2009). Its determinants can be classified into two levels: external conditions and inner processes (Veenhoven, 1997). The first group includes many factors that influence SWB (Diener et al., 1999; Dolan et al., 2008), such as environmental

variables (Welsch & Kühling, 2009). As for the second group, strong evidence suggests that personality traits might explain more than half of the differences in SWB (Layard, 2005). Therefore, measures of SWB may act as a proxy to utility (Frey & Stutzer, 2002).

Following NASA (2021), the sea level rise should reach a rate of 3.3 mm per year, caused mainly by the added water from melting ice sheets (and glaciers) and the expansion of seawater (warming process).² Antunes (2016) has a similar forecast based on the Cascais tide gauge (on the Portuguese coast). The potential impact on coastal systems (such as flood damage, erosion, etc.) justifies assessments to decrease the vulnerability and promote adaptation (IPCC, 2014). In Portugal, a country with a large coastal zone spread across all regions, this threat may have significant negative effects on the population (since 75% live near the sea). Rocha (2016) analyses the vulnerability of the Portuguese coast to sea-level rise, which can lead to increased flooding. She uses the Digital Terrain Model for elaborating maps of coastal physical vulnerability for the years 2025, 2050, and 2100. Overall, her findings indicate that until 2100, Portugal may have an increase of 71.6% in vulnerable areas and 86.4% of people living in vulnerable areas.³

This paper explores three research questions: (1) What is the association between individuals' subjective well-being and environmental quality (measured by air pollution and climate conditions) across Portuguese regions? (2) How may occurred (like forest fires⁴) and expected (like the possible occurrence of floods due to sea-level rise) EWEs influence the current life satisfaction of Portuguese citizens?⁵ (3) In Portugal, what is the implicit willingness to pay (IWTP) for environmental variables? The first question seeks to assess the impact of air pollution and climate conditions on the individual level of happiness in the Portuguese regions (Cuñado & Gracia, 2013; Luechinger, 2009), aiming to offer contributions to climate as well as welfare policy. The second aims to show how occurred (past) and expected (future) EWEs might extend their effects to the current happiness level (Osberghaus & Kühling, 2016; Sekulova & van den Bergh, 2013; Rehdanz & Maddison, 2005), which may inform policymakers in their choice of strategies to reduce the negative impact of EWEs on the quality of life (such as the delimitation of isolation areas). Finally, the last question concerns measuring the trade-off, across Portuguese regions, between the change in income and the change in the environment variables (air pollution, climate conditions, and

² Satellite sea level observations, from 1993 to today. See:< https://climate.nasa.gov/vital-signs/sea-level/>.

³ Her results are divided into districts. In this paper, these are grouped into NUTS 2.

⁴ Forest fire is a common and frequent event in Portugal's countryside.

⁵ "Current" refers to the moment in which individuals answer the questions in each wave of the European Social Survey (ESS).

EWEs) that will leave people, on average, equally happy (Di Tella et al., 2001). With this purpose in mind, this paper estimates an ordered probit model using data from the 8th and 9th waves of the European Social Survey (ESS), resorting exclusively to information about Portugal.⁶

The findings suggest that air pollution (PM_{10}) and climate variables have an important role in explaining happiness levels across Portuguese regions, which provides an additional argument in favor of public policies aimed at improving quality of life. In addition, the results indicate that when EWEs are seen as a threat to human life, both past and future events may reduce current well-being. The IWTP for reductions in PM_{10} annual emissions is in line with the literature (Cuñado & Gracia, 2013), whereas for EWEs, results reveal sizeable amounts, suggesting that they have a strong impact on life satisfaction.

This research has four relevant contributions to the literature. Firstly, it is the first paper that combines environmental quality variables and EWEs with Portuguese regional data (NUTS 2) on self-reported happiness levels. For instance, Soukiazis & Ramos (2016) assess the main determinants of welfare among Portuguese. However, they do not approach any link with the environment. Secondly, the results in this paper have policy implications, by revealing the positive impact that fighting air pollution, forest fires, and avoiding (at least partially) future damages from floods, may have on the quality of life. Thirdly, this study offers estimations of the monetary valuation of non-market goods (such as climate, EWEs, and air pollution) for the Portuguese regions. These estimates allow us to understand how much the individuals would be willing to pay today, if it were possible, for preventing past events (e.g., a forest fire); as well as to measure the willingness to pay for avoiding the occurrence of future events (like a flood). Fourthly, the findings in this paper have fewer shortcomings regarding cultural heterogeneity, since it uses micro-data at the individual level collected from people within the same country. Therefore, results do not suffer from problems related to social and cultural differences (such as language, habits, etc.).

Method

This paper uses cross-section data taken from the 8th and 9th waves of the ESS at the regional level, by NUTS 2. The study uses only these two waves due to restrictions on the other datasets (environmental indicators).

The empirical analysis uses micro-data based only on individuals living in Portugal, which includes 2,325 observations, spread across five

⁶ The 8th wave of ESS refers to the years 2016/2017. However, 81.02% of observations were collected in 2017. The 9th wave occurred throughout the years 2018/2019.

regions (NUTS 2): Alentejo, Algarve, Center, Lisbon, and North.⁷ To capture the SWB level, rated on an 11-point scale in the survey, this study uses the answers to the following question: "Taking all things together, how happy would you say you are?".⁸ In those two waves, Figure 1 shows that the average happiness level in all Portuguese regions is higher than 7.3, the lowest one being in Alentejo (7.05) and the highest in Algarve (7.5).⁹

Figure 1: Happiness scores across Portuguese regions Source: ESS (2021)

The set of explanatory variables at the individual level includes demographic and socio-economic data (such as age, gender, self-reported level of health, and so forth). This selection has been found in previous studies in the SWB literature (Dolan et al., 2008). Following Ferrer-i-Carbonell & Gowdy (2007), this study also controls for individual personality traits.¹⁰

According to Figure 2, the Center region has the highest share of the burnt area of forest in 2017, while the Algarve reaches this position only in 2018. There are significant differences among regional levels of welfare as the ANOVA *F* test demonstrates, hence the null hypothese may be rejected, which indicates that the region where the individuals live may affect their happiness. To take advantage of the variation of environmental conditions at the subnational level across Portuguese regions, this study does not use any extra adjustments (such as average or weighting).

The air quality indicator was taken from the Portuguese Environment Agency (PEA, 2021). To investigate the effects of air pollution on SWB, this

⁷ ESS does not collect data in the Autonomous regions of Madeira and Azores. For sake of simplicity, the region "Lisbon" represents the "Metropolitan Area of Lisbon".

⁸ The answer ranges from 0 (extremely unhappy) to 10 (extremely happy).

⁹ The happiness scores per wave, separately, have similar values (with less than a 2% variation).

¹⁰ The full list with the descriptions of variables used in this paper is available upon request.

paper uses PM_{10} , which represents the inhalable particulates matter with a diameter of less than 10 micrometers (Ferreira & Moro, 2010; Welsch, 2002). Once inside the lungs, PM_{10} may cause inflammation, aggravating the condition of individuals with heart and lung diseases (EEA, 2021). Data on climate conditions are from the National Statistics Institute (NSI, 2021) and the Portuguese Institute of the Sea and the Atmosphere (PISA, 2021), and they follow the availability of data. The lowest and highest annual temperatures are shown in Celsius degrees (similar to Rehdanz & Maddison, 2005). They correspond to January or February (winter), and July or August (summer), respectively.

