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Abstract 

The cost of transporting mined materials in an underground mine is 

major. This cost typically represents between 50 to 60 percent of a mine’s total 

operating costs. The problem of dispatching trucks in an underground gold 

mine is of major economic importance and warrants the use of a decision 

support model.  The developments of a realistic decision-support model for 

the dispatching problem in an underground gold mine were addressed in this 

paper.  The problem must address multiple conflicting objectives, and 

therefore, a goal programming model was formulated. The model was applied 

to a case study, the Red Lake underground gold mine, in Ontario, Canada. The 

results showed major improvements in meeting the multiple objectives of this 

problem versus a single objective model. The results also illustrate the 

flexibility that the dispatching problem (in underground gold mines) yields 

when solved for multiple objectives using a goal programming model. 

 
Keywords: Truck Dispatching Problem, Underground Mine, Goal 

Programming 

 

Introduction 

The movement of mined ore in an underground mine typically 

represents between 50 to 60 percent of a mine’s total operating costs (Newman 

et al., 2010; Fadin et al., 2017). Therefore, the dispatching of trucks in an 

http://www.eujournal.org/
https://doi.org/10.19044/esj.2022.v18n36p1
https://doi.org/10.19044/esj.2022.v18n36p1
https://doi.org/10.19044/esj.2022.v18n36p1


European Scientific Journal, ESJ                             ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

November 2022 edition Vol.18, No.36 

www.eujournal.org   2 

underground mine is a daily decision of major economic consequence and 

warrants the use of a decision support model. In dispatching problem 

addressed in this paper, a set of trucks must be assigned to a set of trips and to 

a set of mining levels with each containing different grades of ore. The 

assignment of trucks must be made in such a way that four objectives are met. 

They are; transportation costs are minimized, the ounces of gold retrieved are 

maximized, the number of shovels used is minimized, and the total number of 

trucks required is minimized for a given shift. Given that this problem has 

multiple conflicting objectives, a goal programming model is developed and 

tested in this paper. The objective of this paper is therefore to formulate and 

evaluate a goal programming model of the truck-dispatching problem for 

underground gold mines.  

The paper is structured as follows: first, a review of the literature 

relating to this dispatching problem is given.  Second, the problem modeled is 

defined (with a conceptual figure).  Third, the mathematical formulation of the 

model is presented.  Fourth, a description of the case study on which the model 

is to be evaluated, the Red Lake gold mine in Ontario, Canada, is presented.  

Finally, the results of the model are presented, and the merits of the model are 

observed and evaluated in the discussion. 

 

Previous Studies 

The truck dispatching problem in the mining industry has received 

minor but consistent attention by researchers who specializes in optimization 

models. The problem has received wider attention for above-ground mines 

than for below-ground mines. Indeed, there are few studies that have been 

made for truck-dispatching in underground ground mines (Mahdi et al., 2014). 

Newman et al. (2010), in their review paper on operations research models 

used in mining, observed that rather than one universal dispatching model for 

the mining industry, there exists a great diversity of models for this problem. 

This is because the different types of mine structures require different 

objective functions and different constraints.  Hence, there is no universal 

model of the truck dispatching problem (in either above- or below-ground 

mining) given the great diversity of mines structures (Newman et al., 2010). 

In this review, we will examine the diversity of optimization models that have 

been recently formulated for the truck dispatching problem in both above-

ground and underground mines.  

