

Cartographie et Modélisation de l'Érosion Hydrique dans le Bassin-Versant de Ogo (Nord-est du Sénégal) par Approche Statistique Bivariée de la Valeur Informative et Ratio de Fréquence

Amadou Tidiane Dia

Laboratoire Leïdi "Dynamique des Territoires et Développement", Université Gaston Berger (UGB), Saint-Louis, Sénégal

Doi:10.19044/esj.2023.v19n6p222

Submitted: 15 January 2023 Copyright 2023 Author(s)

Accepted: 20 February 2023 Under Creative Commons BY-NC-ND

Published: 28 February 2023 4.0 OPEN ACCESS

Cite As:

Dia A.T. (2023). Cartographie et Modélisation de l'Érosion Hydrique dans le Bassin-Versant de Ogo (Nord-est du Sénégal) par Approche Statistique Bivariée de la Valeur Informative et Ratio de Fréquence). European Scientific Journal, ESJ, 19 (6), 222. https://doi.org/10.19044/esj.2023.v19n6p222

Résumé

Le bassin versant de Ogo connait des contraintes climatiques, écologiques fortes et changeantes. La dynamique de dégradation actuelle est de plus en plus marquée par une intensification de l'érosion hydrique. C'est dans cette perspective que le présent travail a été réalisé pour mesurer la vulnérabilité du bassin versant de Ogo face à cette morphodynamique. Pour ce faire nous avons adopté parmi de nombreuses méthodologies disponibles dans les revues scientifiques comme la théorique de l'évidence, la logistique régression, le processus de l'analyse hiérarchique (AHP), la méthode bivariée dont le ratio de fréquence et la valeur informative qui fait d'office de méthode de référence dans la présente étude. Dans l'application de cette méthode, nous avons procédé par le recensement des différents paramètres d'entrés dont les différents facteurs causatifs à l'érosion hydrique et la cartographie d'inventaire des différentes formes d'érosion recensé dans le bassin versant de Ogo. Ces données ont été traitées, stockées et analysées dans un logiciel du système d'information géographique afin de rendre l'application assez souple. La susceptibilité à l'érosion hydrique dans le bassin-versant de Ogo ayant été appréhendé par la méthode de la valeur informative a montré que : le bassin versant de Ogo est très vulnérable à l'érosion hydrique, ce que l'approche

descriptive des différentes formes d'érosions par la cartographie d'inventaire confirme. Les classes de susceptibilité sont reparties ainsi qu'il suit : très faible, faible, moyenne, forte et très fortes. La classe forte occupe 30,45 % de surface de susceptibilité tandis que la classe très forte occupe 20,28 % par rapport à l'ensemble de la zone étudiée et la classe moyenne occupe 27,89 %. Les résultats obtenus par la cartographie de la susceptibilité dudit bassin face à l'érosion hydrique ont été soumis à la validation par l'analyse de la courbe de ROC. Suite au croisement des données de l'inventaire sur la carte de susceptibilité, les surfaces des pixels pondérées obtenues sont déterminées par le calcul des Area under curver qui communique une information sur le taux de réussite ou d'échec de la méthode. Un taux inférieur ou égale à 60 % signifie l'échec de la méthodologie par la non précision des résultats obtenue ; par contre, un taux supérieur ou égale à 70 % signifie un niveau de précision de la méthode réussit. Le taux obtenu est de 78 %, révélant ainsi un bon résultat.

Mots-clés: Erosion hydrique, ratio de fréquence, valeur informative, bassin versant, Ogo

Mapping and Modelling of Water Erosion in the Ogo Watershed (North-East Senegal) Using a Bivariate Statistical Approach of the Information Value and Frequency Ratio

Amadou Tidiane Dia

Laboratoire Leïdi "Dynamique des Territoires et Développement", Université Gaston Berger (UGB), Saint-Louis, Sénégal

Abstract

The Ogo watershed is subject to strong and changing climatic and ecological constraints. The current degradation dynamics are increasingly marked by an intensification of water erosion. It is in this perspective that the present work was carried out with the aim of measuring the vulnerability of the Ogo watershed to this morphodynamic. In order to do so, we adopted among many methodologies available in scientific journals such as the evidence theory, logistic regression, the hierarchical analysis process (AHP), the bivariate method whose frequency ratio and informative value act as reference method in the present study. In the application of this method, we proceeded by listing the different input parameters including the different causative factors of water erosion and the inventory mapping of the different forms of erosion identified in the Ogo catchment. These data were processed,

stored and analysed in a Geographic Information System software to make the application flexible enough. The susceptibility to water erosion in the Ogo catchment area having been apprehended by the information value method showed that : the Ogo catchment area is very vulnerable to water erosion, a fact confirmed by the descriptive approach of the different forms of erosion by inventory mapping. The susceptibility classes are divided into very low, low, medium, high and very high. The strong class occupies 30.45% of the susceptibility area, while the very strong class occupies 20.28% of the entire study area and the medium class occupies 27.89%. The results obtained by mapping the susceptibility of the said basin to water erosion were subjected to validation by ROC curve analysis. Following the cross-referencing of the inventory data with the susceptibility map, the weighted pixel areas obtained are determined by calculating the Area under curver, which provides information on the success or failure rate of the method. A rate of less than or equal to 60% means the failure of the methodology due to the non-precision of the results obtained, whereas a rate of more than or equal to 70% means a successful precision rate of the method. The rate obtained is 78%, thus revealing a good result.

Keywords: Water erosion, frequency ratio, information value, catchment area, Ogo

1. Introduction

Le monde est confronté aux défis majeurs liés à la gestion des aléas climatiques : les sécheresses, les inondations, les glissements de terrains, la dégradation mécanique des sols : érosion hydrique. L'érosion hydrique est un problème environnemental mondial, entravant gravement le développement durable (Gao et Wang, 2018). Ce phénomène résulte d'un ensemble de processus complexes et interdépendants, liés à l'intensité de la pluie, au ruissellement, à la topographie, à la texture du sol, à la couverture végétale, aux techniques culturales et aux éventuels aménagements. Tous ces facteurs réunis contribuent directement ou indirectement au détachement et au transport des particules du sol (Wischmeier et Smith, 1965) non protégées par les pratiques antiérosives contre ce phénomène de perte des sols qui entraine en premier lieu, la dégradation de la croute de battance et en passant par l'érosion diffuse ou en nappe, la rigole, la ravine, le ravinement, le ravin et dans certain cas les torrents.

Ce fléau d'érosion hydrique provoque non seulement la dégradation du paysage agricole, la perte des sols mais aussi l'envasement des infrastructures hydro-agricoles. La modélisation de ce phénomène peut être un outil d'aide à la décision et à la gestion efficiente et durable des ressources en eau et en sol si les modèles sont adaptés aux conditions locales (Khaoula

Khemiri et *al.* 2021). Les mesures faites *in situ* révèlent que le bassin-versant de Ogo enregistre des épisodes très importants d'érosion hydrique dont plusieurs séquences descriptives ayant été cartographiée se localisent en amont et aux alentours des gros villages du dit bassin.

