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Abstract 

Over the years, biogas production technology has advanced with the 

goal of reducing process costs and greenhouse gas emissions, and increasing 

biogas production. Several design factors and operational aspects must be 

taken into account in order to produce a stable and efficient biogas. When the 

substrates contain high salts, anaerobic treatment will be ineffective due to the 

disadvantages of high energy input and operating cost, membrane 

contamination, and low efficiency. This indicates that the treatment of high 

salinity organic waste is a big challenge. High salinity levels had a negative 

effect on bacterial growth through bacterial osmotic pressure metabolism. For 

example, high salinity can alter the course of fermentation and the 

accumulation of volatile fatty acids at high concentrations, as well as cause a 

decrease in methane yield and maximum rate of methane production, 

prolonging the late-stage period. A low level of salt concentration encourages 

the growth of bacteria since sodium is essential for the growth and metabolism 

of microorganisms in AD systems. When the sodium salt concentration is less 

than 8 g/L, there is no significant inhibition in the generation of methane. 

Addition of >8 g/L NaCl, however, significantly reduced methane production 
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(causing 17-80 percent inhibition). This paper focuses on understanding in 

detail how NaCl affects methane production and microbial activity, report salt 

concentrations that improve process efficiency and reduce inhibition, as well 

as review the modified kinetic model and demonstrate the effect of salt on 

methane production and delay in methanogenesis.

 
Keywords: Anaerobic digestion, salt content, methane production, microbial 

community, kinetic model 

 

Introduction 

Anaerobic Digestion of Organic Wastes  

An organic waste (OW) generation has garnered public attention due 

to its amount, odor, and potential for pathogenic microorganism 

contamination. This is as a result of the population growth and societal 

changes. Conventional treatments, such as landfills and incineration, have 

negative environmental impacts (Cheng et al., 2010). The OW contains a high 

proportion of organic matter and substantial proportions of carbon and 

nutrients. In order to produce high-value products by anaerobic fermentation, 

food waste (FW) and an activated sludge produced through biological 

treatment are commonly considered as alternative substrates (De Gioanniset 

al., 2013; Pasupuleti et al., 2014). Furthermore, The OW components can be 

transformed into long-term products such as volatile fatty acids (VFAs), which 

can be employed as an alternative carbon source in current wastewater 

treatment facilities for biological nutrient removal and to produce methane and 

bio-hydrogen (Ye et al., 2013; Jie et al., 2014). Methane and bio-hydrogen are 

renewable energy sources that can be used as a substitute for fossil fuels (Lin 

et al., 2013). Rather than using traditional methods, such as dumping, 

landfilling, anaerobic composting, or conversion into animal feed, anaerobic 

digestion of OW has been considered as an effective method to cope with the 

environmental problem caused by the OW. Anaerobic digestion (AD) has a 

number of advantages, including high energy recovery with a modest amount 

of energy input, and the creation of renewable and environmentally friendly 

gas (CH4) (Ghosh et al., 1974; Vanstarkenburg, 1997). Throughout the last 

decade, AD of the organic portion of municipal solid waste (OFMSW) has 

been widespread in Europe. The following are the primary drivers of this rise: 

(i) European legislation limiting landfill treatment of biodegradable waste 

(99/31/EC), (ii) an increase in source-sorted trash collection, and (iii) 

anaerobic treatment of biodegradable fraction resulting in increased energetic 

valorization (De Baere, 2006). Sludge is produced as a by-product of the 

physical, chemical, and biological processes employed in wastewater 

treatment plants. The AD has proven to be an excellent approach for treating 

the sludge since it can lower the overall load of biosolids to be disposed by up 

http://www.eujournal.org/


European Scientific Journal, ESJ                        ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

11th Eurasian Multidisciplinary Forum, EMF, 1-2 September 2022, Batumi, Georgia 

www.eujournal.org   19 

to 0.590 m3/kg per kg of volatile solids (VSs) (Appels et al., 2011). It is 

feasible to generate 20 to near 300 kWh of net energy per tonne of garbage 

when biogas is used to generate electricity (European Commission, 2005). 

Many estimates have indicated that capturing CO2 and recovering energy from 

biogas can significantly reduce greenhouse gas (GHG) emissions 

(Karagiannidis et al., 2009), while also avoiding ozone depletion and acid rain 

generation (Khalid et al., 2011). Another advantage of using biomass to 

generate biogas is that the solid waste product of AD (digestate) contains 

remineralized nitrogen and phosphorus, making it suitable for use as an 

organic fertilizer (Ward et al., 2008). Several reports indicated that AD of the 

organic fraction of solid waste produces promising quantities of biogas as 

indicated in Table 1. 
Table 1. Methane production from AD of various substrates 

Substrate type  Methane yield Methane 

% 

Reference  

Municipal solid waste 0.36 m3 CH4/kg VS       65 (Kwietniewska 

et al., 2014) 