  Ercelebi et al. (2009) used a linear programming model to improve 

the truck-to-shovel dispatching system and established a method of accurately 

determining the optimal number of trucks. They also applied the single 

objective model to an open-pit coal mine in Turkey.  Nehring et al. (2010) 

formulated a mixed integer programming model and applied it to a 

transportation system that used trucks and shovels in an underground mine in 

http://www.eujournal.org/
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order to maximize net revenue within a shift. Song et al. (2013) formulated a 

linear programming model to solve the truck and shovel dispatch problem in 

an open-pit mine. This paper focuses on maximizing the total transportation 

(in tonnes) of ore and waste material in a given shift.  Zhang et al. (2015) 

presented a new model of the truck dispatching problem in an open-pit iron 

mine by using integer programming to represent the optimal number of 

discrete trips for trucks to make between loading sites and dumping sites in 

one shift. However, their results showed reduced transportation operating 

costs of 15%. Schulze and Zimmerman (2017) used a mixed integer 

programming model to optimize the objective function of maximizing the total 

material moved by a set of loader-trucks in an underground potash mine. 

Simulation-based optimization was recently used by Ozdemir et al. 

(2019) to optimize a truck/shovel dispatching problem in an open-pit mine. 

The objective function of the optimization model was to maximize the total 

material moved in a shift. Wang et al. (2020) recently used a Genetic 

Algorithms Model (GAM) to solve the truck dispatching problem for an 

underground mine in China. In addition, their model had the objective to 

maximize production at the shift level (tonnes moved per shift) as it is subject 

to constraints on the number of loading locations available, the capacity of the 

trucks, the material quantities available in each level, and the distance between 

loading levels. The results showed that the optimization model improved 

operational productivity by 8%.    

Based on our literature review, we can identify the following trends: 

a) many researchers have shown that the use of a truck dispatching 

optimization model has improved the shift-level productivity in their mines; 

b) no researchers have (to our knowledge) formulated a goal programming 

model for this problem in underground gold mines. Hence, the research 

presented in this paper is an innovation on a problem of major economic 

consequence in underground gold mines. 

 

Methods 

The description of the methods used in this research has three parts.  

First, the problem modeled is defined and illustrated with a conceptual figure. 

Second, the new mathematical formulation of the goal programming model 

for dispatching trucks in an underground gold mine is presented.  Third, the 

data acquired from the case study, Red Lake’s underground gold mine in 

Ontario, Canada, are described. 

 

Definition of the Problem Modeled 

A conceptual figure (of a small problem instance) of the dispatching 

problem modeled in this paper is presented in Figure 1 below.  In Figure 1, 

first observe that there are 6 levels in the problem instance. These represent 

http://www.eujournal.org/
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different levels in the underground gold mine, and each level supplies gold ore 

of a different grade (in grams per tonne) and a fixed number of tonnes of ore 

are available per shift.  Second, observe the elevator. The elevator is the point 

of demand for gold ore.  It carries gold ore to the surface where there is a 

target-demand in ounces of gold per day. The elevator also has a capacity 

constraint on the number of tonnes of gold ore it can move in one shift.  Third, 

observe the distances between the 6 levels and the elevator. The distance and 

the slope of the path between each supply point and the elevator determines 

the transportation cost, of which all are different for each level. Fourth, 

observe that level 1 and 3 have a shovel assigned. This means that, in the 

particular solution illustrated in Figure 1, level 1 and 3 have been selected as 

supply points to meet the shift’s demand. If a level has been selected, then it 

is assigned a shovel. There is a constraint on and cost for the number of shovels 

that can be used for any given shift.  Finally, observe that, for each level 

selected, there is also a truck assigned. Trucks assigned can be of different 

sizes and each size can move a fixed number of tonnes per trip.    

 
Figure 1. Conceptual Figure of the Problem Modeled 

 

The problem to be solved is assigned a number of truck-trips (for each 

truck size) such that the following four goals can be met in a shift: 

1. the gold goal (ounces per shift); 

2. the goal for transportation cost ($); 

3. the goal for the number of shovels; and 

4. the goal for the number of trucks and truck sizes used. 

http://www.eujournal.org/
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Since these four goals can conflict with one another, the problem is modeled 

as a goal programming model. The model is to be used not only to find the 

optimally satisfying solution for the decision-maker, but also to explore and 

quantify trade-offs to support the decision made. 