Figure 2: Burnt area of forest across Portuguese regions (in 1,000 ha): (a) Year of 2017; (b) Year of 2018. Source: ICNF (2021)

To assess the impact of forest fires on current well-being, this paper collects data about the burnt area from the 6th National Forest Inventory (NFI), provided by the Institute for the Conservation of Nature and Forests (ICNF, 2021). This report shows data of total burnt forest area (in thousands of hectares) divided by regions and years. Also, this study uses data from a forecast done by Rocha (2016) about vulnerable areas (in km²) and people living in vulnerable areas (number of residents) for the entire coastal zone of Portugal. Her study has predictions for three different scenarios (2025 – short run, 2050 – middle run, and 2100 – long run), divided by district. Following Figure 3, the sea level rise may generate a high number of vulnerable areas in Lisbon by 2025 (269 km²), whereas the North may be the region with more households living in vulnerable areas by 2100 (71,999 inhabitants).

It is worth highlighting that for these three variables related to EWEs, this paper aims to discuss if and how each one of them influences the current life satisfaction level of Portuguese citizens, so that their evolution over the years is beyond the scope of this paper.¹¹

¹¹ For this reason, in this study, they have a role similar to any environmental variable on the SWB, and therefore can be part of a cross-section analysis.

Concerning the macro variables, this paper applies the unemployment rate (Di Tella et al., 2003), GDP per capita (Ferreira et al., 2013), and population density (Cramer et al., 2004). Lastly, this paper uses the level of concern of respondents about climate change as a proxy to assess environmental awareness (Smyth et al., 2008).

Figure 3: Forecast: (a) vulnerable areas (km²); (b) people living in vulnerable areas. Source: Rocha (2016)

The personal SWB is a latent and unobserved variable, but it may be expressed by Equation (1). Therefore, the estimation may use the ordered probit model (Ambrey et al., 2014; Ferrer-i-Carbonell & Gowdy, 2007).¹² Following Maddala (1983), the $SWB_{i,j}^*$ associates and orders the levels of well-being, from 0 for "extremely unhappy" to 10 for "extremely happy". Ultimately, the latent SWB variable is:

$$SWB_{i,j}^* = \alpha + \omega_j + \delta \ln(Y_{i,j}) + \lambda X_{i,j} + \eta ENV_j + \theta REG_j + e_{i,j}$$
(1)

Where the $SWB_{i,j}^*$ is the subjective well-being of individual *i*, in region *j*; $\ln(Y_{i,j})$ is the natural log of the net household income; $X_{i,j}$ stands for a vector of demographic and socio-economic variables (age, gender, health, employment status, and so forth); ENV_j represents the environmental variables (air pollution and climate conditions); REG_j is a vector of characteristics of the region where the citizens live (economic and environmental awareness controls); and, $e_{i,j}$ is the usual error term. The term ω represents the region dummies, which controls unobserved heterogeneity at the regional level. Equation (1) is the base for the estimation of four different specifications, which were performed using the Stata 16.1 software (StataCorp., 2019). All of them aim to answer the first research question, using data from the 8th wave of the ESS, due to restrictions on the availability of data. The distribution of errors is normal to obtain an ordered probit.

¹² OLS may offer similar outcomes (Ferrer-i-Carbonell & Frijters, 2004).

For the second research question, this paper applies the two following equations:

$$SWB_{i,j}^* = \alpha + \delta \ln(Y_{i,j}) + \lambda X_{i,j} + \vartheta BUR_j + e_{i,j}$$
(2)

$$SWB_{i,j}^* = \alpha + \delta \ln(Y_{i,j}) + \lambda X_{i,j} + \rho FLO_j + e_{i,j}$$
(3)

In comparison to Equation (1), Equations (2) and (3) also consider the $\ln(Y_{i,i})$, and the vector $X_{i,i}$, but each equation adds an extra specific element. In Equation (2), BUR_i is a vector of total burnt forest area per region, including the years 2017 and 2018. While in Equation (3), FLO_i is a vector for forecasting vulnerable areas and the people who live in them, in three distinct scenarios (2025, 2050, and 2100). As aforementioned, this paper is interested in the evolution of the vectors BUR_i and FLO_i over the years. Therefore, it was not applied the subscript "t" for time since the coefficients represent the impact of those events on the current well-being of the Portuguese citizens. Equations (2) and (3) only use the data from the 9th wave of ESS since it may capture the full effects of the massive fires that happened in 2017, which generated more than 100 deaths and 500 thousand hectares of burnt area (encompassing all types of fires) in Portugal. Also, following previous studies (Osberghaus & Kühling, 2016; Sekulova & van den Bergh, 2013), this study considers only socio-economic and demographic variables, to isolate the effect of each EWE on SWB.

All equations are estimated by the Maximum Likelihood Method (Maddala, 1983). Also, models were estimated with robust cluster variance (Cameron & Miller, 2015), which respects the fact that the observations are independent between regions but not necessarily within.

For the valuation of infra-marginal changes of non-market goods, this paper computes the implicit willingness-to-pay (IWTP) for a one-unit change in each variable at the regional level (Ambrey et al., 2014; Welsch, 2006), using the partial derivatives of SWB with respect to PM₁₀, climate conditions, forest fires, or floods and the partial derivative of SWB with respect to net household income, for example, as follows:¹³

$$IWTP_{PM_{10}} = \frac{\frac{SWB_{i,j}^*}{\partial PM_{10j}}}{\frac{\partial SWB_{i,j}^*}{\partial Y_{i,j}}} = -\bar{y}\frac{\hat{\eta}}{\hat{\delta}}$$
(4)

¹³ Following Ambrey et al. (2014), the partial derivatives were taken from the likelihood of an individual reporting a happiness score of 10 (extremely happy).

where \bar{y} is the average value of household income. Even though ordinary least squares (OLS) has been widely used to estimate WTP (Cuñado & Gracia, 2013), an ordered probit may also be used for the same purpose since it offers a consistent estimation of the parameters (Frey et al., 2010). Moreover, other papers in the literature compute WTP estimates based on ordinal models (Ambrey et al., 2014).

Results

Table 1 shows the results from the specifications of Equation (1). Model 1 represents the standard SWB regression. Overall, the effects of socioeconomic and demographic variables are similar to those in the current literature (Dolan et al., 2008), with few variations throughout the models. Being a woman and having a higher income have a significant and positive association with welfare (Alesina et al., 2004; Welsch, 2002). Following previous studies, happiness is U-shaped with age (Ferreira et al., 2013). Students and retired people are less happy. Only those in very good health have a higher level of well-being, whereas bad health is associated with less life satisfaction (Cuñado & Gracia, 2013). The coefficient on education has a negative and statistically significant relationship with welfare (at the 1% level), and it indicates that highly-educated individuals distress more than others (Clark & Oswald, 1994).

People who are widowed report to be less satisfied with life (Diener et al., 1999). Regarding personal traits, three out of five have a statistically significant relationship with well-being (Layard, 2005). People who consider themselves more religious and more often meet others are happier; while those who feel insecure walking alone at night tend to be less happy. When controlling for socio-economic variables, a global significance test on region dummy coefficients indicates the existence of differences in the levels of self-reported SWB across regions. This finding implies that the place where the respondent lives matters. When comparing regions, the citizens from Centro are the most satisfied with life.

Next, Model 2 excludes regional dummy variables and includes air pollution and macro variables.¹⁴ The coefficient on the amount of air pollutants has a negative and statistical relationship with individual SWB at the 5% level (Ambrey et al., 2014), suggesting that, at the regional level, the harmful effects of PM_{10} emissions on health may reduce happiness.

