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Abstract 

The cost of transporting mined material in an underground mine is 
major. This cost typically represents between 50 to 60 percent of a mine’s 
total operating costs. The problem of dispatching trucks in an underground 
gold mine is, therefore, of major economic importance and warrants the use 
of a decision support model.  The developments of a realistic decision-
support model for the dispatching problem in an underground gold mine is 
addressed in this paper.  The problem must address multiple conflicting 
objectives and therefore a goal programming model was formulated.  The 
model was applied to a case study, the Red Lake underground gold mine, in 
Ontario, Canada. The results showed major improvements in meeting the 
multiple objectives of this problem versus a single objective model. The 
results illustrate the flexibility that the dispatching problem (in underground 
gold mines) yields when solved for multiple objectives using a goal 
programming model. 

 
Keywords: Truck dispatching problem, underground mine, goal 
programming. 
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Introduction 
The movement of mined ore in an underground mine typically 

represents between 50 to 60 percent of a mine’s total operating costs 
(Newman et al. 2010, Fadin et al. 2017).  The dispatching of trucks in an 
underground mine is, therefore, a daily decision of major economic 
consequence and warrants the use of a decision support model.  In the 
dispatching problem addressed in this paper, a set of trucks must be assigned 
to a set of trips to a set of mining levels-- each containing different grades of 
ore. The assignment of trucks must be made such that four objective are met: 
transportation costs are minimized, the ounces of gold retrieved are 
maximized, the number of shovels used is minimized and the total number of 
trucks required is minimized—for a given shift.  Given that this problem has 
multiple conflicting objectives, a goal programming model is developed and 
tested in this paper.  The objective of this paper is therefore to formulate and 
evaluate a goal programming model of the truck-dispatching problem for 
underground gold mines.  

The paper is structured as follows: first, a review of the literature 
relating to this dispatching problem is given.  Second, the problem modeled 
is defined (with a conceptual figure).  Third, the mathematical formulation of 
the model is presented.  Fourth, a description of the case study on which the 
model is to be evaluated, the Red Lake gold mine in Ontario, Canada, is 
presented.  Finally, the Results of the model are presented, and the merits of 
the model are observed and evaluated in the Discussion. 
 
Previous Studies 

The truck dispatching problem in the mining industry has received 
minor but consistent attention by researchers specializing in optimization 
models. The problem has received wider attention for above-ground mines 
than for below-ground mines.  Indeed, there are few studies that have been 
made for truck-dispatching in underground ground mines (Mahdi et al. 
2014). Newman et al. (2010), in their review paper on operations research 
models used in mining, observed that, rather than one universal dispatching 
model for the mining industry, there exists a great diversity of models for 
this problem.  This is because the different types of mine structures require 
different objective functions and different constraints.  Hence, there is no 
universal model of the truck dispatching problem (in either above- or below-
ground mining) given the great diversity of mines structures (Newman et al. 
2010). In this review, therefore, we will examine the diversity of 
optimization models that have been recently formulated for the truck 
dispatching problem in both above-ground and underground mines.  
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  Ercelebi et al. (2009) used a linear programming model to improve 
the truck-to-shovel dispatching system and established a method of 
accurately determining the optimal number of trucks. They applied the single 
objective model to an open-pit coal mine in Turkey.  Nehring et al. (2010) 
formulated a mixed integer programming model and applied it to a 
transportation system that used trucks and shovels in an underground mine in 
order to maximize net revenue within a shift. Song et al. (2013) formulated a 
linear programming model to solve the truck and shovel dispatch problem in 
an open-pit mine.  The objective of the model was to maximize the total 
transportation (in tonnes) of ore and waste material in a given shift.  Zhang et 
al. (2015) presented a new model of the truck dispatching problem in an 
open-pit iron mine by using integer programming to represent the optimal 
number of discrete trips for trucks to make between loading sites and 
dumping sites in one shift. Their results showed reduced transportation 
operating costs of 15%.  Schulze et al. (2017) used a mixed integer 
programming model to optimize the objective function of maximizing the 
total material moved by a set of loader-trucks in an underground potash 
mine. 

Simulation-based optimization was recently used by Ozdemir et al. 
(2019) to optimize a truck/shovel dispatching problem in an open-pit mine.  
The objective function of the optimization model was to maximize the total 
material moved in a shift.   Wang et al. (2020) recently used a Genetic 
Algorithms Model (GAM) to solve the truck dispatching problem for an 
underground mine in China. Their model had the objective to maximize 
production at the shift level (tonnes moved per shift) subject to constraints on 
the number of loading locations available, the capacity of the trucks, the 
material quantities available in each level, and the distance between loading 
levels. The results showed that the optimization model improved operational 
productivity 8%.    