 

 Mathematical Formulation of the Model 

The mathematical formulation of the goal programming model for 

dispatching trucks in an underground gold mine is presented below. 

 

Indices and Sets 

i, I  = index and set of levels within the mine. 

j, J = index and set of truck-types, by capacity.   

 

Parameters 

aij = fraction of total shift time (C) required for one complete truck-trip 

assigned to level i using truck type j. 

bj = number of minutes required to load truck type j. 

C = total number minutes in a shift. 

M = arbitrarily large number. 

ej = capacity of truck type j (tonnes). 

D = total demand for gold ore per shift at the elevator (tonnes). 

Si = supply of gold ore at level i, during the shift (tonnes).   

cij = cost of trip needed for transporting one truckload of gold ore from 

level i using truck j.  

qi = grams per tonne of gold ore at level i. 

G_ta = goal value for transportation cost ($) 

G_tk = goal value for number of trucks required. 

G_s = goal value for number of shovels required. 

G_g = goal value for mass of gold removed (grams) 

p_ta = percent deviation factor for transportation goal variable = 1/ G_ta.  

p_tk = percent deviation factor for truck goal variable = 1/ G_tk. 

p_s = percent deviation factor for shovel goal variable = 1/ G_s.   

p_g = percent deviation factor for transportation goal variable =  1/ G_g. 

w_ta = penalty weight for transportation goal variable.  

w_tk = penalty weight for truck goal variable.  

w_s = penalty weight for shovel goal variable.  

w_g = penalty weight for gold goal variable.  

 

Decision Variables 

xij = number of trips assigned to level i using truck type j. 

yj = total number of trucks of type j required. 

zi = 1 if shovel at level i is used, 0 otherwise. 

http://www.eujournal.org/
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Accounting Variables 

s = total number of shovels required in a shift. 

t = total number of trucks required in a shift. 

 

Goal Variables 

g_ta+,  g_ta- = positive and negative deviations, respectively, from 

transportation goal ($). 

g_tk+,  g_tk- = positive and negative deviations, respectively, from truck 

goal (number). 

g_g+,  g_g- = positive and negative deviations, respectively, from gold goal 

(grams). 

g_s+,  g_s- = positive and negative deviations, respectively, from shovel 

goal (number). 

 

Objective Function 

Minimize the total weighted percent deviations from all four goals. 

(w_ta  * p_ta * g_ta+)+ (w_tk  * p_tk * g_tk+)+  (w_s  * p_s * g_s+)+ (w_g  * 

p_g * g_g- )[1] 

 

Subject to 

The total number of trucks required, of each type, is a function of the 

trucks assigned to all levels. 

 

   ∑  aij xij =  yj         for each  j∈ J                                                           

    [2]  
       i ∈ I 

   

  ∑  yj = t          

   [3] 
   j ∈ J 

If a level is assigned a truck, then it is also assigned a shovel. 

  ∑   xij  ≤  M zi      for each i ∈ I      

   [4] 
 j ∈ J 

The total number of shovels required in a shift is the sum of all shovels 

assigned to all levels. 

 ∑   zi  ≤  s              

  [5] 
 i ∈ I 

http://www.eujournal.org/
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There is a limit on the number of trucks that can be assigned to each 

level and this is based on the total time required to load all assigned trucks 

within the period of one shift. 

 ∑  bj xij  ≤  C      for each i ∈ I      

  [6] 
  j ∈ J 

The total number of truck-trips is limited by the total demand per shift, 

in tonnes, at the elevator.  

 ∑    ∑   ej xij  ≤  D             

  [7] 
i ∈ I     j ∈ J 

The total number of truck-trips, assigned to each level, is limited by 

the total gold ore available at each level. 

  ∑    ej xij  ≤  Si      for each i ∈ I      

  [8] 
 j ∈ J 

The deviation from the goal in transportation-cost is a function of the 

total number of truck-trips assigned, the cost of each trip, and the chosen goal 

for transportation cost. 