¹⁴ The four models were built according to the multicollinearity restrictions.

Socio-economic characteristics Instance (p) Instance (p) Instance (p) Socio-economic characteristics 0.127 0.127 0.126 0.144 Gender 0.114** 0.114** 0.120** 0.144*** Main Control (0.047) (0.047) (0.045) (0.052) Age -0.069*** -0.069*** -0.071*** -0.073*** 0.011 (0.011) (0.011) (0.011) (0.011) (0.011) Age*2 6.15:-044*** 6.5:-044*** 6.5:-044*** 6.5:-044*** 6.5:-044*** Main activity Paid work -0.612 -0.619 -0.608 Paid work -0.612 -0.619 -0.608 Student -1.133** -1.108** -1.058** Student -0.428 (0.428) (0.445) (0.471) Unemployed seeking -0.588 -0.588 -0.519** -0.599** Lemployed seeking -0.539** -0.599** -0.535 (0.275) Housework -0.329 -0.329	Variables	Model (1)	Model (2)	Model (3)	Model (4)
Jobsense Jobsense Jobsense Jobsense Jobsense Ln(nome) 0.127 0.127 0.127 0.126 0.144*** Gender 0.114*** 0.10047 0.0045 0.0144*** Age -0.069*** -0.069*** -0.069*** -0.071*** 0.1011 Age*2 6.15e-04*** 6.37e-04*** 6.58e-04*** 6.58e-04*** Main activity -0.612 -0.612 -0.619 0.6420 Main activity -0.422 -0.612 -0.619 0.6420 Main activity -0.452 -0.6425 -0.4453 -0.6420 Main activity -0.412 -0.612 -0.619 -0.608 Main activity -1.133** -1.133** -1.08** -0.6428 Main activity -0.612 -0.612 -0.614 -0.607 Unemployed secking -0.589* -0.589* -0.599* -0.604** Main activity -0.529 -0.329 -0.328 -0.2278 -0.2678 -0.673 -0.666	Socio aconomic characteristics	Model (1)	Model (2)	Model (5)	Model (4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.217*	0.217*	0.220*	0.100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lii (income)	(0.217)	(0.217)	(0.126)	(0.199
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Condor	0.11/**	0.11/**	0.120	0 1/1/***
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gender	(0.047)	(0.047)	(0.045)	(0.052)
Age 0.009^{***} 0.0111 (0.011) $(1.35e-04)$ $(1.4e-04)$ Main activity 0.0428 (0.420) (0.421) (0.218) (0.421) (0.218) (0.421) (0.218) (0.611) (0.421) (0.218) (0.218) (0.218)		(0.047)	(0.047)	(0.045)	(0.052)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Age	-0.069***	-0.069***	-0.071***	-0.0/3***
Age ^A 2 6.15e-04*** (1.40e-04) 6.37e-04*** (1.35e-04) 6.58e-04*** (1.40e-04) Main activity Paid work 0.612 0.612 0.619 0.608 Student -1.133** (0.425) -1.133** (0.425) -1.108** (0.426) -1.058** (0.427) Student -1.133** (0.428) -1.058* (0.428) -0.616 -0.607 Unemployed seeking -0.588 -0.588 -0.616 -0.607 Retired -0.599** -0.589** -0.599** -0.608 Disabled -0.500 -0.529 -0.329 -0.329 Disabled -0.673 -0.673 -0.666 -0.700 Housework -0.329 -0.329 -0.344 -0.344 (0.054) (0.057) (0.577) (0.597) (0.589) Health		(0.011)	(0.011)	(0.011)	(0.011)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Age^2	6.15e-04***	6.15e-04***	6.37e-04***	6.58e-04***
Main activity 9aid work 0.612 0.612 0.619 0.0619 Paid work (0.426) (0.426) (0.427) (0.424) Student -1.133^{**} -1.133^{**} -1.108^{**} (0.428) Unemployed seeking -0.588 -0.588 -0.616 0.607 (0.428) (0.428) (0.447) (0.47) (0.47) Retired -0.599^{**} -0.599^{**} -0.599^{**} 0.604^{**} Disabled -0.500 -0.500 -0.502 -0.329 0.344 4.0344 Mousework -0.329 -0.329 -0.344 -0.4441 Others -0.673 -0.673 -0.666 -0.700 (0.57) (0.57) (0.57) (0.597) (0.597) (0.597) Health $Very good$ 0.294^{***} 0.290^{***} 0.283^{***} (0.172) (0.172) (0.171) (0.274) (0.755) Fair -0.037 -0.0775		(1.40e-04)	(1.40e-04)	(1.35e-04)	(1.46e-04)
Paid work -0.612 -0.612 -0.612 -0.608 (0.426) (0.426) (0.427) (0.428) Student -1.133^{**} -1.133^{**} -1.108^{**} (0.452) (0.452) (0.458) (0.645) Unemployed seeking -0.588 -0.589^{**} -0.599^{**} -0.604^{**} (0.428) (0.428) (0.445) (0.428) (0.445) $(0.628)^{**}$ Disabled -0.500 -0.500 -0.502 -0.528^{**} $(0.287)^{**}$ Housework -0.329 -0.329 -0.344 $(0.441)^{**}$ $(0.441)^{**}$ Others -0.673 -0.673 -0.666 -0.700 (0.057) (0.057) (0.597) (0.597) (0.597) Health -0.294^{***} 0.294^{***} 0.290^{***} 0.283^{***} (0.075) (0.075) (0.075) (0.075) (0.076) Fair -0.027^{***} 0.027^{***} -0.283^{****}	Main activity				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Paid work	-0.612	-0.612	-0.619	-0.608
Student -1.133** -1.108** -1.058** (0.452) (0.452) (0.453) (0.461) Unemployed seeking -0.588 -0.516 -0.607 (0.428) (0.428) (0.445) (0.477) Retired -0.589** -0.599** -0.509 (0.275) (0.275) (0.278) (0.268) Disabled -0.500 -0.500 -0.502 -0.325 (0.338) (0.338) (0.335) (0.28) Housework -0.673 -0.673 -0.666 -0.700 (0.597) (0.597) (0.597) (0.597) (0.597) Health - - 0.0075 (0.075) (0.075) Fair -0.077 -0.093 -0.120 (0.172) (0.171) (0.224) Very bad -0.785 -0.785 -0.779 -0.671 (0.490) (0.490) (0.497) -0.027*** -0.027*** Very bad -0.785 -0.785 -0.779 -0.671		(0.426)	(0.426)	(0.427)	(0.424)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Student	-1.133**	-1.133**	-1.108**	-1.058**
Unemployed seeking -0.588 -0.588 -0.616 -0.607 Retired (0.428) (0.428) (0.445) (0.447) Retired (0.275) (0.275) (0.278) (0.268) Disabled -0.500 -0.502 -0.521 Disabled (0.338) (0.338) (0.335) (0.287) Housework -0.229 -0.329 -0.344 -0.344 (0.438) (0.438) (0.433) (0.431) (0.441) Others -0.673 -0.666 -0.700 (0.597) (0.589) Health - - (0.597) (0.597) (0.589) -0.613 (0.054) (0.053) (0.050) Fair -0.007 -0.097 -0.093 -0.120 (0.075) (0.075) (0.075) (0.075) (0.075) (0.075) -0.858*** (0.172) (0.172) (0.171) (0.224) (0.427) (0.214) (0.214) (0.214) (0.214) (0.214) (0.214) (0.228) -0		(0.452)	(0.452)	(0.458)	(0.461)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Unemployed seeking	-0.588	-0.588	-0.616	-0.607