Les scientifiques et les chercheurs du monde entier ont développé plusieurs approches d'estimation des pertes des sols et du rendement sédimentaire à l'aide des modèles bien établis USLE, RUSLE et SWAT (Cohen et al. 2005; Dabral et al. 2008; Zhu 2014...). Parallèlement à ces approches, les chercheurs ont également mis l'accent sur les différentes techniques et algorithmes de fouille de données à savoir la théorie de l'évidence (WOE), le ratio de fréquence (FR), la logistique régression (LR), la valeur informative (IV), l'analyse processus hiérarchie (AHP) pour évaluer la susceptibilité de l'érosion hydrique d'une région donnée.

Le présent travail a pour but de quantifié par la méthode statistique bivariée de la valeur informative la susceptibilité du bassin-versant de Ogo face à l'érosion hydrique. Cette méthode se base sur la comparaison entre la distribution spatiale des phénomènes ou en d'autres termes, les différents facteurs causaux l'érosion hydrique par leurs pondérations suite à l'inventaire expérimental ou descriptif des différentes formes d'érosions cartographiée sur le site.

2. Matériel et méthodes

2.1. Zone d'étude

Le bassin versant de Ogo est localisé entre 13.29° latitude et 15.25° longitude. Il se trouve dans le grand ensemble éco-géographique (Sahel sénégalais) et particulièrement dans la Moyenne vallée du fleuve Sénégal (Nord du Sénégal). Cette région dispose de potentialités réelles de développement économique, mais qui est secoué par un problème de régression de ses ressources naturelles : sol, eau, végétation, etc. la pauvreté et l'insécurité alimentaire persistent encore, freinant ainsi son développement. Le bassin versant de Ogo se localise dans la Commune de Ogo dans la région de Matam. C'est un bassin versant qui a une superficie de 514 km² et un périmètre de 165 km. Il est limité, au nord par les Communes de Ourossogui, au nord-est par la Commune de Matam et la République Islamique de Mauritanie, au sud-est et à l'est par la Commune de Ouro Sidy, à l'ouest par la partie du Ferlo, la Commune de Ogo (Figure 1).

Le réseau hydrographique jalonne plusieurs localités, ainsi que plusieurs autres hameaux. Il constitue un laboratoire privilégié pour le suivi de la morpho-dynamique hydrique par ravinement du fait de sa forte densité de drainage des eaux de ruissellement de part et d'autre de ses versants. Son entaillement linéaire se prolonge d'amont en aval, avant de se jeter sur le fleuve Sénégal au droit des sites de Belly Thiowi et de Garly. Trois ponts sont

érigés sur cet axe hydraulique : un à hauteur de Danthiady sur la Nationale 3, un autre près de Ogo, sur la Nationale 2 et un troisième dans le Sud-est de la localité Navel, sur une bretelle conduisant au *Daande Maayo*.

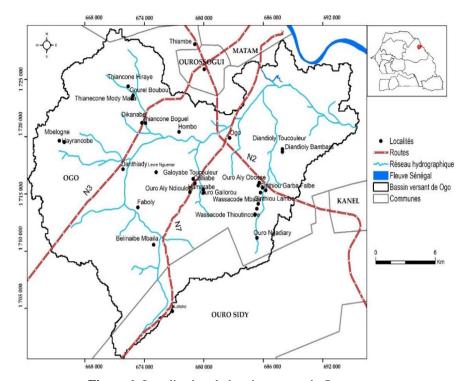


Figure 1. Localisation du bassin versant de Ogo

2.2. Données utilisées

Le SIG est outil d'aide à la décision très efficace qui permet d'étudier plusieurs thématiques et de mener plusieurs projets à bon terme. Pour étudier cette problématique de l'érosion hydrique dans le bassin versant de Ogo par l'approche statistique bivariée de la valeur informative, nous avons premièrement constitué une base de données analysable via le SIG, convoquant différentes données :

- un MNT SRTM (Shuttle Radar Topography Mission) de la zone est téléchargée directement via le logiciel global mapper à résolution de 29 m x 29 m. Il est également possible de télécharger ce fichier via le site USGS EarthExplorer (usgs.gov);
- une scène Landsat 8 de collection 2 dont l'acquisition temporelle s'est faite en 2021-11-10. Cette donnée a été téléchargée via USGS et la date a été choisi pour éviter tout problème de perturbation atmosphérique ;
- les précipitations mesurées *in situ* à l'aide des pluviomètres installés dans les parcelles d'expérimentations sont observées pendant 6 ans, ce qui a

permis de faire ressortir les résultats spatiaux du facteur R (érosivité des pluies);

- une cartographie de reconnaissance des différentes formes d'érosions hydriques a été élaborée (figure 2).

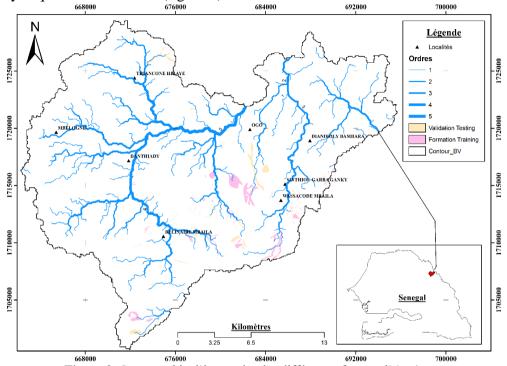
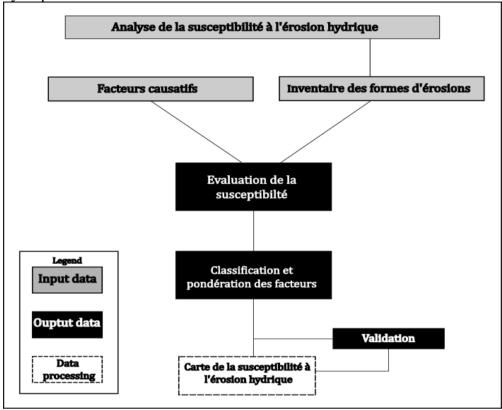


Figure 2. Cartographie d'inventaire des différentes formes d'érosions


Testing et Training sont les différents pourcentages d'exécutions de la méthode et sa validation.

La carte géologique du Sénégal au 1/200 000 (feuilles de Matam et Semmé édition 2009 confectionnée par le BRGM) a été exploitée. Toutes ces données ont été analysées et traitées pour éliminer certaines anomalies et ambiguïtés.

2.3. Facteurs conditionnant l'érosion des sols

Pour étudier l'érosion hydrique par la méthode bivariée de la valeur informative, un certain nombre de paramètres ou facteurs sont nécessaires dans le but d'appréhender la description des différents facteurs conditionnant le processus du déclenchement de l'érosion hydrique (figure 3). La nature du sol, la topographie et le climat constituent dans un premier temps les facteurs clé de prédisposition d'une région donnée à l'érosion hydrique. C'est dans ce cadre qu'un certain nombre de facteurs jugés pertinents, par rapport à leurs degrés de susceptibilité à l'érosion hydrique, sont convoqués pour passer à l'analyse par approche bivariée de la valeur informative ; ce qui a permis de

mieux apprécier la susceptibilité du bassin-versant de Ogo face à l'érosion hydrique.