  ∑   ∑   cij xij  +  g_ta- -  g_ta+   =  G_ta          

  [9] 
i ∈ I     j ∈ J 

The deviation from the goal for the number of trucks assigned is based 

on the total trucks assigned (t). 

  t  +  g_tk- -  g_tk+   =  G_tk           

  [10] 

The deviation from the goal for the number of shovels assigned is 

based on the total shovels assigned (s). 

  s  +  g_s- -  g_s+   =  G_s            

  [11] 

The deviation from the goal for total gold removed is a function of the 

truck-trips assigned to each level and the grade at each level. 

  ∑    ∑   qj xij  +  g_g- -  g_g+   =  G_g          

  [12] 
 i ∈ I      j ∈ J 

 

Constraints on Decision Variables 

xij  ≥ 0 and integer        

  [13] 

yi  ≥ 0          

  [14] 
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zi ∈  {0, 1}         

  [15] 

The objective function [1] is used to minimize the total weighted 

percent deviation from all goal variables. By default, all weights are valued at 

1 unless otherwise stated. Equation [2] defines the number of trucks, t, 

required per shift for each truck-type. The total number of trucks required is 

defined in Equation [3]. Equation [4] defines whether or not a shovel is used 

at a given level. Since the use of a shovel (zi) is triggered by the dispatching 

of a truck to that level (xij), the variable representing the use of a shovel (zi) 

must be binary for this equation to work (see Equation 15). Equation [5] 

defines the total number of shovels used in a shift. Equation [6] limits the 

maximum number of shovels required at each level to be 1. This constraint is 

based on the reasoning that the total number of minutes that a shovel may be 

used in loading trucks may not be more than the number of minutes in a shift. 

Equation [7] limits the total ore removed during the shift from exceeding the 

total demand for the shift. Equation [8] limits the ore removed by dispatched 

trucks, of varying capacities, from exceeding the supply of ore at each level. 

Equation [9] defines the goal variables for transportation. Each trip dispatched 

is a round-trip from the demand point (the elevator) to the supply-point at a 

given level of the shovel. The key importance here is the parameter cij, which 

varies for each level, depending on the distance travelled and slope at which a 

truck is required to travel, both empty and full. Equations [10] and [11] define 

the goal variables for trucks and shovels. Equation [12] defines the goal 

variables for gold. It should be noted that the goal for gold (by historical 

convention) is in ounces, and that this goal is based on the estimated grams of 

gold per tonne of gold ore, which varies from level to level. Equation [13] 

ensures that the number of trips dispatched to each level is integer. Equation 

[14] constrains the number of each truck type required to be non-negative. 

This variable, for the work in this paper, was not constrained to be integer. 

This is because an integer constraint requires excessive computing time, and 

the variable only needed to be rounded up in order to interpret the number of 

trucks of each type required by the dispatching solution. Equation [15] ensures 

that the variable representing whether a shovel is used at a given level or not 

is binary.  

 

Case Study Definition  

The underground gold mine in Red Lake, Ontario (Canada), has been 

in operation for more than 50 years. This history has resulted in 52 levels 

reaching a depth below surface of 2.4 km. Figure 2 (below) illustrates that the 

first 38 levels are connected to a main shaft into which mined material is 

dumped.  However, at the bottom of level 38 is an elevator which carries the 

mined material to the surface.  Figure 2 also illustrates that, below level 38, 

http://www.eujournal.org/
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there are 14 levels which are not connected to the main shaft.  Material mined 

from these levels (levels 39 to 52) must be transported by trucks to the elevator 

at level 38.  In general, the deeper the location of each level, the more costly 

is the transportation required to service it.  The problem in this case study is 

the dispatching of trucks, per shift, to these 14 levels (levels 39-52) such that 

the multiple objectives (described above) are optimally satisfied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Underground Transportation Network for Trucks at Red Lake Mine 

 