Based on our literature review, we can identify the following trends: 
a) many researchers have shown that the use of a truck dispatching 
optimization model has improved the shift-level productivity in their mines; 
b) no researchers have (to our knowledge) formulated a goal programming 
model for this problem in underground gold mines.  Hence, the research 
presented in this paper is an innovation on a problem of major economic 
consequence in underground gold mines. 
 
Methods 

The description of the methods used in this research has three parts.  
First, the problem modeled is defined and illustrated with a conceptual 
figure.  Second, the new mathematical formulation of the goal programming 
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model for dispatching trucks in an underground gold mine is presented.  
Third, the data acquired from the case study, Red Lake’s underground gold 
mine in Ontario, Canada, are described. 
Definition of the Problem Modeled 

A conceptual figure (of a small problem instance) of the dispatching 
problem modeled in this paper in presented in Figure 1 (below).  In Figure 1, 
first observe that there are 6 levels in the problem instance.  These represent 
levels in the underground gold mine, and each level supplies gold ore of a 
different grade (in grams per tonne) and a fixed number of tonnes of ore are 
available per shift.  Second, observe the elevator.  The elevator is the point of 
demand for gold ore.  It carries gold ore to the surface where there is a 
target-demand in ounces of gold per day.  The elevator also has a capacity 
constraint on the number of tonnes of gold ore it can move in one shift.  
Third, observe the distances between the 6 levels and the elevator.  The 
distance and the slope of the path between each supply point and the elevator 
determines the transportation cost—all of which are different for each level.  
Fourth, observe that levels 1 and 3 have a shovel assigned.  This means that, 
in the particular solution illustrated Figure 1, levels 1 and 3 have been 
selected as supply points to meet the shift’s demand. If a level has been 
selected, then it is assigned a shovel. There is a constraint on and cost for the 
number of shovels that can be used for any given shift.  Finally, observe that, 
for each level selected, there is also a truck assigned.  Trucks assigned can be 
of different sizes and each size can move a fixed number of tonnes per trip.    

 
Figure 1. Conceptual figure of the problem modeled 

 
The problem to be solved is: assign a number of truck-trips (for each 

truck size) such that the following 4 goals can be met in a shift: 
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1. the gold goal (ounces per shift); 
2. the goal for transportation cost ($); 
3. the goal for the number of shovels; and 
4. the goal for the number of trucks and truck sizes used. 

Since these four goals can conflict with one another, the problem is 
modeled as a goal programming model.  The model is to be used not only to 
find the optimally satisfying solution for the decision-maker, but also to 
explore and quantify trade-offs to support the decision made. 
  
Mathematical Formulation the Model  

The mathematical formulation of the goal programming model for 
dispatching trucks in an underground gold mine is presented below. 

 
Indices and Sets 
i, I  = index and set of levels within the mine. 
j, J = index and set of truck-types, by capacity.   
Parameters 
aij = fraction of total shift time (C) required for one complete truck-trip assigned to 

level i using truck type j. 
bj = number of minutes required to load truck type j. 
C = total number minutes in a shift. 
M = arbitrarily large number. 
ej = capacity of truck type j (tonnes). 
D = total demand for gold ore per shift at the elevator (tonnes). 
Si = supply of gold ore at level i, during the shift (tonnes).   
cij = cost of trip needed for transporting one truckload of gold ore from level i using 
truck j.  
qi = grams per tonne of gold ore at level i. 
G_ta = goal value for transportation cost ($) 
G_tk = goal value for number of trucks required. 
G_s = goal value for number of shovels required. 
G_g = goal value for mass of gold removed (grams) 
p_ta = percent deviation factor for transportation goal variable = 1/ G_ta.  
p_tk = percent deviation factor for truck goal variable = 1/ G_tk. 
p_s = percent deviation factor for shovel goal variable = 1/ G_s.   
p_g = percent deviation factor for transportation goal variable =  1/ G_g. 
w_ta = penalty weight for transportation goal variable.  
w_tk = penalty weight for truck goal variable.  
w_s = penalty weight for shovel goal variable.  
w_g = penalty weight for gold goal variable.  
Decision Variables 
xij = number of trips assigned to level i using truck type j. 
yj = total number of trucks of type j required. 
zi = 1 if shovel at level i is used, 0 otherwise. 
Accounting Variables 
s = total number of shovels required in a shift. 
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t = total number of trucks required in a shift. 
Goal Variables 
g_ta+,  g_ta- = positive and negative deviations, respectively, from transportation goal 
($). 
g_tk+,  g_tk- = positive and negative deviations, respectively, from truck goal 
(number). 
g_g+,  g_g- = positive and negative deviations, respectively, from gold goal (grams). 
g_s+,  g_s- = positive and negative deviations, respectively, from shovel goal 
(number). 
 