Figure 3. Organigramme de la méthodologie utilisée dans la cartographie de la susceptibilité à l'érosion hydrique

2.3.1. Cartographie d'inventaire des différentes formes d'érosions hydriques dans le bassin versant de Ogo

L'inventaire des formes d'érosions hydriques représente une étape fondamentale dans l'étude de la susceptibilité d'une zone donnée à l'érosion hydrique. Cet inventaire consiste à collecter l'information sur le type, la dimension et la localisation de l'érosion hydrique. Pour faire cet inventaire plusieurs méthodes techniques peuvent être utilisées pour cartographier les différentes formes d'érosions et établir ainsi les cartes d'inventaires. Par ailleurs, cette étape nécessite cependant les compétences, connaissance et expériences de la géomorphologie : l'analyse des formes d'érosion et leurs modelés.

Il existe par ailleurs plusieurs méthodes d'inventaires : l'inventaire par événement, inventaire géomorphologique, inventaire multi-date. Tous ces inventaires requièrent une forte présence des données dont nous ne disposons

pas, et la plupart de ces inventaires sont utilisés dans la cartographie de la susceptibilité aux glissements de terrains.

Dans le cadre de cette contribution, nos connaissances en géomorphologie et notre expérience dans le cadre de telle étude sont mises en œuvre pour l'utilisation de la méthode conventionnelle dites de cartographie de susceptibilité aux aléas naturels et climatiques dont : l'interprétation de la photographie aérienne à résolution près de 1 m ainsi que l'interprétation des imageries satellitaire à résolution de 2,5 m de Spot 5 libre d'utilisation.

L'inventaire statistique des différentes formes d'érosions dans le bassin versant de Ogo a livré quelque 220 formes d'érosions repartis en érosion diffuse ou en nappe, en rigole, en ravine, en ravinement, en érosion dite latérale ou affouillement des berges et ravin. Etant donné que la méthodologie de la valeur informative nécessite cette cartographie, nous avons repartis ces 220 formes d'érosions pour l'approche bivariée en 65 % de formation dite training, ce qui équivaut à 143 formes d'érosions ayant servis à la construction des modèles statistiques et les 77 formes restantes dite testing ont servi pour la validation de la courbe AUC. La carte de susceptibilité finale (figure 4) a été obtenue par pondération des modèles statistique bivariée et croissement des facteurs.

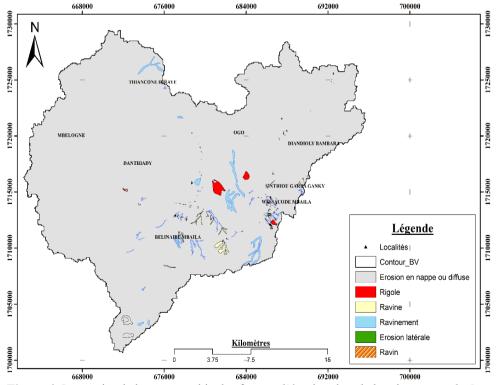


Figure 4. Inventaire de la cartographie des formes d'érosion dans le bassin versant de Ogo

Facteurs causatifs : description de l'approche bivariée

Les méthodes bivariées sont : le ratio de fréquence, la valeur informative.

ISSN: 1857-7881 (Print) e - ISSN 1857-7431

Le Ratio de fréquence. La méthode statistique connue par ratio de fréquence est une méthode simple et facile à appliquer. Cette méthode statistique repose sur le calcul du ratio entre le pourcentage du phénomène dans une classe donnée et le pourcentage de la même classe dans la zone d'étude (Lee and Min 2001). La valeur moyenne du RF est égale à 1, dans le cas où la valeur est supérieure à 1, indique que la corrélation entre le phénomène et le facteur de prédisposition est forte, dans le cas contraire, cette corrélation est faible. Cette méthode est également appliquée dans l'étude de l'analyse de la susceptibilité d'une zone donnée face aux glissements de terrains. Elle peut être également être appliquée à l'étude de l'érosion hydrique et la cartographie des inondations. Elle est obtenue par l'équation (1) donnée par la formule :

ISG ou ISEH =
$$RF1 + RF2 + RF3 + ... + RFn$$

Avec ISG = Indice de susceptibilité au glissement de terrain et ISEH = Indice de susceptibilité à l'érosion hydrique et RF = Ratio de fréquence pour chaque classe causative.

Valeur informative. La valeur informative est une approche introduite à l'origine par (Yin 1988), modifiée par Van Westen (1993), cette méthode se base sur la comparaison entre la distribution spatiale des phénomènes à la faveur des différents facteurs. Elle s'appuie sur l'analyse statistique basée en premier lieu sur l'évaluation du ratio donné par la méthode de ratio de fréquence. L'équation (2) de cette méthode est la suivante :

$$W(i) = \frac{\text{Npix(Si)/Npix(Ni)}}{\sum \text{Npix(si)/}\sum \text{Npix(Ni)}}$$

Où W(i) est le poids de chaque classe (par exemple le poids de la classe 10° pente), Npix (Si) est le nombre glissement/érosion/inondation dans la classe i, Npix(Ni) est le nombre de pixels de la classe i. Dans une seconde étape la probabilité d'occurrence des glissements des terrains/érosions hydrique/inondations dans chaque classe qui est déterminée par l'algorithme du ratio donné par l'équation (3)

$$Pr(i) = \ln \frac{Npix(Si)/Npix(Ni)}{\sum Npix(Si)/\sum Npix(Ni)}$$

Enfin l'indice de susceptibilité aux glissements de terrains (ISG)/ érosion hydrique (ISEH) déterminé par la synthèse additive de l'ensemble des facteurs (équation 4) après l'intégration de la probabilité d'occurrence des glissements ou érosion pour chaque classe envisagée.

ISG ou ISEH = $\sum_{i=1}^{n} ln \frac{\text{Npix(Si)/Npix(Ni)}}{\sum \text{Npix(Si)/}\sum \text{Npix(Ni)}}$

ISG ou ISEH =
$$\sum_{i=1}^{n} ln \frac{\text{Npix(Si)/Npix(Ni)}}{\sum \text{Npix(si)/}\sum \text{Npix(Ni)}}$$

Nota bene : Dans notre cas, nous avons utilisé la méthode de la valeur informative par son efficacité et sa fluidité dans l'application, car cette méthode donne les résultats bien affinés et fiables.

Les facteurs causatifs à l'érosion hydrique sont respectivement : la topographie, la pente, l'exposition des versants, l'indice de courbure plan et profil, les précipitations mensuelles, la densité de drainage, le facteurs LS, l'indice de puissance des sédiments aux transports, l'indice d'humidité topographique, le couvert végétal, les faciès géologiques et l'occupation du sol (figure 5 et 6). Le choix de chaque facteur fait référence à l'étude géomorphologique et les processus de modelés d'érosions ainsi qu'à la bibliographie.