At present, there is no optimization model used for dispatching trucks 

at the Red Lake mine. Dispatching decisions, made at the beginning of each 

shift, are supported using analysis of data on spreadsheets.  The managers of 

Red Lake mine expressed interest in the development of an optimal 

dispatching model because the cost of trucking materials in the underground 

mine is a major one.  The mine’s managers wanted a model that addresses 

several objectives as follows: optimize gold production, transportation costs, 

shovels required, and the number of truck types and sizes required. Given 

these four objectives, the analysts and decision-makers at Red Lake wanted a 

model that could support decisions on the trade-offs involved between 

competing objectives. For these reasons, a goal programming model was 

formulated and evaluated.  
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Transportation, shovel, and trucking data were provided by the 

managers at Red Lake mine for parameters in the goal programming model. 

There were only two truck sizes used.  Data on the gold grades in the mine 

were not provided. Our industrial partner, understandably, wished to keep 

these values on grade private.  The parameters for the grade of ore were 

therefore generated using a random number generator such that each level was 

randomly assigned (with equal probability) a grade between 5 and 15 grams 

of gold per tonne of ore.  This range of grades is realistic for a typical gold 

mine, and the fact that the values assigned are not real does not compromise 

the evaluation of our optimization model. 

 

Results  

Since the decision-makers at the Red Lake mine were interested in 

quantifying the trade-offs among the competing objectives in this problem, a 

pre-emptive method was used in applying the goal programming model. In the 

pre-emptive method of goal programming (Eschenbach et al., 2001), goals are 

ordered according to priorities, and the values assigned to each goal are 

determined by executing a sequence of scenarios. For example, in the results 

shown in Table 1 (below), the first scenario was run with gold as the top 

priority. Therefore, gold was the only goal used in the model’s objective 

function in scenario 1. The achieved value for gold, in scenario 1, was then 

used as the gold goal’s value in scenario 2. This sequential method was used 

for directing the assignment of all goal values.  

The priorities underlying the pre-emptive method were selected in 

consultation with the decision-makers at Red-Lake. The priorities of the 

objectives were ranked as follows:  

1. Gold removed  

2. Transport cost   

3. Shovels used   

4. Trucks used  

The results of the four scenarios are shown in Table 3.1 (Note: the 

values in square brackets are achieved values of goals that were not optimized 

in the objective function but resulted from the optimal solution).  
Table 1. Results for Four Scenarios using Pre-emptive Method 

S
cen

a
ri

o
 

Goals in 

Objective 

Function 

Goal Values Achieved Values 

Gold 

(g.) 

Transport 

($) 
#Shovels #Trucks 

Gold 

(g.) 

Trans

port 

($) 

#Shovels #Trucks 

1 Gold 10,000    7,570 
[5,848

] 
[10] [11] 

2 
Gold + 

Transportation 
7,570 5,000   7,553 4,984 [11] [8] 
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3 

Gold + 

Transportation 

+ Shovels 

7,570 5,000 9  7,509 5,007 9 [6] 

4 

Gold + 

Transportation 

+ Shovels + 

Trucks 

7,570 5,000 9 4 7,425 5,024 9 4 

 

The results in Table 1 yield several observations.  First, in scenario 2, 

one can observe the trade-off between gold removed and transportation costs 

by comparing the achieved values for these goals in scenarios 1 and 2. Here, 

we observe that by adding transportation cost as a goal in scenario 2, 

transportation costs were reduced from $5,848 per shift to $4,984. 

Furthermore, a reduction of 14.8% was achieved by lowering the total gold 

removed by less than 1% (from 7,563 g to 7,553 g). The improved solution of 

scenario 2 shows the benefit of dispatching trucks for both gold and 

transportation costs simultaneously using this model.  