Retired -0.589^{**} -0.590^{**} -0.604^{**} Disabled 0.0275 (0.275) (0.278) (0.268) Disabled 0.0338 (0.338) (0.333) (0.335) (0.287) Housework -0.329 -0.329 -0.344 -0.344 (0.438) (0.438) (0.443) (0.441) Others -0.673 -0.666 -0.700 (0.597) (0.597) (0.597) (0.597) Health (0.054) (0.054) (0.054) (0.054) Very good 0.294^{***} 0.294^{***} 0.290^{***} 0.283^{***} (0.075) (0.075) (0.075) (0.075) (0.075) (0.075) Bad -0.71^{***} -0.771^{***} -0.776^{***} -0.83^{***} (0.172) (0.172) (0.172) (0.171) (0.224) Very bad -0.78^{**} -0.027^{**} -0.027^{**} -0.031^{**} (0.490) (0.494) <td></td> <td>(0.428)</td> <td>(0.428)</td> <td>(0.445)</td> <td>(0.447)</td>		(0.428)	(0.428)	(0.445)	(0.447)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Retired	-0.589**	-0.589**	-0.599**	-0.604**
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(0.275)	(0.275)	(0.278)	(0.268)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Disabled	-0.500	-0.500	-0.502	-0.355
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(0.338)	(0.338)	(0.335)	(0.287)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Housework	-0.329	-0.329	-0.344	-0.344
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(0.438)	(0.438)	(0.443)	(0.441)
Initial 0.057 0.057 0.057 0.0597 0.0597 Health (0.054) 0.0597 0.0597 0.0597 Very good 0.294*** 0.294*** 0.290*** 0.283*** (0.054) 0.0053 0.0053 0.053 0.053 Fair -0.097 -0.097 -0.093 -0.120 (0.075) 0.0075 0.0075 0.0076 Bad -0.771*** -0.771*** -0.76*** -0.835*** (0.172) (0.172) (0.171) (0.224) Very bad -0.785 -0.785 -0.799 -0.670 (0.490) (0.490) (0.497) (0.427) Education $(0.027)^{***}$ -0.027^{***} -0.021^{***} -0.021^{***} Marital status (0.09) (0.009) (0.009) (0.009) (0.010) Marital status (0.214) (0.214) (0.212) (0.204) Widowed -1.335^{***} -1.276^{***} (0.072) <	Others	-0.673	-0.673	-0.666	-0.700
Health (0007) (0007) (0007) (0007) Very good 0.294^{***} 0.294^{***} 0.290^{***} 0.283^{***} (0.054) (0.054) (0.053) (0.050) Fair -0.097 -0.097 -0.093 -0.120 (0.075) (0.075) (0.076) (0.076) Bad -0.771^{***} -0.776^{***} -0.835^{***} (0.172) (0.172) (0.171) (0.224) Very bad -0.785 -0.779 -0.670 (0.490) (0.490) (0.487) (0.427) Education -0.027^{***} -0.027^{***} -0.031^{***} (0.009) (0.009) (0.009) (0.010) Marital status Separated -0.336 -0.336 -0.311 -0.252 Divorced -0.258 -0.259 -0.284 (0.212) (0.204) Widowed -1.335^{***} -1.335^{***} -1.276^{***} 0.072^{***} None -0.131 <t< td=""><td>Culture</td><td>(0.597)</td><td>(0.597)</td><td>(0.597)</td><td>(0.589)</td></t<>	Culture	(0.597)	(0.597)	(0.597)	(0.589)
Very good $0.294***$ $0.294***$ $0.290***$ $0.283***$ Very good (0.054) (0.054) (0.053) (0.050) Fair -0.097 -0.097 -0.093 -0.120 (0.075) (0.075) (0.075) (0.076) (0.076) Bad $-0.771***$ $-0.771***$ $-0.76***$ $-0.835***$ (0.172) (0.172) (0.171) (0.224) Very bad -0.785 -0.779 -0.027 Very bad $-0.027***$ $-0.027***$ $-0.027***$ (0.09) (0.090) (0.090) (0.010) Marital status (0.09) (0.009) (0.009) (0.010) Marital status (0.494) (0.494) (0.484) (0.528) Divorced -0.258 -0.258 -0.259 -0.284 (0.072) (0.072) (0.078) (0.160) Widowed $-1.335***$ $-1.335***$ $-1.276***$ None 0	Health	((),(),()	(010)77	(010)77	(0.003)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Very good	0 294***	0 294***	0 290***	0 283***
$\begin{array}{c ccccc} \mbox{Fair} & (-0.097) & (-0.093) & (-0.120) \\ (0.075) & (0.075) & (0.075) & (0.076) \\ \mbox{Bad} & -0.771^{***} & -0.771^{***} & -0.776^{***} & -0.835^{***} \\ (0.172) & (0.172) & (0.171) & (0.224) \\ \mbox{Very bad} & -0.785 & -0.785 & -0.779 & -0.670 \\ (0.490) & (0.490) & (0.490) & (0.487) & (0.427) \\ \mbox{Education} & -0.027^{***} & -0.027^{***} & -0.027^{***} & -0.031^{***} \\ (0.009) & (0.009) & (0.009) & (0.009) & (0.010) \\ \mbox{Marital status} & & & & & \\ \mbox{Separated} & -0.336 & -0.336 & -0.311 & -0.252 \\ & & (0.494) & (0.494) & (0.484) & (0.528) \\ \mbox{Divorced} & -0.258 & -0.258 & -0.259 & -0.284 \\ & (0.214) & (0.214) & (0.212) & (0.204) \\ \mbox{Widowed} & -1.335^{***} & -1.335^{***} & -1.276^{***} \\ & & (0.072) & (0.072) & (0.078) \\ \mbox{None} & -0.131 & -0.131 & -0.130 & -0.116 \\ & & (0.152) & (0.152) & (0.151) & (0.144) \\ \mbox{Personality traits} & & & & & \\ \mbox{Social meets} & 0.077^{***} & 0.077^{***} & 0.075^{***} & 0.072^{***} \\ & & (0.008) & (0.008) & (0.009) & (0.011) \\ \mbox{Personal intimacies} & 0.013 & 0.013 & 0.013 \\ \mbox{Social activities} & 0.013 & 0.013 & 0.018 & -0.001 \\ & & (0.056) & (0.056) & (0.057) & (0.053) \\ \end{tabular}$	very good	(0.054)	(0.054)	(0.053)	(0.050)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fair	-0.097	-0.097	-0.093	-0.120
$\begin{array}{c ccccc} & (0.015) & (0.017) & (0.0224) & (0.0172) & (0.017) & (0.0221) & (0.027) & (0.027) & (0.0427) & (0.027) & (0.009) & (0.010) & 0& (0.009) & (0.009) & (0.009) & (0.009) & (0.010) & 0& (0.009) & (0.009) & (0.009) & (0.010) & 0& (0.009) & (0.009) & (0.010) & 0& (0.009) & (0.009) & (0.010) & 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0$	1 ali	(0.075)	(0.075)	(0.075)	(0.076)
Bad -0.771*** -0.771*** -0.767** -0.835*** (0.172) (0.172) (0.171) (0.224) Very bad -0.785 -0.779 -0.670 (0.490) (0.490) (0.490) (0.427) Education -0.027^{***} -0.027^{***} -0.027^{***} -0.027^{***} Separated -0.336 -0.336 -0.311 -0.252 (0.494) (0.494) (0.484) (0.528) Divorced -0.258 -0.258 -0.259 -0.284 (0.214) (0.214) (0.212) (0.204) Widowed -1.335^{***} -1.276^{***} (0.204) Widowed -0.131 -0.131 -0.130 -0.116 (0.152) (0.072) (0.078) $(0.072^{***}$ 0.072^{***} None -0.131 -0.131 -0.130 -0.116 (0.008) (0.008) (0.009) (0.011) Personality traits (0.008)	Ded	0.771***	0.771***	0.776***	0.825***