Objective Function: 
Minimize the total weighted percent deviations from all four goals. 
(w_ta  * p_ta * g_ta+)+ (w_tk  * p_tk * g_tk+)+  (w_s  * p_s * g_s+)+ (w_g  * p_g * g_g- )

 [1] 
 

Subject to: 
The total number trucks required, of each type, is a function of the trucks 
assigned to all levels. 

 

       ∑  aij xij =  yj         for each  j∈ J                                                           
    [2]          i ∈ I 

 
   

 

 ∑  yj = t         
  [3]        

    
 j ∈ J 

 
If a level is assigned a truck, then it is also assigned a shovel. 

 

∑   xij  ≤  M zi      for each i ∈ I       
  [4] 

j ∈ J 
 

The total number of shovels required in a shift is the sum of all 
shovels assigned to all levels. 

∑   zi  ≤  s              
  [5] 

i ∈ I 
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There is a limit on the number of trucks that can be assigned to each 
level, based on the total time required to load all assigned trucks within the 
period of one shift. 

 

∑  bj xij  ≤  C      for each i ∈ I       
  [6] 

j ∈ J 
 

The total number of truck-trips is limited by the total demand per 
shift, in tonnes, at the elevator.  

 

∑  ∑   ej xij  ≤  D              
 [7] 
i ∈ I    j ∈ J 

 
The total number of truck-trips, assigned to each level, is limited by 

the total gold ore available at each level. 
 

∑   ej xij  ≤  Si      for each i ∈ I       
  [8] 

j ∈ J 
 

The deviation from the goal in transportation-cost is a function of the 
total number of truck-trips assigned, the cost of each trip, and the chosen 
goal for transportation cost. 

 

∑  ∑   cij xij  +  g_ta- -  g_ta+   =  G_ta          
  [9] 

i ∈ I    j ∈ J 
 

The deviation from the goal for the number of trucks assigned is 
based on the total trucks assigned, t. 

 
t  +  g_tk- -  g_tk+   =  G_tk            

  [10] 
 
 

The deviation from the goal for the number of shovels assigned is 
based on the total shovels assigned, s. 

 
s  +  g_s- -  g_s+   =  G_s            

  [11] 
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The deviation from the goal for total gold removed is a function of 

the truck-trips assigned to each level and the grade at each level. 
 

∑  ∑   qj xij  +  g_g- -  g_g+   =  G_g           
 [12] 
i ∈ I    j ∈ J 

 
Constraints on decision variables. 

 
xij  ≥ 0 and integer         

 [13] 
yi  ≥ 0          

  [14] 
zi ∈  {0, 1}         

  [15] 
The objective function [1] is used to minimize the total weighted 

percent deviation from all goal variables. By default, all weights are valued 
at 1, unless otherwise stated. Equation [2] defines the number of trucks, t, 
required per shift, for each truck-type. The total number of trucks required is 
defined in Equation [3]. Equation [4] defines whether or not a shovel is used 
at a given level. Since the use of a shovel (zi) is triggered by the dispatching 
of a truck to that level (xij), the variable representing the use of a shovel (zi) 
must be binary for this equation to work--see Equation [15]. Equation [5] 
defines the total number of shovels used in a shift. Equation [6] limits the 
maximum number of shovels required at each level to be 1. This constraint is 
based on the reasoning that the total number of minutes that a shovel may be 
used in loading trucks may not be more than the number of minutes in a 
shift. Equation [7] limits the total ore removed during the shift from 
exceeding the total demand for the shift. Equation [8] limits the ore removed 
by dispatched trucks, of varying capacities, from exceeding the supply of ore 
at each level. Equation [9] defines the goal variables for transportation. Each 
trip dispatched is a round-trip, from the demand point (the elevator) to the 
supply-point, the shovel at a given level. Of key importance here is the 
parameter cij, which varies for each level, depending on the distance 
travelled and slope at which a truck is required to travel, both empty and full. 
Equations [10] and [11] define the goal variables for trucks and shovels. 
Equation [12] defines the goal variables for gold. It should be noted that the 
goal for gold (by historical convention) is in ounces, and that this goal is 
based on the estimated grams of gold per tonne of gold ore, which varies 
from level to level. Equation [13] ensures that the number of trips dispatched 
to each level is integer. Equation [14] constrains the number of each truck 
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type required to be non-negative. This variable, for the work in this paper, 
was not constrained to be integer.  This is because an integer constraint 
required excessive computing time and the variable only needed to be 
rounded up in order to interpret the number of trucks of each type required 
by the dispatching solution. Equation [15] ensures that the variable 
representing whether a shovel is used at a given level or not be binary.  
 