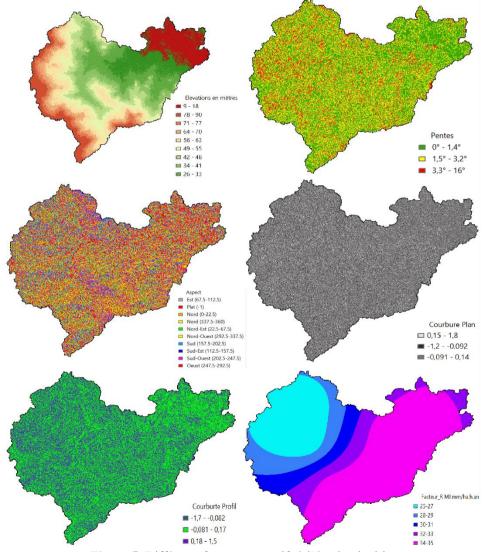
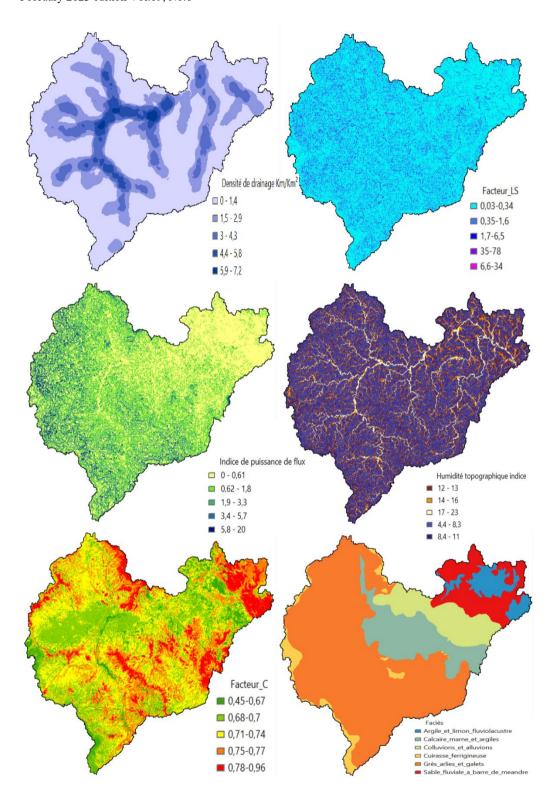



Figure 5. Différents facteurs causatifs à l'érosion hydrique

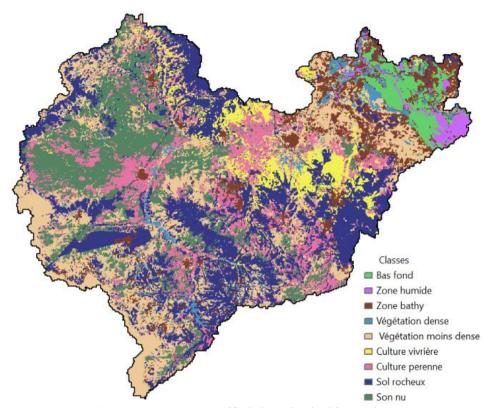


Figure 6. Facteurs causatifs de l'érosion hydrique suite

3. Résultat et discussion

La modélisation des différents paramètres de l'étude a été prise en compte par le logiciel ArcGis et ces différents paramètres ont été croisés avec la carte d'inventaire. Par cette démarche, les valeurs informatives ont été calculées par l'équation 4 qui a permis de calculer la probabilité d'occurrence de chaque facteur à l'érosion hydrique dont les résultats sont représentés dans le tableau 1. Dans la ligne intitulée IV (valeur informative), il apparait que les résultats négatifs et positifs signifient que les plus fortes valeurs indiquent un grand potentiel de susceptibilité à l'érosion hydrique.

De ce fait, l'application de ladite équation a permis de cartographier dans le bassin versant de Ogo les indices de susceptibilité à l'érosion hydrique pour chaque classe. La valeur minimale obtenue par rapport à l'ensemble des classes est de -0.03 et la valeur maximale de 2.43.

La carte finale de la susceptibilité à l'érosion hydrique a été recalcifiée en 5 classes selon l'algorithme des plus proche voisin (figure 7), et la susceptibilité varie de très faible à très forte reparties de la façon suivante: la classe une (1) a montré une susceptibilité très faible par rapport à l'ensemble du bassin versant d'Ogo, elle occupe 6,11 %, la classe deux (2) révèle une

susceptibilité faible et occupe 15,28 % par rapport à l'ensemble du bassin versant, la classe trois (3) souligne une susceptibilité moyenne par rapport à l'ensemble du bassin versant et occupe 27,86 %, la classe 4 fait apparaitre une susceptibilité forte et occupe 30,45 % par rapport à l'ensemble du bassin versant et la classe cinq (5) montre une susceptibilité très forte par rapport à l'ensemble du bassin versant et occupe 20,28 %.

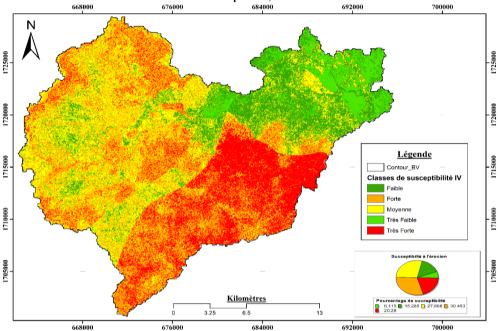
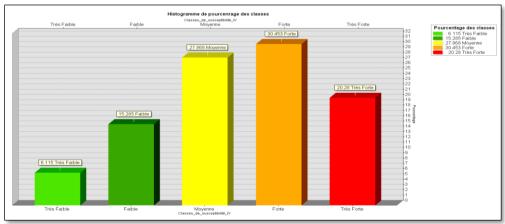



Figure 7. Carte de la susceptibilité à l'érosion hydrique

La carte 7 de la susceptibilité à l'érosion hydrique du bassin versant de Ogo obtenue par la méthode de la valeur informative.

Figure 8. Répartition des différentes classes de susceptibilité à l'érosion hydrique pour l'approche IV

Facteurs causaux	Classes	Pixels dans la classe	Percentage de la classe	Forme d'érosion dans la classe	Percentage de forme d'érosion dans la classe	FR	RF	IV
ELEVATION	09_18	68839	11.718	8.000	0.213	0.018	0.002	-4.007
Métres	19 – 25	59818	10.183	189.000	5.033	0.494	0.049	-0.705
	26 – 33	70227	11.955	799.000	21.278	1.780	0.177	0.577
	34 – 41	70176	11.946	738.000	19.654	1.645	0.163	0.498
	42 – 48	64828	11.035	409.000	10.892	0.987	0.098	-0.013
	49 – 55	65240	11.106	608.000	16.192	1.458	0.145	0.377
	56 - 63	70972	12.081	298.000	7.936	0.657	0.065	-0.420
	64 - 70	43095	7.336	306.000	8.149	1.111	0.110	0.105
	71 - 77	31542	5.369	353.000	9.401	1.751	0.174	0.560
	78 - 90	42715	7.271	47.000	1.252	0.172	0.017	-1.759
Somme		587452	100.000	3755.000	100.000	10.073	1.000	0.000
Pentes	0 - 1,4	290743	49.946	1939.000	51.652	1.034	0.363	-1.355
Pentes	1,5 - 3,2	223080	38.322	1462.000	38.945	1.016	0.356	0.107
	3,3 - 16	68290	11.731	353.000	9.403	0.802	0.281	-0.221
Somme		582113	100.000	3754.000	100.000	2.852	1.000	0.000
ASPECT	Flat (-1)	101773	17.483	596.000	15.876	0.908	0.090	-0.096
Aspect	North (0-22.5)	64144	11.019	422.000	11.241	1.020	0.101	0.020
	Northeast (22.5-67.5)	64265	11.040	378.000	10.069	0.912	0.091	-0.092
	East (67.5-112.5)	60614	10.413	351.000	9.350	0.898	0.089	-0.108
	Southeast (112.5-157.5)	38584	6.628	233.000	6.207	0.936	0.093	-0.066
	South (157.5-202.5)	49059	8.428	252.000	6.713	0.797	0.079	-0.228
	Southwest (202.5-247.5)	45847	7.876	261.000	6.953	0.883	0.088	-0.125
	West (247.5-292.5)	56226	9.659	414.000	11.028	1.142	0.113	0.133
	Northwest (292.5-337.5)	57548	9.886	488.000	12.999	1.315	0.131	0.274
	North (337.5-360)	44053	7.568	359.000	9.563	1.264	0.125	0.234
Somme		582113	100.000	3754.000	100.000	10.074	1.000	0.000
COURBURE PLAN	-1,20,092	93327	15.887	603.000	16.059	1.011	0.341	0.011
	-0,091 - 0,14	383476	65.278	2491.000	66.338	1.016	0.343	0.016
	0,15 - 1,8	110649	18.835	661.000	17.603	0.935	0.316	-0.068