Very bad (0.112) (0.112) (0.112) (0.111) (0.224) Very bad -0.785 -0.785 -0.779 -0.670 (0.490) (0.490) (0.490) (0.427) Education -0.027^{***} -0.027^{***} -0.027^{***} -0.031^{***} Marital status (0.009) (0.009) (0.009) (0.009) (0.010) Marital status (0.494) (0.494) (0.494) (0.484) (0.528) Divorced -0.258 -0.258 -0.259 -0.284 (0.214) (0.214) (0.212) (0.204) Widowed -1.335^{***} -1.276^{***} (0.072) (0.078) None -0.131 -0.131 -0.130 -0.116 (0.152) (0.072) (0.078) $(0.072^{***}$ Social meets 0.077^{***} 0.075^{***} 0.072^{***} (0.008) (0.008) (0.009) (0.011) Personal intimacies <td< td=""><td>Bau</td><td>-0.771^{+++}</td><td>-0.771^{++++}</td><td>-0.776****</td><td>-0.853^{+++}</td></td<>	Bau	-0.771^{+++}	-0.771^{++++}	-0.776****	-0.853^{+++}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Marrie had	0.795	(0.172)	(0.171)	(0.224)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	very bad	-0.785	-0.785	-0.779	-0.670 (0.427)
Education $-0.02/***$ $-0.02/***$ $-0.02/***$ $-0.03/***$ (0.009)(0.009)(0.009)(0.009)(0.010)Marital status -0.336 -0.336 -0.311 -0.252 Separated -0.336 -0.336 -0.311 -0.252 (0.494)(0.494)(0.484)(0.528)Divorced -0.258 -0.258 -0.259 -0.284 (0.214)(0.214)(0.212)(0.204)Widowed -1.335^{***} -1.335^{***} -1.276^{***} (0.072)(0.072)(0.078) -0.116 (0.152)(0.151)(0.144)Personality traits 0.077^{***} 0.075^{***} 0.072^{***} Social meets 0.077^{***} 0.008 (0.009)(0.011)Personal intimacies 0.014 0.014 0.013 0.010 (0.022)(0.022)(0.021)(0.028)Social activities 0.013 0.013 0.018 -0.001		(0.490)	(0.+)0)	(0.467)	(0.427)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Education	-0.02/***	-0.02/***	-0.02/***	-0.031***
Marital status -0.336 -0.336 -0.311 -0.252 Separated (0.494) (0.494) (0.484) (0.528) Divorced -0.258 -0.258 -0.259 -0.284 (0.214) (0.214) (0.212) (0.204) Widowed -1.335^{***} -1.276^{***} (0.072) (0.078) None -0.131 -0.131 -0.130 -0.116 (0.152) (0.152) (0.151) (0.144) Personality traits 0.077^{***} 0.075^{***} 0.072^{***} (0.008) (0.008) (0.009) (0.011) Personal intimacies 0.014 0.014 0.013 0.010 (0.022) (0.022) (0.021) (0.028) 0.001 Social activities 0.013 0.013 0.018 -0.001		(0.009)	(0.009)	(0.009)	(0.010)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Marital status	0.000	0.007	0.011	0.070
$\begin{array}{c ccccc} (0.494) & (0.494) & (0.484) & (0.528) \\ (0.214) & (0.218) & (0.219) & (0.219) \\ (0.214) & (0.214) & (0.212) & (0.204) \\ \\ Widowed & -1.335^{***} & -1.335^{***} & -1.276^{***} \\ (0.072) & (0.072) & (0.078) \\ \\ None & -0.131 & -0.131 & -0.130 & -0.116 \\ (0.152) & (0.152) & (0.151) & (0.144) \\ \\ \hline Personality traits & & & \\ Social meets & 0.077^{***} & 0.077^{***} & 0.075^{***} & 0.072^{***} \\ & (0.008) & (0.008) & (0.009) & (0.011) \\ \\ \hline Personal intimacies & 0.014 & 0.014 & 0.013 & 0.010 \\ (0.022) & (0.022) & (0.021) & (0.028) \\ \\ Social activities & 0.013 & 0.013 & 0.018 & -0.001 \\ \hline & (0.056) & (0.056) & (0.057) & (0.053) \\ \hline \end{array}$	Separated	-0.336	-0.336	-0.311	-0.252
$\begin{array}{c ccccc} \text{Divorced} & -0.258 & -0.258 & -0.259 & -0.284 \\ (0.214) & (0.214) & (0.212) & (0.204) \\ \hline \text{Widowed} & -1.335^{***} & -1.335^{***} & -1.276^{***} \\ (0.072) & (0.072) & (0.078) \\ \hline \text{None} & -0.131 & -0.131 & -0.130 & -0.116 \\ (0.152) & (0.152) & (0.151) & (0.144) \\ \hline \textit{Personality traits} & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & &$		(0.494)	(0.494)	(0.484)	(0.528)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Divorced	-0.258	-0.258	-0.259	-0.284
Widowed -1.335^{***} -1.335^{***} -1.276^{***} (0.072) (0.072) (0.078) None -0.131 -0.131 -0.130 -0.116 (0.152) (0.152) (0.151) (0.144) Personality traits (0.008) (0.077*** 0.075^{***} 0.072^{***} Social meets 0.077^{***} 0.075^{***} 0.072^{***} (0.009) (0.011) Personal intimacies 0.014 0.014 0.013 0.010 (0.022) (0.022) (0.021) (0.028) Social activities 0.013 0.013 0.018 (0.056) (0.056) (0.057) (0.053)		(0.214)	(0.214)	(0.212)	(0.204)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Widowed	-1.335***	-1.335***	-1.276***	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.072)	(0.072)	(0.078)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	None	-0.131	-0.131	-0.130	-0.116
Personality traits Social meets 0.077*** 0.077*** 0.075*** 0.072*** (0.008) (0.008) (0.009) (0.011) Personal intimacies 0.014 0.014 0.013 0.010 (0.022) (0.022) (0.021) (0.028) Social activities 0.013 0.013 0.018 -0.001 (0.056) (0.056) (0.057) (0.053)		(0.152)	(0.152)	(0.151)	(0.144)
Social meets 0.077*** 0.077*** 0.075*** 0.072*** (0.008) (0.008) (0.009) (0.011) Personal intimacies 0.014 0.014 0.013 0.010 (0.022) (0.022) (0.021) (0.028) Social activities 0.013 0.013 0.018 -0.001 (0.056) (0.056) (0.057) (0.053)	Personality traits				
(0.008) (0.008) (0.009) (0.011) Personal intimacies 0.014 0.014 0.013 0.010 (0.022) (0.022) (0.021) (0.028) Social activities 0.013 0.013 0.018 -0.001 (0.056) (0.056) (0.057) (0.053)	Social meets	0.077***	0.077***	0.075***	0.072***
Personal intimacies 0.014 0.014 0.013 0.010 (0.022) (0.022) (0.021) (0.028) Social activities 0.013 0.013 0.018 -0.001 (0.056) (0.056) (0.057) (0.053)		(0.008)	(0.008)	(0.009)	(0.011)
(0.022) (0.022) (0.021) (0.028) Social activities 0.013 0.013 0.018 -0.001 (0.056) (0.056) (0.057) (0.053)	Personal intimacies	0.014	0.014	0.013	0.010
Social activities 0.013 0.013 0.018 -0.001 (0.056) (0.056) (0.057) (0.053)		(0.022)	(0.022)	(0.021)	(0.028)
(0.056) (0.056) (0.057) (0.053)	Social activities	0.013	0.013	0.018	-0.001
		(0.056)	(0.056)	(0.057)	(0.053)