Case Study  

The underground gold mine in Red Lake, Ontario (Canada) has been 
in operation for more than 50 years. This history of has resulted in 52 levels 
reaching a depth below surface of 2.4 km. Figure 2 (below) illustrates that 
the first 38 levels are connected to a main shaft into which mined material is 
dumped.  At the bottom of level 38 is an elevator which carries the mined 
material to the surface.  Figure 2 also illustrates that, below level 38, there 
are 14 levels which are not connected to the main shaft.  Material mined 
from these levels (levels 39 to 52) must be transported by trucks to the 
elevator at level 38.  In general, the deeper the location of each level, the 
more costly is the transportation required to service it.  The problem in this 
case study is the dispatching of trucks, per shift, to these 14 levels (levels 39-
52) such that the multiple objectives (described above) are optimally 
satisfied. Newmont Goldcorp Inc.’s technical reports (20.15, 2017 & 2019). 

 
Figure 2. Underground transportation network for trucks at Red Lake mine 
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At present, there is no optimization model used for dispatching trucks 
at the Red Lake mine. Dispatching decisions, made at the beginning of each 
shift, are supported using analysis of data on spreadsheets.  The managers of 
Red Lake mine expressed interest in the development of an optimal 
dispatching model because the cost of trucking materials in the underground 
mine is a major one.  The mine’s managers wanted a model that addresses 
several objectives: optimize gold production, transportation costs, shovels 
required, and the number truck types and sizes required.  Given these four 
objectives the analysts and decision-makers at Red Lake wanted a model that 
could support decisions on the trade-offs involved between competing 
objectives.  For these reasons, a goal programming model was formulated 
and evaluated.  

Transportation, shovel, and trucking data were provided by the 
managers at Red Lake mine for parameters in the goal programming model.   
There were only two truck sizes used.  Data on the gold grades in the mine 
were not provided. Our industrial partner, understandably, wished to keep 
these values on grade private.  The parameters for the grade of ore were 
therefore generated using a random number generator such that each level 
was randomly assigned (with equal probability) a grade between 5 and 15 
grams of gold per tonne of ore.  This range of grades is realistic for a typical 
gold mine; and the fact that the values assigned are not real does not 
compromise the evaluation of our optimization model. 

 
Results  

Since the decision-makers at the Red Lake mine were interested in 
quantifying the trade-offs among the competing objectives in this problem, a 
pre-emptive method was used in applying the goal programming model.   In 
the pre-emptive method of goal programming (Eschenbach et al. 2001), 
goals are ordered according to priorities, and the values assigned to each goal 
are determined by executing a sequence of scenarios. For example, in the 
results shown in Table 1 (below), the first scenario was run with gold as the 
top priority. Gold, therefore, was the only goal used in the model’s objective 
function in scenario 1. The achieved value for gold, in scenario 1, was then 
used as the gold goal’s value in scenario 2. This sequential method was used 
for directing the assignment of all goal values.  

The priorities underlying the pre-emptive method were selected in 
consultation with the decision-makers at Red-Lake. The priorities of the 
objectives were ranked as follows:  

1. Gold removed  
2. Transport cost   
3. Shovels used   
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4. Trucks used.  
The results of the four scenarios are shown in Table 3.1 (Note: the 

values in square brackets are achieved values of goals that were not 
optimized in the objective function but resulted from the optimal solution).  

Table 1. Results for four scenarios using pre-emptive method 

Scena
rio 

Goals in 
Objective 
Function 

Goal Values Achieved Values 
Gol

d 
(g.) 

Transp
ort ($) 

#Shov
els 

#Truc
ks 

Gol
d 

(g.) 