Somme		587452	100.000	3755.000	100.000	2.962	1.000	0.000
COURBURE PROFIL	-1,70,082	156708	26.676	973.000	25.912	0.971	0.332	-0.029
	-0,081 - 0,17	321768	54.773	2146.000	57.150	1.043	0.356	0.042
	0,18 - 1,5	108976	18.551	636.000	16.937	0.913	0.312	-0.091
Somme		587452	100.000	3755.000	100.000	2.928	1.000	0.000
FACTEUR R	320 - 350	124470	21.779	156.000	4.154	0.191	0.057	-1.657
	360 - 370	65701	11.496	432.000	11.505	1.001	0.301	0.001
	380 - 390	50114	8.769	109.000	2.903	0.331	0.100	-1.106
	400 - 410	67824	11.868	21.000	0.559	0.047	0.014	-3.055
	420 - 440	263399	46.088	3037.000	80.879	1.755	0.528	0.562
Somme		571508	100.000	3755.000	100.000	3.325	1.000	0.000
DENSITE DE DRAINAGE	0 - 1,4	358082	60.955	2770.000	73.768	1.210	0.368	0.191
	1,5 - 2,9	137225	23.359	706.000	18.802	0.805	0.245	-0.217
	3 - 4,3	67629	11.512	266.000	7.084	0.615	0.187	-0.486
	4,4 - 5,8	21432	3.648	0.000	0.000	0.000	0.000	0.000
	5,9 - 7,2	3084	0.525	13.000	0.346	0.659	0.200	-0.416
Somme		587452	100.000	3755.000	100.000	3.290	1.000	0.000
FACTEUR LS	0,03-0,34	166530	28.348	2692.000	71.691	2.529	0.484	0.928
	0,35-1,6	379550	64.610	1016.000	27.057	0.419	0.080	-0.870
	1,7-6,5	40998	6.979	42.000	1.119	0.160	0.031	-1.831
	6,6-34	370	0.063	5.000	0.133	2.114	0.405	0.749
	35-78	4	0.001	0.000	0.000	0.000	0.000	0.000
Somme		587452	100.000	3755.000	100.000	5.222	1.000	0.000
INDICE DE PUISSANCE DE FLUX	0 - 0,61	258829	44.060	1570.000	41.811	0.949	0.206	-0.052
	0,62 - 1,8	177622	30.236	1280.000	34.088	1.127	0.245	0.120
	1,9 - 3,3	100562	17.118	634.000	16.884	0.986	0.214	-0.014
	3,4 - 5,7	41659	7.091	234.000	6.232	0.879	0.191	-0.129
	5,8 - 20	8780	1.495	37.000	0.985	0.659	0.143	-0.417
Somme		587452	100.000	3755.000	100.000	4.601	1.000	0.000
INDICE D'HUMIDITÉ TOPOGRAPHIQU E	4,4 - 8,3	257712	43.869	1516.000	40.373	0.920	0.169	-0.083

	8,4 - 11	130124	22.151	843.000	22.450	1.014	0.186	0.013
	12_13	108731	18.509	641.000	17.071	0.922	0.170	-0.081
	14 - 16	68202	11.610	571.000	15.206	1.310	0.241	0.270
	17 - 23	22683	3.861	184.000	4.900	1.269	0.233	0.238
Somme		587452	100.000	3755.000	100.000	5.435	1.000	0.000
FACTEUR C	0,45-0,67	38047	6.657	481.108	12.804	1.923	0.321	0.654
	0,68-0,7	148826	26.041	928.291	24.706	0.949	0.158	-0.053
	0,71-0,74	195983	34.292	1050.624	27.962	0.815	0.136	-0.204
	0,75-0,77	129085	22.587	737.082	19.617	0.869	0.145	-0.141
	0,78-0,96	59567	10.423	560.264	14.911	1.431	0.239	0.358
Somme		571508	100.000	3757.368	100.000	5.987	1.000	0.000
LITHOLOGIE	Argile_et_limon_fluviolacustre	28594	4.867	0.000	0.000	0.000	0.000	0.000
	Sable_fluviale_a_barre_de_meandr e	56197	9.565	11.000	0.293	0.031	0.008	-3.486
	Cuirasse_ferrigineuse	24209	4.120	39.000	1.039	0.252	0.065	-1.378
	Colluvions_et_alluvions	58348	9.931	72.000	1.917	0.193	0.050	-1.645
	Calcaire_marne_et_argiles	80427	13.689	1146.000	30.519	2.230	0.579	0.802
	Grès_arlies_et_galets	339770	57.829	2487.000	66.232	1.145	0.297	0.136
Somme		587545	100.000	3755.000	100.000	3.851	1.000	0.000
OCCUPATION DU SOL	Bas fond	17596	2.997	1.000	0.027	0.009	0.001	-4.723
	Zone humide	8276.000	1.410	0.000	0.000	0.000	0.000	0.000
	Zone bathy	49116.000	8.367	39.000	1.039	0.124	0.013	-2.086
	Végétation dense	17322.000	2.951	185.000	4.927	1.670	0.180	0.513
	Végétation moins den	127073.000	21.646	752.000	20.027	0.925	0.100	-0.078
	Culture vivrière	37603.000	6.405	1024.000	27.270	4.257	0.459	1.449
	Culture perenne	78640.000	13.396	367.000	9.774	0.730	0.079	-0.315
	Sol rocheux	146707.000	24.991	1203.000	32.037	1.282	0.138	0.248
	Son nu	104717.000	17.838	184.000	4.900	0.275	0.030	-1.292
Somme		587050	100.000	3755.000	100.000	9.272	1.000	0.000

Tableau 1. Tableau récapitulatif des résultats de l'étude de l'érosion hydrique du bassin versant de Ogo

Le tableau 1 montre les différents facteurs et fait l'inventaire pour la cartographie de la susceptibilité à l'érosion hydrique par la méthode bivariée de la valeur informative et ratio de fréquence.