Table 1: Environmental quality and SWB across Portuguese regions¹

Table 1 - Environmental Quality and SWB across Portuguese regions (continued)¹

Variables	Model (1)	Model (2)	Model (3)	Model (4)
Personality traits (contined)				
Religious self-judgment	0.070***	0.070***	0.070***	0.073***
	(0.008)	(0.008)	(0.008)	(0.011)
Sense of insecurity	-0.179**	-0.179**	-0.182**	-0.204**
	(0.089)	(0.089)	(0.088)	(0.081)
Size of settlement	-0.043 (0.038)	-0.043 (0.038)	-0.035 (0.041)	-0.046 (0.034)
Region				
Algarve	-0.233***			
	(0.011)			
Centro	0.057* (0.034)			
Lisboa	-0.004 (0.020)			
Alentejo	-0.077*** (0.024)			
Air Pollution - PM ₁₀		-0.052**		
		(0.021)		
Macro variables				
GDP per capita		-3.70e-04*** (1.28e-04)		
Ln (unemployment rate)		-2.21***		
De sue la tiene de sue iter		(0.802)		
Population density		(0.003***)		
Climate conditions				
Hottest annual temperature			0.272*	
			(0.150)	
Lowest annual temperature			0.222**	
			(0.110)	
Precipitation			0.004**	
—			(0.002)	
Environmental awareness				0.098*** (0.014)
IWTP				
Pollution (PM ₁₀)		€ 381		
Hottest annual temperature			€ (1,939)	
Lowest annual temperature			€ (1,585)	
Log likehood	-1,155	-1,155	-1,156	-1,131
Pseudo R ²	0.0433	0.0433	0.0429	0.0439

Note: Standard errors in parentheses. Significance: *** p<0.01; ** p<0.05; * p<0.1. The intercepts are not shown. 1. Due to multicollinearity restrictions, several models are estimated. Omitted case: variable "widowed" in Model 4.

Turning to macro variables, the coefficient on GDP per capita is negative and statistically significant. Despite being uncommon, there is evidence of this result in the literature (Ding et al., 2021; Welsch & Kühling, 2018). One possible explanation for this intriguing result is the simultaneous control for income at the individual level and GDP per capita, where the coefficient for the second suggests playing a role as comparison income (Clark et al., 2008).¹⁵

Following the usual findings, the unemployment rate at the regional level also affects happiness negatively (Di Tella et al., 2001). However, population density has a positive and statistically significant effect on welfare at the 1% level, suggesting a beneficial effect coming from governmental efforts devoted to reducing the negative migratory balance.¹⁶

In Model 3, Table 1, the coefficient on the hottest annual temperature is positive and significant at a 10% level, indicating that warmer days increase happiness in summer. The coefficient on the lowest annual temperature is also positive and significant at a 5% level, suggesting the preference towards a warmer climate in winter. Ferreira & Moro (2010) find similar results for Ireland. Precipitation tends to increase happiness in Portugal, which indicates a possible correlation between rain and scenic beauty (Brereton et al., 2008). Lastly, in Model 4, Table 1, serving as a proxy to environmental awareness, the level of concern about climate change has a positive effect on well-being, which may express a kind of affiliation with nature (Kellert, 2008; Wilson, 1984).

Table 2 shows the regression results for Equations (2) and (3), which aim to answer the second research question. Socio-economic and demographic variables show similar results. In what the burnt forest area is concerned (Model 1 – second column), there is a negative relationship with SWB in 2018, which follows the previous results in the happiness literature, indicating that forest fires have a negative influence on welfare. Since the largest part of the Portuguese population lives in urban areas, such result suggests that forest fires have lasting psychological or physical impacts, probably due to the high frequency of health problems and negative emotional status among those individuals who experienced such events (Sekulova & van den Bergh, 2013).

The results from Equation (3) are set forth in columns 3 and 4 of Table 2. The coefficient on vulnerable areas in 2100 has a positive and statistically relationship with well-being at the 5% level, suggesting that in the long run, people may (possibly) have time for adjusting their lives as well as the affected economic activities, in face of the expected changes. On the other hand, the coefficients of people living in vulnerable areas show that a forecast of an increase in the short (2025) or middle run (2050) may be understood as a threat since it tends to reduce current well-being. One possible explanation for this result is that the Portuguese citizens fear not being able to make all the necessary adjustments in the short and middle run, in a way to avoid the

¹⁵ Clark & Oswald (1996) show that comparison income has a negative and statistically significant impact on workers' life satisfaction levels.

¹⁶ In Portugal, the migratory movement has generated the emptying of small towns and villages in the country's most remote areas (NSI, 2021).

damage coming from sea level rise. Thus, the paper's key finding is that at the regional level, both past and (possible) future EWEs may decrease the current level of welfare, when these events are seen as a threat to human life. **Table 2**: EWEs and SWB across Portuguese regions¹

Variable	Area of burnt forest – Equation 2	Vulnerable areas and people living therein – Equation 3	
_	Model (1)	Model (1)	Model (2)
Socio-economic and			
demographic variables Extreme Weather Events (EWE)	Included	Included	Included
Burnt area of forest - Past			
Year 2017	-1.50e-04 (3.72e-04)		
Year 2018	-0.015*** (0.005)		
Floods and its effects - Future			
Vulnerable areas			
Ln (Year 2025)		-0.315 (0.198)	
Ln (Year 2050)		0.073 (0.382)	
Ln (Year 2100)		0.343** (0.142)	
People living in vulnerable areas			
Ln (Year 2025)			-1.383** (0.705)
Ln (Year 2050)			-3.692* (2.196)
Ln (Year 2100)			-2.182 (1.430)
IWTP Burnt area of forest – Year 2018	€ 263		
Vulnerable area – Year 2100 People living in vulnerable areas – Year 2025		€ (5,624)	€ 23 997
Log likehood	-1.409	-1,407	-1.407
Pseudo R ²	0.0636	0.0652	0.0649

Note: Standard errors in parentheses. Significance: *** p<0.01; ** p<0.05; * p<0.1. The intercepts are not shown.

1. Due to multicollinearity restrictions, several models are estimated. The full version of these estimations are available under request.

Lastly, at the bottom of Tables 1 and 2 one can see the monetary valuations of non-marketable goods, such as air pollution, climate conditions, and EWEs. First, the estimations indicate that an individual has an IWTP of 381 euros per year to decrease one kton of PM_{10} annual emissions. Just to compare with previous results, respecting the differences for each study, Cuñado & Gracia (2013) find monetary valuations to the Spanish case of 325 euros, for the 4th wave of ESS. It is worth noting that in the case of Spain, the

citizens were willing to pay for one day less per year that exceeds the PM_{10} index (50 µg/m³), whereas the present study assesses the decrease in one kton emission. Thus, each study applies different measurement units. For the hottest annual temperature, the subjects are likely to gain 1,939 euros from an increase of one degree Celsius in the summer, and 1,585 euros in the winter. This result makes sense for Portugal, due to the high weight of the tourism activities on its GDP (mainly in the coastal zone).