Transp
ort ($) 

#Shov
els 

#Truc
ks 

1 Gold 10,0
00    7,5

70 
[5,848

] [10] [11] 

2 
Gold + 

Transporta
tion 

7,57
0 5,000   7,5

53 4,984 [11] [8] 

3 

Gold + 
Transporta

tion + 
Shovels 

7,57
0 5,000 9  7,5

09 5,007 9 [6] 

4 

Gold + 
Transporta

tion + 
Shovels + 

Trucks 

7,57
0 5,000 9 4 7,4

25 5,024 9 4 

 
The results in Table 1 yield several observations.  First, in scenario 2, 

one can observe the trade-off between gold removed and transportation costs 
by comparing the achieved values for these goals in scenarios 1 and 2.  Here 
we observe that, by adding transportation cost as a goal in scenario 2, 
transportation costs were reduced from $5,848 per shift to $4,984 — a 
reduction of 14.8% — achieved by lowering the total gold removed by less 
than 1% (from 7,563 g to 7,553 g). The improved solution of scenario 2 
shows the benefit of dispatching trucks for both gold and transportation costs 
simultaneously using this model.  

Second, scenario 2 also shows that the reduction in transportation 
costs resulted in an increase in the number of shovels used (from 10 to 11). 
Why did this happen? By comparing the solution of scenario 1 with scenario 
2 (see Table 2, below) we observe two things. First, that when the goal was 
only for gold, the solution was easy to form — simply send the smaller 
trucks to the levels with the richest deposits, regardless of cost. Smaller 
trucks were sent because carrying smaller discrete volumes of ore makes it 
easier to remove, as closely as possible, the total discrete volume of ore 
supplied at the ore-rich levels than if one dispatched a discrete set of larger 
trucks. Second, Table 2 also shows that different levels (in scenario 1 versus 
2) were accessed in order to reduce transportation costs. Recalling that the 
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depth of a level influences its transportation cost, we can observe that 
scenario 2 added the less costly levels 44 and 46 and removed the more 
costly level 50.  Hence, scenario 2 showed an unintended consequence of 
adding the objective to reduce transportation costs; namely, that in order to 
reduce transportation costs and to meet the gold goal, an extra level was 
added to the solution, requiring an extra shovel.  This unintended 
consequence shows the need for adding shovels as an objective in a goal 
programming model of this dispatching problem. 

Table 2. Solutions for four scenarios. (Note: the values in the scenario columns represent 
the number of trips dispatched to each level, for each truck type). 

Level Truck Capacity 
(tons) 

Scenario 
1 2 3 4 

39 17 5 5 5 1 
40 17 5 1 5 1 
41 17 6 1 5 1 
42 17 4 0 2 0 
43 17 4 1 1 0 
44 17 0 1 0 3 
45 17 5 0 2 2 
46 17 0 1 0 0 
47 17 4 0 0 3 
48 17 0 0 0 0 
49 17 0 0 0 0 
50 17 1 0 0 0 
51 17 3 1 0 0 
52 17 4 0 0 0 
39 30 0 0 0 2 
40 30 0 2 0 2 
41 30 0 3 0 3 
42 30 0 2 1 0 
43 30 0 1 1 2 
44 30 0 0 2 1 
45 30 0 3 2 2 
46 30 0 0 1 0 
47 30 0 2 2 1 
48 30 0 0 0 0 
49 30 0 0 0 0 
50 30 0 0 0 0 
51 30 0 2 1 2 
52 30 0 2 2 2 

 
Third, scenario 3 (in Table 1, above) shows that, by adding a goal of 

9 shovels to the model’s objective function, we were able to meet this 
objective and improve upon the solution in scenario 2, which entailed 11 
shovels — a reduction in shovel cost of 18.2%.  This improvement came 
with a small trade-off: a reduction in gold removed in scenario 3 versus 
scenario 2 (less than 0.1%) and a slight increase in transportation cost (less 
than 0.1%).  Table 2 also shows that the solution for scenario 3 is radically 
different from that of scenario 2.  These results show that, with a slight trade-
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off for two objectives, it is possible to achieve a major improvement in the 
third objective.  Hence, the solution to scenario 3 illustrates well how the 
dispatching problem in an underground gold mine is flexible and therefore 
suitable for multiple objective optimization through goal programming.    
 Finally, scenario 4 (see Table 1) shows that by adding a fourth 
objective (i.e., the number of trucks required) the overall solution was further 
refined.  Comparing scenarios 3 and 4, we observe that the number of trucks 
was reduced from 6 to 4 (33.3% reduction).  This came with a trade-off of 
reducing the gold removed by less than 1% and of increasing the 
transportation cost by less than 1%. The number of shovels used remained 
the same. Table 2 also shows that the solutions of scenarios 3 and 4 differ in 
a predictable manner; namely, the number of trips assigned to the larger 
capacity trucks was greatly increased in scenarios 4 in order to meet the 
targets with fewer trucks.  Scenario 4 therefore  illustrates the model’s ability 
to engage in the exploration of meaningful trade-offs given trucks and truck-
sizes as an objective in the problem.   
   