Second, scenario 2 also shows that the reduction in transportation costs 

resulted in an increase in the number of shovels used (from 10 to 11). Why did 

this happen? By comparing the solution of scenario 1 with scenario 2 (see 

Table 2, below), we observe two things. First, that when the goal was only for 

gold, the solution was easy to form by simply sending the smaller trucks to the 

levels with the richest deposits, regardless of cost. Smaller trucks were sent 

because carrying smaller discrete volumes of ore makes it easier to remove, as 

closely as possible, the total discrete volume of ore supplied at the ore-rich 

levels than if one dispatched a discrete set of larger trucks. Second, Table 2 

also shows that different levels (in scenario 1 versus 2) were accessed in order 

to reduce transportation costs. However, recalling that the depth of a level 

influences its transportation cost, we can observe that scenario 2 added the less 

costly levels (44 and 46) and removed the more costly level (50). Hence, 

scenario 2 showed an unintended consequence of adding the objective to 

reduce transportation costs. Furthermore, in order to reduce transportation 

costs and to meet the gold goal, an extra level was added to the solution 

requiring an extra shovel. This unintended consequence shows the need for 

adding shovels as an objective in a goal programming model of this 

dispatching problem. 

Third, scenario 3 (in Table 1, above) shows that by adding a goal of 9 

shovels to the model’s objective function, we were able to meet this objective 

and improve upon the solution in scenario 2, which entailed 11 shovels and a 

reduction in shovel cost of 18.2%. This improvement came with a small trade-

off, i.e., a reduction in gold removed in scenario 3 versus scenario 2 (less than 

0.1%) and a slight increase in transportation cost (less than 0.1%).  Table 2 

also shows that the solution for scenario 3 is radically different from that of 
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scenario 2.  These results show that, with a slight trade-off for two objectives, 

it is possible to achieve a major improvement in the third objective. Hence, 

the solution to scenario 3 illustrates how well the dispatching problem in an 

underground gold mine is flexible and suitable for multiple objective 

optimization through goal programming.    
Table 2. Solutions for Four Scenarios (Note: the values in the scenario columns represent 

the number of trips dispatched to each level, for each truck type) 

Level 

Truck 

Capacity 

(tons) 

Scenario 

1 2 3 4 

39 17 5 5 5 1 

40 17 5 1 5 1 

41 17 6 1 5 1 

42 17 4 0 2 0 

43 17 4 1 1 0 

44 17 0 1 0 3 

45 17 5 0 2 2 

46 17 0 1 0 0 

47 17 4 0 0 3 

48 17 0 0 0 0 

49 17 0 0 0 0 

50 17 1 0 0 0 

51 17 3 1 0 0 

52 17 4 0 0 0 

39 30 0 0 0 2 

40 30 0 2 0 2 

41 30 0 3 0 3 

42 30 0 2 1 0 

43 30 0 1 1 2 

44 30 0 0 2 1 

45 30 0 3 2 2 

46 30 0 0 1 0 

47 30 0 2 2 1 

48 30 0 0 0 0 

49 30 0 0 0 0 

50 30 0 0 0 0 

51 30 0 2 1 2 

52 30 0 2 2 2 

 

 Finally, scenario 4 (see Table 1) shows that by adding a fourth 

objective (i.e., the number of trucks required), the overall solution was further 

refined. Comparing scenarios 3 and 4, we observe that the number of trucks 

was reduced from 6 to 4 (33.3% reduction). This came with a trade-off of 

reducing the gold removed by less than 1% and of increasing the transportation 

cost by less than 1%. The number of shovels used remained the same. Table 2 

also shows that the solutions of scenarios 3 and 4 differ in a predictable 

manner. Furthermore, the number of trips assigned to the larger capacity 
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trucks was greatly increased in scenarios 4 in order to meet the targets with 

fewer trucks. Therefore, scenario 4  illustrates the model’s ability to engage in 

the exploration of meaningful trade-offs given trucks and truck-sizes as an 

objective in the problem.   

 

Discussion 

The results illustrate how the goal programming model presented in 

this paper may be useful to decision-makers for the problem of dispatching 

trucks in an underground gold mine.  We now discuss several reasons for this 

conclusion. 