Concerning the EWEs, the IWTP in 2018 for the burnt forest area is equal to 263 euros, which means that citizens are willing to pay 263 euros per a thousand hectares reduction in the burnt forest area. Although, this amount is low if one considers all the negative effects that forest fires may cause to citizens as well as to the whole economy. In the short run (2025), the coefficient on people living in vulnerable areas shows an IWTP of around 24,000 euros for having one less person who lives in (future) vulnerable areas due to sea-level rise. Such a high amount might be an expression of the level of concern for each human being that will be directly affected by climate change.

Discussion

This paper applies a set of explanatory variables for analyzing the effects of air pollution, climate conditions, and the occurrence of EWEs across Portuguese regions. Among its findings, there is a clear difference in happiness levels between regions, indicating that the place where the individuals live may affect their well-being. This is relevant since environmental conditions may influence subjective well-being, even though individuals are not consciously aware of the cause-effect relationship (Welsch & Kühling, 2009). Following previous results (Ambrey et al., 2014; Ferreira et al., 2013), when using regional data, the findings in this paper show a negative impact of PM_{10} emissions on life satisfaction.

This research also offers a contribution to ecological economics by providing an assessment of environmental quality across Portuguese regions, by using data from the ESS survey, air pollution indicators, and climate conditions. Moreover, this is the first paper devoted to the Portuguese case, combining those environmental factors at the NUTS 2 level along with individual socio-economic and demographic characteristics. The results obtained are in line with the SWB literature, offering a suitable frame for the environmental policy in Portugal.

Regarding EWEs, namely forest fires and floods, most coefficients show a negative impact on welfare, regardless of whether they happened in the past or if it is just a simple forecast. In addition, the IWTP suggests that households are prone to give up a part of their income to avoid those EWEs effects. Possibly, the influence, at the regional level and for a single country, of past and future EWEs on current well-being is the key finding of this paper, indicating that not only experienced events, but also predicted events, may disturb individuals' mental health. In what forecasted floods are concerned, another interesting finding is that only expected events in the short and middle run negatively affect the current happiness level, suggesting a fear of not being able to handle the consequences of climate change on time. Ferrer-i-Carbonell & Gowdy (2007) also claim that the "preoccupation itself" can reduce individual well-being.

Conclusion

Assessments of environmental quality at the regional level contribute to improving the understanding of life satisfaction by taking into account the specific characteristics of each region. The paper's findings may be useful to the Portuguese policymakers by providing elements to build public policies suitable to balance the negative impacts coming from climate change, its effects on quality of life, and economic costs. For instance, in the case of the increase of people living in vulnerable areas due to the sea-level rise, the ideal solution may encompass the removal of these households from their homes, which implies public spending (when the Government assumes this responsibility).

Knowing how the environment influences welfare at a more disaggregated spatial level also allows for the conception of public policies oriented at mitigating economic restrictions related to natural regional features while respecting the differences between regions. Equally, evidence about the bad effects of low air quality is useful to inspire governmental initiatives toward the reduction of air pollution at the Portuguese regional level, which may simultaneously promote higher environmental quality and improvements in welfare.

Future research may expand this analysis in several ways. First, by adding data from the autonomous regions of Azores and Madeira (currently not covered by ESS) may offer assessments based on a higher level of heterogeneity, since these are insular regions, with different features in comparison with the mainland. Second, considering data at a more spatial disaggregated level (such as NUTS 3) may highlight the distinctions across districts, even for a small country like Portugal. For example, a dummy variable might identify those areas with a coastal zone, high altitudes, or better transport infrastructure. Third, the application of surveys in areas with a higher frequency of forest fires might allow us to better understand the extension to which EWEs lead to reductions in the happiness level locally. This type of analysis may map in detail the most affected areas and help to improve the efficiency of public policies.

References:

- Alesina, A., Di Tella, R., & MacCulloch, R. (2004). Inequality and happiness: Are Europeans and Americans different? Journal of Public Economics. Vol. 88, 2009–2042. https://doi.org/10.1016/j.jpubeco.2003.07.006
- Ambrey, C.L., Fleming, C.M. & Chan, A.Y.C. (2014). Estimating the cost of air pollution in South East Queensland: An application of the life satisfaction non-market valuation approach. Ecological Economics. Vol. 97, 172–181. https://doi.org/10.1016/j.ecolecon.2013.11.007
- 3. Antunes, C.M.C. (2016). Rising Average Sea Level in Cascais, revision of the current rate. 4th Journey of Hydrographic Engineering, Lisbon, 21-23. https://doi.org/10.1175/2010JCLI4045.1
- 4. Apergis, N. (2018). The Impact of Greenhouse Gas Emissions on Personal Well-Being: Evidence from a Panel of 58 Countries and Aggregate and Regional Country Samples. Journal of Happiness Studies. Vol. 19, 69-80. https://doi.org/10.1007/s10902-016-9809-y
- Brereton, F.; Clinch, J.P. and Ferreira, S. (2008). Happiness, Geography and the Environment. Ecological Economics. Vol. 56, 386-396. https://doi.org/10.1016/j.ecolecon.2007.07.008
- Cameron, A. and Miller, D. (2015). A practitioner's guide to clusterrobust inference. Journal of Human Resources. Vol. 50 (2), 317–372, 2015.
- Clark, A.E., Frijters, P. and Shields, M. (2008). Relative income, happiness and utility: an explanation for the Easterlin paradox and other puzzles. Journal of Economic Literature. Vol. 46, Issue 1, 95– 144. https://doi.org/10.1257/jel.46.1.95
- 8. Clark, A.E. and Oswald, A.J. (1994). Unhappiness and unemployment. Economic Journal. Vol. 104, 648–659. https://doi.org/10.2307/2234639
- Clark, A.E. and Oswald, A.J. (1996). Satisfaction and comparison income. Journal of Public Economics. Vol. 61, 359–381. https://doi.org/10.1016/0047-2727(95)01564-7
- Cramer, V., Torgersen, S. and Kringlen, E. (2004). Quality of life in a city: the effect of population density. Social Indicators Research. Vol. 69, 103–116. https://doi.org/10.1023/B:SOCI.0000032663.59079.0b
- 11. Cuñado, J. and Gracia, F.P. (2013). Environment and Happiness: New Evidence for Spain. Social Indicators Research. Vol. 112, 549-567. https://doi.org/10.1007/s11205-012-0038-4
- 12. Di Tella, R., MacCulloch, R.J. and Oswald, A.J. (2001). Preferences over Inflation and Unemployment: Evidence from Surveys of

Happiness. The American Economic Review. Vol. 91, 335–341. https://doi.org/10.1257/aer.91.1.335