L'utilisation des méthodes statistiques nécessite une validation des résultats obtenu dans le but de vérifier si la méthodologie effectuée à réussit ou non. Cette validation passe par l'analyse de la courbe de ROC (dite la courbe de réussite). La méthode de validation est basée sur la comparaison entre la carte d'inventaire et la carte de susceptible obtenue. La validation repose alors sur le croissement des pixels des inventaires et celle de la carte de susceptibilité a l'érosion hydrique recalcifier en 100 classes. Pour les pixels d'inventaire des formes, la validation sera répartie en 65% des training (formations des formes d'érosions) et 35% des testing pour la courbe AUC. Les résultats de croissement effectué seront alors exportés vers la feuille Excel pour compléter de calcul et générer ainsi les courbes de AUC ou courbe de ROC.

La courbe suivante montre les performances de l'étude ayant été réalisée dans le bassin versant de Ogo par la méthode bivariée de la valeur informative avec une précision présumant un taux de 79% pour l'approche de validation par training et 78.02 par testing (Figure 9).

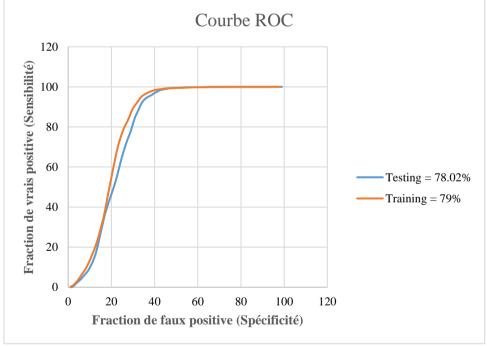


Figure 9. Taux de réussite du modèle construit par IV

Dans la courbe ROC, la sensibilité et la spécificité de toutes les valeurs de coupure possibles sont tracées (Akgün et Türk 2011) ; Roy et Saha 2021 ; Gayen et *al.* 2019). La sensibilité était constituée de toutes les cellules détectées et formes d'érosions dans tout le bassin versant. L'ensemble des données de validation a été comparée avec la carte de susceptibilité à l'érosion

et analysé à l'aide de plusieurs mesures, notamment l'aire sous la courbe ROC (AUCRO, Lee et Park 2013; Pradhan et *al.* 2014; Bui et *al.* 2018; Akgün et Türk 2011; Roy et Saha 2021; Gayen et *al.* 2019). Même s'il n'existe pas de critère cohérent pour choisir une valeur de coupure pour l'estimation des catastrophes naturelles, les chercheurs ont suggéré la probabilité (P) si l'approche est supérieure à 50; par ailleurs, si la valeur de l'AUC est inférieure à 50 %, le modèle n'est pas adapté et représente une prédiction aléatoire et faible. Par contre, si la valeur est proche de 100 %, le modèle est très approprié (Walter, 2002).

Tableau 2. Statistique du résultat de la méthode IV

	MAP TESTING 65 %						
OBJECTID	VALUE	AREA CROISSEM ENT	PERCENTAGE	CUMULATIVE AREA	AUC		
				0			
1	1	900	0	0	0		
2	2	8100	0	0	0.1338091		
3	3	13500	0.2676182	0.267618198	0.72256913		
4	4	45900	0.90990187	1.177520071	1.61462979		
5	5	44100	0.87421945	2.051739518	2.82783229		
6	6	78300	1.55218555	3.603925067	4.24620874		
7	7	64800	1.28456735	4.888492417	5.87867975		
8	8	99900	1.98037467	6.868867083	7.46654773		
9	9	60300	1.19536128	8.064228368	8.98305085		
10	10	92700	1.83764496	9.901873327	11.0972346		
11	11	120600	2.39072257	12.2925959	13.3363069		
12	12	105300	2.08742194	14.38001784	15.9322034		
13	13	156600	3.1043711	17.48438894	18.5727029		
14	14	109800	2.17662801	19.66101695	21.5967886		
15	15	195300	3.87154326	23.53256021	25.0490633		
16	16	153000	3.03300624	26.56556646	29.0900981		
17	17	254700	5.04906334	31.61462979	33.2024978		
18	18	160200	3.17573595	34.79036574	37.9214987		
19	19	315900	6.26226583	41.05263158	43.8358608		
20	20	280800	5.56645852	46.6190901	49.3131133		
21	21	271800	5.38804639	52.00713649	54.7992864		
22	22	281700	5.58429973	57.59143622	60.0981267		
23	23	252900	5.01338091	62.60481713	65.3345227		
24	24	275400	5.45941124	68.06422837	70.1338091		
25	25	208800	4.13916146	72.20338983	73.8447814		
26	26	165600	3.28278323	75.48617306	77.074041		
27	27	160200	3.17573595	78.66190901	79.8037467		
28	28	115200	2.28367529	80.9455843	81.9357716		
29	29	99900	1.98037467	82.92595897	84.1748439		
30	30	126000	2.49776985	85.42372881	86.9134701		
31	31	150300	2.9794826	88.40321142	89.3131133		
32	32	91800	1.81980375	90.22301517	90.8563782		

33	33	63900	1.26672614	91.4897413	92.3104371
34	34	82800	1.64139161	93.13113292	93.8626227
35	35	73800	1.46297948	94.5941124	95.14719
36	36	55800	1.10615522	95.70026762	95.9768064
37	37	27900	0.55307761	96.25334523	96.5834077
38	38	33300	0.66012489	96.91347012	97.1364853
39	39	22500	0.44603033	97.35950045	97.6092774
40	40	25200	0.49955397	97.85905442	98.0463872
41	41	18900	0.37466548	98.23371989	98.3586084
42	42	12600	0.24977698	98.48349688	98.5816236
43	43	9900	0.19625335	98.67975022	98.7332739
44	44	5400	0.10704728	98.7867975	98.8492417
45	45	6300	0.12488849	98.91168599	99.0008921
46	46	9000	0.17841213	99.09009813	99.1525424
47	47	6300	0.12488849	99.21498662	99.2595897
48	48	4500	0.08920607	99.30419269	99.3309545
49	49	2700	0.05352364	99.35771632	99.3755575
50	50	1800	0.03568243	99.39339875	99.41124
51	51	1800	0.03568243	99.42908118	99.455843
52	52	2700	0.05352364	99.48260482	99.4826048
53	53	0	0.03332301	99.48260482	99.4915254
54	54	900	0.01784121	99.50044603	99.5361285
55	55	3600	0.07136485	99.57181088	99.6074933
56	56	3600	0.07136485	99.64317574	99.6699376
57	57	2700	0.05352364	99.69669938	99.7145406
58	58	1800	0.03568243	99.7323818	99.750223
59	59	1800	0.03568243	99.76806423	99.7769848
60	60	900	0.01784121	99.78590544	99.794826
61	61	900	0.01784121	99.80374665	99.8126673
62	62	900	0.01784121	99.82158787	99.8215879
63	63	0	0	99.82158787	99.8305085
64	64	900	0.01784121	99.83942908	99.8394291
65	65	0	0	99.83942908	99.8661909
66	66	2700	0.05352364	99.89295272	99.9107939
67	67	1800	0.03568243	99.92863515	99.9375558
68	68	900	0.01784121	99.94647636	99.9464764
69	69	0	0	99.94647636	99.955397
70	70	900	0.01784121	99.96431757	99.9643176
71	71	0	0	99.96431757	99.9643176
72	72	0	0	99.96431757	99.9643176
73	73	0	0	99.96431757	99.9643176
74	74	0	0	99.96431757	99.9643176
75	75	0	0	99.96431757	99.9732382
76	76	900	0.01784121	99.98215879	99.9910794
77	77	900	0.01784121	100	100
78	78	0	0	100	100
79	79	0	0	100	100
80	80	0	0	100	100