Discussion 

The results illustrate how the goal programming model presented in 
this paper may be useful to decision-makers for the problem of dispatching 
trucks in an underground gold mine.  We now discuss several reasons for this 
conclusion. 

First, the nature of the problem is such that it is flexible enough to be 
solved effectively for multiple objectives simultaneously.  For example, the 
solution in scenario 2 lowered transportation costs by 14.8% while lowering 
gold achievement by less than 1%.  This was clearly a favourable trade-off 
made possible by some flexibility (i.e., multiple means) in solving the 
problem; but what do the results in Table 1 really  imply about the flexibility 
of this problem?  Three observations are required before we can answer this 
question.  First, given the great economic importance of  mining levels with 
the highest grade of gold, it might appear that a greedy solution, in which 
levels with the highest grades of gold are mined first, would be the most 
valuable.  This is true, in terms of the gold objective.  The results show (see 
Table 1) that the highest possible number of gold ounces that can be mined 
in a shift occur in scenario 1, which has only one objective: gold.  Second, 
the solution to scenario 2 (see Figure 2) in which both gold and 
transportations goals are optimized simultaneously, shows that the set of 
levels selected in scenario 2 differs greatly from the set of levels selected in 
scenariuo 1.  Third, even though the set of levels selected in scenario 2 are 
radically different from those selected in scenario 1, the number of gold 
ounces mined in these two scenarios differs by less than 1%.  These three 
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observations imply that the variation in gold grade between levels (described 
in Methods) is such that there are multiple near-optimal solutions with regard 
to the gold objective.  This is an important implication; for it means that, 
although maximizing gold production is the first objective in this problem, 
there are multiple ways to achieve this, in practice, since there are multiple 
near-optimal solutions.  This flexibility in planning, shown in the results, 
also illustrates the great value of using an optimization model with multiple 
objectives, when planning for a dispatching problem in an underground gold 
mine. 

A second reason for the usefulness of this model is illustrated in the 
results on optimizing the number of shovels and trucks used.  The results in 
Table 1 show that, when shovels and trucks are included as objectives in the 
model, a redution in shovel costs by 18.2% and a reduction in trucks used by 
33.3% is possible. This reduction has two important implications for 
operations.  First, a reduction in the number of trucks used implies that the 
operational problem of live dispatchers avoiding wait-times at loading or 
unloading points is reduced in difficulty.  Second, a reduction is the number 
of shovels used implies less idle-time for shovels, which is an unproductive 
cost.   Once again, the results on the objectives for shovels and trucks shows 
the surprising and valuable  flexibility that this problem offers when solved 
for multiple objectives. 

A third reason for the usefulness of this model is that it allocates 
trucks and shovels to multiple levels at the beginning of the shift.  Some 
truck-dispatching models are “live” and are concerned with the scheduling of 
truck movements in order optimize shovel productivity and minimize wait-
times at loading and unloading points (Newman et al. 2010).  Such models 
are valuable, but they assume that optimal mining levels and truck-trips and 
numbers and sizes have already been selected.  Hence, this model is useful in 
that it addresses a valuable planning problem that should be solved before 
the problem of “live” dispatching is solved.     

 
Conclusion 

In this chapter, have presented a new formulation of the truck 
dispatching model for an underground gold mine.  The model was 
formulated as a goal programming model and applied to Red Lake’s gold 
mine in Ontario, Canada.  The results showed that major reductions in 
transportation costs, shovels used, and trucks required can be achieved with a 
minimal decrease (less than 1%) in the maximum quantity of gold that can 
removed in a shift.  The results illustrate the valuable  flexibility that this 
problem offers when solved for multiple objectives.   Given the scale of 
these reduced costs, this model will be a valuable addition to the decision-
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makers seeking to increase the efficiency of their dispatching decisions both 
before and during operations in an underground gold mine.  

Future research on the problem of modeling this dispatching problem 
would be in exploring the applicability of a goal programming as a useful 
approach for modeling the dispatching problem in different types of 
underground mines; i.e., to determine whether its benefits can be expanded 
to mines other than gold mines.   
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