- 13. Di Tella, R., MacCulloch, R. J. and Oswald, A. (2003). The macroeconomics of happiness. The Review of Economics and Statistics. Vol. 85, 809–827. https://doi.org/10.1162/003465303772815745
- 14. Diener, E. (2009). Subjective well-being. In: Diener, E. (Ed.), The science of well-being: The collected works of Ed Diener. Social indicators research series. Vol. 37. Springer Science + Business Media. https://doi.org/10.1007/978-90-481-2350-6
- Diener, E., Suh, E.M., Lucas, R.E. and Smith, H.L. (1999). Subjective well-being: three decades of progress. Psychological Bulletin. Vol. 125, 276–302. https://doi.org/10.1037/0033-2909.125.2.276
- 16. Ding, J., Salinas-Jiménez, J. and Salinas-Jiménez, M. del M. (2021). The impact of income inequality on subjective well-being: the case of China. Journal of Happiness Studies. Vol. 22, 845–866. https://doi.org/10.1007/s10902-020-00254-4
- 17. Dolan, P., Peasgood, T. and White, M. (2008). Do we really know what makes us happy? A review of the economic literature on the factors associated with subjective well-being. Journal of Economic Psychology. Vol. 29(1), 94–122. https://doi.org/10.1016/j.joep.2007.09.001
- 18. EEA European Environment Agency. (2021). Air quality index. Available in: https://www.eea.europa.eu/themes/air/air-quality-index. Access in: March/2021.
- 19. ESS European Social Survey. (2021). NSD Norwegian Centre for Research Data, Norway – Data Archive and distributor of ESS data for ESS ERIC. Available in:</https:// https://www.europeansocialsurvey.org/>. Access in: February/2021.
- 20. Ferreira, S., Akay, A., Brereton, F., Cuñado, J. and Martinsson, P. (2013). Life satisfaction and air quality in Europe. Ecological Economics. Vol. 88, 1–10. https://doi.org/10.1016/j.ecolecon.2012.12.027
- Ferreira, S. and Moro, M. (2010). On the use of subjective well-being data for environmental valuation. Environmental and Resource Economics. Vol. 46(3), 249–273. https://doi.org/10.1007/s10640-009-9339-8
- 22. Ferrer-i-Carbonell, A. and Frijters, P. (2004). How important is methodology for the estimates of the determinants of happiness? Economic Journal. Vol. 114, 641–659. https://doi.org/10.1111/j.1468-0297.2004.00235.x

- 23. Ferrer-i-Carbonell, A. and Gowdy, J.M. (2007). Environmental Degradation and Happiness. Ecological Economics. Vol. 60, 509-516. https://doi.org/10.1016/j.ecolecon.2005.12.005
- 24. Frey, B., Luechinger, S. and Stutzer, A. (2010). The life satisfaction approach to environmental valuation. Ann. Rev. Resour. Econ. 2, 139–160.
- 25. Frey, B.S. and Stutzer, A. (2002). What can economists learn from happiness research? Journal of Economic Literature. Vol. 40, 402–435.
- 26. ICNF Institute for the Conservation of Nature and Forests. (2021). Available in: https://www.incf.pt/. Access in: March/2021.
- 27. IPCC: Intergovernmental Panel on Climate Change (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 p.
- Kellert, S.R. (2008). In: Dimensions, elements, and attributes of Biophilic design. Kellert, S.R., Heerwagen, J.H. and Mador, M.L. (Eds.), Biophilic Design: The theory, Science, and Practice of Bringing Buildings to Life. John Wiley and Sons, New Jersey, U.S.A.
- 29. Layard, R. (2005). Happiness: Lessons from a new science. London: Allen Lane.
- 30. Luechinger, S. (2009). Valuing Air Quality Using the Life Satisfaction Approach. The Economic Journal, 119 (536), 482–515. https://doi.org/10.1111/j.1468-0297.2008.02241.x
- MacKerron, G. and Mourato, S. (2009). Life satisfaction and air quality in London. Ecological Economics. Vol. 68, 1441-1453. https://doi.org/10.1016/j.ecolecon.2008.10.004
- 32. MacKerron, G. and Mourato, S. (2013). Happiness is greater in natural environments. Global Environmental Change. Vol. 23, 992-1000. https://doi.org/10.1016/j.gloenvcha.2013.03.010
- 33. Maddala, G. (1983). Limited Dependent and Qualitative Variables in Econometrics. New York, Cambridge University Press.
- 34. NASA: National Aeronautics and Space Administration (2021). Global Climate Change. Vital signs of the planet, Sea Level. Available in: < https://climate.nasa.gov/vital-signs/sea-level/> Acess in: March/2021.
- 35. National Statistics Institute NSI. (2021). Available in:</https://www.ine.pt/>. Access in: March/2021.

- 36. Osberghaus, D. and Kühling, J. (2016). Direct and indirect effects of weather experiences on life satisfaction – which role for climate change expectations? Journal of Environmental Planning and Management. Vol. 59, n. 12, 2198-2230. https://doi.org/10.1080/09640568.2016.1139490
- 37. Portuguese Environment Agency PEA. (2021). Available in:</https://www.apambiente.pt/>. Access in: March/2021.
- 38. Portuguese Institute of the Sea and the Atmosphere PISA. (2021). Available in:Available in://www.ipma.pt/>. Access in: March/2021.
- 39. Rehdanz, K. and Maddison, D. (2005). Climate and Happiness. Ecological Economics. Vol. 52, 111-125. https://doi.org/10.1016/j.ecolecon.2004.06.015
- 40. Rocha, C. S. (2016). Study and analysis of coastal vulnerability in the face of scenarios of rising average sea level and extreme events due to the effect of climate changes. 112 p. Dissertation. Supervisors: Antunes, C.M.C. and Catita, C.M.S. Master in Geographic Engineering, Faculty of Sciences, Department of Geographic Engineering, Geophysics and Energy, University of Lisbon, Lisbon. Available in:<https://repositorio.ul.pt/handle/10451/2632>. Access in: March/2021.
- 41. Sekulova, F. and van den Bergh, J.C.J.M (2013). Climate change, income and happiness: An empirical study for Barcelona. Global Environmental Change. Vol. 23, 1467–1475. https://doi.org/10.1016/j.gloenvcha.2013.07.025
- 42. Smyth, R., Mishra, V. and Qian, X. (2008). The Environment and Well-Being in Urban China. Ecological Economics. Vol. 68, 547-555. https://doi.org/10.1016/j.ecolecon.2008.05.017
- 43. Soukiaviz, E. and Ramos, S. (2016). The Structure of Subjective Well-Being and Its Determinants: A Micro-Data Study for Portugal. Social Indicators Research. Vol. 126, 1375–1399. https://doi.org/10.1007/s11205-015-0938-1
- 44. StataCorp. (2019). Stata Statistical Software: Release 16. College Station, TX: StataCorp LL
- 45. Veenhoven, R. (1997). Advances in understanding happiness. Revue Québécoise de Psychologie. Vol. 18, 29-74.
- 46. Welsch, H. (2002). Preferences over Prosperity and Pollution: Environmental Valuation based on Happiness Surveys. Kyklos. Vol. 55, 473-494. https://doi.org/10.1111/1467-6435.00198
- Welsch, H. (2006). Environment and happiness: Valuation of air pollution using life satisfaction data. Ecological Economics. Vol. 58, 801-813. https://doi.org/10.1016/j.ecolecon.2005.09.006

- Welsch, H. and Kühling, J. (2009). Using happiness data for environmental valuation: Issues and applications. Journal of Economic Surveys. Vol. 23, 385–406. https://doi.org/10.1111/j.1467-6419.2008.00566.x
- 49. Welsch, H. and Kühling, J. (2018). How green self-image is related to subjective well-being: Pro- Environmental Values as a Social Norm. Ecological Economics. Vol. 149, 105–119. https://doi.org/10.1016/j.ecolecon.2018.03.002
- 50. Wilson, E.O. (1984). Biophilia. Harvard University Press, Massachusetts.