				Area under cuver =	78.9681534
Somme		5044500			7896.81534
100	100	0	0	100	
99	99	0	0	100	100
98	98	0	0	100	100
97	97	0	0	100	100
96	96	0	0	100	100
95	95	0	0	100	100
94	94	0	0	100	100
93	93	0	0	100	100
92	92	0	0	100	100
91	91	0	0	100	100
90	90	0	0	100	100
89	89	0	0	100	100
88	88	0	0	100	100
87	87	0	0	100	100
86	86	0	0	100	100
85	85	0	0	100	100
84	84	0	0	100	100
83	83	0	0	100	100
82	82	0	0	100	100
81	81	0	0	100	100

Tableau 3. MAP TESTING 35 % VALIDATION

	MAP TESTING 35 % VALIDATION								
OBJECTID	VALUE	AREA CROISSEMENT	PERCENTAGE	CUMULATIVE AREA	AUC				
OBCECTIO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	011010021112111	TEROEL TITOE	0	1100				
1	1	3600	0	0	0				
2	2	9000	0	0	0.21978022				
3	3	14400	0.43956044	0.43956044	1.08516484				
4	4	42300	1.29120879	1.730769231	2.15659341				
5	5	27900	0.85164835	2.582417582	3.13186813				
6	6	36000	1.0989011	3.681318681	4.14835165				
7	7	30600	0.93406593	4.615384615	5.41208791				
8	8	52200	1.59340659	6.208791209	6.66208791				
9	9	29700	0.90659341	7.115384615	7.87087912				
10	10	49500	1.51098901	8.626373626	9.75274725				
11	11	73800	2.25274725	10.87912088	11.8543956				
12	12	63900	1.95054945	12.82967033	14.4505495				
13	13	106200	3.24175824	16.07142857	17.6923077				
14	14	106200	3.24175824	19.31318681	22.1840659				
15	15	188100	5.74175824	25.05494505	26.978022				

16	16	126000	3.84615385	28.9010989	31.6895604
17	17	182700	5.57692308	34.47802198	36.2362637
18	18	115200	3.51648352	37.99450549	39.8214286
19	19	119700	3.65384615	41.64835165	43.1730769
20	20	99900	3.04945055	44.6978022	46.3186813
21	21	106200	3.24175824	47.93956044	49.6016484
22	22	108900	3.32417582	51.26373626	53.0494505
23	23	117000	3.57142857	54.83516484	57.0054945
24	24	142200	4.34065934	59.17582418	61.3598901
25	25	143100	4.36813187	63.54395604	65.3571429
26	26	118800	3.62637363	67.17032967	68.9285714
27	27	115200	3.51648352	70.68681319	72.2802198
28	28	104400	3.18681319	73.87362637	75.1648352
29	29	84600	2.58241758	76.45604396	77.9945055
30	30	100800	3.07692308	79.53296703	81.5934066
31	31	135000	4.12087912	83.65384615	84.9175824
32	32	82800	2.52747253	86.18131868	87.2252747
33	33	68400	2.08791209	88.26923077	89.5879121
34	34	86400	2.63736264	90.90659341	91.8543956
35	35	62100	1.8956044	92.8021978	93.3379121
36	36	35100	1.07142857	93.87362637	94.2994505
37	37	27900	0.85164835	94.72527473	95.0412088
38	38	20700	0.63186813	95.35714286	95.5357143
39	39	11700	0.35714286	95.71428571	96.1950549
40	40	31500	0.96153846	96.67582418	96.9505495
41	41	18000	0.54945055	97.22527473	97.4587912
42	42	15300	0.46703297	97.69230769	98.0631868
43	43	24300	0.74175824	98.43406593	98.5164835
44	44	5400	0.16483516	98.5989011	98.7087912
45	45	7200	0.21978022	98.81868132	98.9148352
46	46	6300	0.19230769	99.01098901	99.1208791
47	47	7200	0.21978022	99.23076923	99.3131868
48	48	5400	0.16483516	99.3956044	99.4230769
49	49	1800	0.05494505	99.45054945	99.478022
50	50	1800	0.05494505	99.50549451	99.5192308
51	51	900	0.02747253	99.53296703	99.5741758
52	52	2700	0.08241758	99.61538462	99.6291209

53	53	900	0.02747253	99.64285714	99.6703297
54	54	1800	0.05494505	99.6978022	99.7115385
55	55	900	0.02747253	99.72527473	99.739011
56	56	900	0.02747253	99.75274725	99.7664835
57	57	900	0.02747253	99.78021978	99.793956
58	58	900	0.02747253	99.80769231	99.8076923
59	59	0	0.02747255	99.80769231	99.8076923
60	60	0	0	99.80769231	99.8076923
61	61	0	0	99.80769231	99.8214286
62	62	900	0.02747253	99.83516484	99.8351648
63	63	0	0.02747255	99.83516484	99.8489011
64	64	900	0.02747253	99.86263736	99.8763736
65	65	900		99.89010989	99.9175824
66	66	1800	0.02747253	99.94505495	99.9450549
	67	0	0.03494303		99.9450549
67	68			99.94505495	
68	69	0	0	99.94505495	99.9450549
69 70	70	0	0	99.94505495	99.9450549
70				99.94505495	99.9450549
71	71	900	0 02747252	99.94505495	99.9587912
72	73	0	0.02747253	99.97252747	99.9725275
73		-	0	99.97252747	99.9725275
74	74	0	0	99.97252747	99.9725275
75		0	0	99.97252747	99.9725275
76	76	0	0	99.97252747	99.9725275
77	77	0	0	99.97252747	99.9725275
78	78	0	0	99.97252747	99.9725275
79	79	0	0	99.97252747	99.9725275
80	80	0	0	99.97252747	99.9725275
81	81	0	0	99.97252747	99.9725275
82	82	0	0	99.97252747	99.9725275
83	83	0	0	99.97252747	99.9725275
84	84	0	0	99.97252747	99.9725275
85	85	0	0	99.97252747	99.9725275
86	86	0	0	99.97252747	99.9725275
87	87	0	0	99.97252747	99.9725275
88	88	0	0	99.97252747	99.9725275
89	89	0	0	99.97252747	99.9725275

Somme		3276000			7802.33516
100	100	0	0	100	
99	99	0	0	100	100
98	98	0	0	100	100
97	97	0	0	100	100
96	96	0	0	100	100
95	95	0	0	100	100
94	94	900	0.02747253	100	100
93	93	0	0	99.97252747	99.9862637
92	92	0	0	99.97252747	99.9725275
91	91	0	0	99.97252747	99.9725275
90	90	0	0	99.97252747	99.9725275