First, the nature of the problem is such that it is flexible enough to be 

solved effectively for multiple objectives simultaneously. For example, the 

solution in scenario 2 lowered transportation costs by 14.8%, while also 

lowering gold achievement by less than 1%. This was clearly a favourable 

trade-off made possible by some flexibility (i.e., multiple means) in solving 

the problem, but what do the results in Table 1 really  imply about the 

flexibility of this problem?  Three observations are required before we can 

answer this question. First, given the great economic importance of  mining 

levels with the highest grade of gold, it might appear that a greedy solution, in 

which levels with the highest grades of gold are mined first, would be the most 

valuable. This is true in terms of the gold objective.  The results show (see 

Table 1) that the highest possible number of gold ounces that can be mined in 

a shift occur in scenario 1, which has only one objective: gold.  Second, the 

solution to scenario 2 (see Figure 2) in which both gold and transportations 

goals are optimized simultaneously shows that the set of levels selected in 

scenario 2 differs greatly from the set of levels selected in scenariuo 1. Third, 

even though the set of levels selected in scenario 2 are radically different from 

those selected in scenario 1, the number of gold ounces mined in these two 

scenarios differs by less than 1%. These three observations imply that the 

variation in gold grade between levels (described in Methods) is such that 

there are multiple near-optimal solutions with regard to the gold objective. 

This is an important implication, for it means that, although maximizing gold 

production is the first objective in this problem, there are multiple ways to 

achieve this, in practice, since there are multiple near-optimal solutions.  This 

flexibility in planning, shown in the results, also illustrates the great value of 

using an optimization model with multiple objectives when planning for a 

dispatching problem in an underground gold mine. 

A second reason for the usefulness of this model is illustrated in the 

results on optimizing the number of shovels and trucks used.  The results in 

Table 1 show that when shovels and trucks are included as objectives in the 

model, a redution in shovel costs by 18.2% and a reduction in trucks used by 

33.3% is possible. This reduction has two important implications for 
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operations.  First, a reduction in the number of trucks used implies that the 

operational problem of live dispatchers avoiding wait-times at loading or 

unloading points is reduced in difficulty.  Second, a reduction in the number 

of shovels used implies less idle-time for shovels, which is an unproductive 

cost.  Once again, the results on the objectives for shovels and trucks shows 

the surprising and valuable  flexibility that this problem offers when solved 

for multiple objectives. 

A third reason for the usefulness of this model is that it allocates trucks 

and shovels to multiple levels at the beginning of the shift.  Some truck-

dispatching models are “live” and are concerned with the scheduling of truck 

movements in order to optimize shovel productivity and minimize wait-times 

at loading and unloading points (Newman et al., 2010). Such models are 

valuable, but they assume that optimal mining levels and truck-trips and 

numbers and sizes have already been selected. Hence, this model is useful in 

that it addresses a valuable planning problem that should be solved before the 

problem of “live” dispatching is solved.     

 

Conclusion 

In this chapter, we have presented a new formulation of the truck 

dispatching model for an underground gold mine. The model was formulated 

as a goal programming model and applied to Red Lake’s gold mine in Ontario, 

Canada.  The results showed that major reductions in transportation costs, 

shovels used, and trucks required can be achieved with a minimal decrease 

(less than 1%) in the maximum quantity of gold that can be removed in a shift.  

The results illustrate the valuable flexibility that this problem offers when 

solved for multiple objectives.   Given the scale of these reduced costs, this 

model will be a valuable addition to the decision-makers seeking to increase 

the efficiency of their dispatching decisions both before and during operations 

in an underground gold mine.  

Future research on the problem of modeling this dispatching problem 

would be in exploring the applicability of a goal programming as a useful 

approach for modeling the dispatching problem in different types of 

underground mines, i.e., to determine whether its benefits can be expanded to 

mines other than gold mines.   
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