Area under cuver = 78.0233516

Les tableaux 2 et 3 résultent du croissement de la carte de susceptibilité à l'érosion hydrique obtenue par l'étude thématique des différents facteurs causaux et celle des pourcentages de training et testing issus des données d'inventaires de formes. Le tableau intitulé map training 65 % résume les objectifs de la méthode de valeur informative. Dans ce tableau, les areas croisements représentent les pixels de surface de chaque forme d'érosion croisée avec la carte de susceptibilité à l'érosion hydrique. La somme des surfaces de ces areas croisements a permis de calculer la surface totale, dont cette dernière a permis de déterminer les pourcentages de chaque pixel de valeurs croisé. Cela a permis d'obtenir ainsi le pourcentage cumulatif du degré de sensibilité à l'érosion hydrique par l'approche bivariée de la valeur informative tout en déterminant la courbe de ROC par le calcul des Area under cuver. Si la valeur obtenue est comprise en 30 et 60 % comme pourcentage de validation de la courbe de ROC, l'approche est dite non convaincante et non réussit; cependant, si cette valeur est supérieure ou égale à 70 %, l'approche est dite convaincante et réussit et la sensibilité à l'érosion hydrique est omniprésente.

La méthode bivariée de la valeur informative a montré de meilleurs résultats avec un taux de précision de l'application à 79 % pour les training ou formation des formes d'érosion et 78 % pour la validation des testing. Ces résultats, enseignent que le bassin versant de Ogo et vulnérable face à la morphodynamique hydrique du fait de l'absence des pratiques antiérosifs, du taux de couvert végétal faible (forces de frottement) et d'un faciès à 25 % friable.

Conclusion

Le présent travail avait pour but d'étudier l'érosion hydrique dans le bassin versant de Ogo par le biais des méthodes statistiques bivariées dont la valeur informative. L'application de cette méthode pour la cartographie du risque des pertes de sol dans le bassin versant de Ogo a montré une forte susceptibilité de l'érosion hydrique dans ce dernier, ce qui se confirme avec les enquêtes effectuées in situ qui ont montré que le bassin versant de Ogo est très vulnérable du point de vue perte des sols. La validation de la méthode bivariée de la valeur informative tout en passant par la vérification de la courbe de ROC a confirmé par un pourcentage de près de 79% comme pourcentage de vulnérabilité dudit bassin face à l'érosion hydrique. Nous avons aussi constaté lors de la cartographie des formes d'érosions que la majorité des formes dominantes dans la zone sont les réseaux de ravinements, suivi des ravines et rigoles. Suite à cette étude, le bassin-versant de Ogo est très sensible à l'érosion; ayant un faible degré de couvert forestier, une géologie friable de près de 25 % par rapport à l'ensemble de la zone et une érosive omniprésence est ce qui rend ce bassin vulnérable à l'érosion hydrique avec une absence des pratiques antiérosifs les pertes des sols seront très accentuée au cours des prochaines décennies.

References:

- 1. Anna M., (2021): Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models p. 37
- 2. Abderrazzak Es-S., Brahim E. M., Abdelouahed El O. T., Mustapha N. & Riyaz A. M., (2022): Landslide susceptibility mapping using GIS-based bivariate models in the Rif chain (northernmost Morocco) p.32
- 3. Abderrazzak Es-S., Brahim E. M., Riyaz A. M., Abdelouahed E. O. T., Mustapha N., (2022): Spatial prediction of landslide susceptibility using Frequency Ration (FR) and Shannon Entropy (SE) models: a case study from northern Rif, Morocco. P. 30
- 4. Abhishek G., (2021): Soil erosion susceptibility assessment using logistic regression, decision tree and random forest: study on the Mayurakshi river basin of Eastern India p. 16
- 5. Arabameri A., Pradhan B., Rezaei K. (2019b) Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in GIS. J Environ Manage 232:928–932. https://doi.org/10.1016/j.jenvman.2018.11.110
- 6. Arora A., Pandey M., Siddiqui M., Hong H., Mishra V. (2019): Spatial food susceptibility prediction in Middle Ganga Plain: comparison of frequency ratio and Shannon's entropy models. Geocarto Int. Spatial flood susceptibility prediction in Middle Ganga Plain: comparison of

- frequency ratio and Shannon's entropy models: Geocarto International: Vol 36, No 18 (tandfonline.com) Spatial flood susceptibility prediction in Middle Ganga Plain: comparison of frequency ratio and Shannon's entropy models: Geocarto International: Vol 36, No 18 (tandfonline.com)
- 7. Modeste M., Abdellatif K., Joseph A., (2021): Spatial modeling of food susceptibility using machine learning algorithms p. 18
- 8. Sunil S., Raju S., Gautam T., Jagabandhu R., (2021): Modeling gully erosion susceptibility in Phuentsholing, Bhutan using deep learning and basic machine learning algorithms p. 21
- 9. Suhua Z., Syed M. A., Xin T., (2021): A comparative study of the bivariate, multivariate and machine-learningbased statistical models for landslide susceptibility mapping in a seismicprone region in China p. 20
- 10. Fatna M., Abederrahmane B., Riheb H., Debi P. K., and Farid Z., (2018): GIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras province, N-E Algeria p. 21
- 11. Modeste M., Abdellatif K., and Nadia M., (2018): A GIS-based approach for gully erosion susceptibility modelling using bivariate statistics methods in the Ourika watershed, Morocco p. 14
- 12. Allam H., et B., (2020) : Cartographie de l'aléa et risque glissement de terrain par plusieurs méthodes Cas d'étude : La commune de Mila : mémoire de fin d'études de master, Université Frères Mentouri, Constantine 1. p. 134
- 13. Roukh Z. E. A., (2020): Cartographie algébrique d'aléa multirisque du Littoral Oranais, NO de l'Algérie Risques: (Sismique, glissement de terrain, inondation); thèse de doctorat à l'Université d'Oran 2 Faculté des Sciences de la Terre et de l'Univers p. 289
- 14. Cao C., Xu P., Wang Y., Chen J., Zheng L., Niu C., (2016): Flash Flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability 8:948 Carrara A, Guzzetti F, Cardinali M (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazards 20:117–135
- 15. Confort M., Aucelli PPC., Robustelli G., Scarciglia F., (2011): Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria Italy). Nat Hazards 56:881–898. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy) | SpringerLink
- 16. Khosravi K., Melesse A., Shahabi H., Shirzadi A., Chapi K., Hong H., (2019): Flood susceptibility mapping at Ningdu catchment, China

- ISSN: 1857-7881 (Print) e ISSN 1857-7431
- using bivariate and data mining techniques. Extrem Hydrol Clim Variabil 419–434
- 17. Pradhan B., (2009): Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spat Hydrol 9:1–18
- 18. Gayen A., Pourghasemi HR., Saha S., Keesstra S., Bai S., (2019): Gully erosion susceptibility assessment and management of hazard prone areas in India using different machine learning algorithms. Sci Total Environ 668:124–138. https://doi.org/10.1016/j.scitotenv. 2019.02.436
- 19. Zhu M., (2014) Soil erosion assessment using USLE in the GIS environment: a case study in the Danjiangkou Reservoir Region, China. Environ Earth Sci. https://doi.org/10.1007/s12665-014-3947-