Vegetable waste 0.16 m3 CH4/kg VS      68 (Rajeshwari et 

al., 1998) 

Swine manure  0.33 m3 CH4/kg VS      - (Ahn et al., 2009) 

Food waste leachate 0.294 m3 CH4/kg VS      - (Behera et al., 

2010) 

Straw   (0.27–0.29) m3 CH4/kg 

VS      

75.9–78 (Lei et al., 2010) 

Swine manure with winery 

wastewater 

0.107 m3 CH4/kg VS      - (Riaño et al., 

2011) 

Jatropha oil seed cake  0.394 m3 CH4/kg TS      66.6 (Chandra et al., 

2012) 

OFMSW with Sewage 

Sludge     

0.242-0.656 m3 CH4/kg 

VS      

- (Corsino et al., 

2021) 

Corn stover and pig manure 0.275 m3 CH4/kg VS      43 (Qiu et al., 2021) 

 

Anaerobic Digestion Process 

AD is carried out by a sequence of metabolic events through several 

kinds of bacteria, including hydrolysis, acidification, acetogenesis, and 

methanogenesis. The first group of microorganisms hydrolyzes complex 

chemical substances enzymatically into monomers (e.g., glucose, amino 

acids), which are then transformed into higher volatile fatty acids (VFA), 

hydrogen, and acetic acid. The highly volatile fatty acids generated, such as 

propionic and butyric acid, are then converted to H2, CO2, and acetic acid by 

Acetogens. Thereafter, the H2, CO2, and acetate are eventually converted to 

CH4 and CO2 by methanogenic bacteria (Miyamoto et al., 1997; Khalid et al., 

2011). The chemical composition of the feedstock/waste, ambient parameters, 

and digester operation conditions are important because all influence 

metabolic activity and the bacteria species, which are active during AD 
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(Kiener et al., 1983; Fetzer et al., 1993). The interaction between acetogens 

and methanogens, on the other hand, is extremely complicated. Since these 

microbes are anaerobes, oxygen poses a threat by disrupting metabolic 

pathways, resulting in the oxidation of cellular components that are normally 

present in reduced form. Several methanogens, on the other hand, have been 

shown to adapt to oxygen due to the inclusion of genes that produce enzymes 

(e.g., catalase and superoxide dismutase) in their genomes, which aid in the 

defense against oxygen toxicity (Brioukhanov et al., 2006). Methanogens such 

as Methanobacterium thermoautotrophicum, Methanobrevibacter 

arboriphilus, and Methanosarcina barkerii have been found to be highly 

resistant to oxygen and dessication (Kiener et al., 1983; Fetzer et al., 1993). 

Other studies indicated that with the creation of thick outer cell layers made 

of extracellular polysaccharide (EPS) and the buildup of cyclic 2,3-

diphosphoglycerate, M. barkeri had an innate ability to withstand extended 

periods of exposure to air and deadly temperatures after the desiccation 

process (a novel metabolite which may be used to stabilize proteins at elevated 

temperatures). Furthermore, glycerol molecules bound by ether bonds to 

branched isoprene hydrocarbon molecules in the membrane lipids of archael 

species cause the organisms to acclimate to such severe temperatures. 

Acidogens, syntrophic acetogens, and methanogens make up the majority of 

the microbial community in a digester system (Anderson et al., 2012; Manyi-

Loh et al., 2013; McInerney et al., 2009). The literature on AD reveals a wide 

range of inhibition/toxicity levels for most compounds. The intricacy of the 

AD process, where mechanisms such as antagonism, synergism, acclimation, 

and complexing could have a considerable impact on the phenomena of 

inhibition, is the main cause for these variances. In addition, numerous factors 

must be regulated to avoid difficulties that cause inhibition of biogas 

production. Microbial activity is directly influenced by temperature, pH, 

retention time, salinity, and organic loading rate. Furthermore, the physical 

characteristics of the feedstock can vary, and it may contain hazardous 

compounds that affect microbial activity (Refai, 2017; Annibaldi et al., 2019). 

When food is processed, salt (for example, NaCl), a sort of food flavoring 

ingredient accumulates in food waste in significant levels. The average 

concentration of NaCl is between 2% and 5% (in terms of mass fraction), and 

the content might change significantly depending on regional eating customs. 

Na+ is a crucial component for  anaerobic digestion system's cell creation, 

development, and metabolism (Zhao et al., 2017). Pang et al. reported in their 

study that NaCl (sodium chloride) is an inexpensive chemical with a wide 

range of sources. They also mentioned that the concentration of NaCl with 

appropriate doses could lead to the dissolution of the sludge and the 

deterioration of the blocks structure. Extracellular polymeric materials (EPS) 

release carbohydrates and proteins (Pang et al., 2020). However, high 
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concentration of NaCl can reduce microbial activity and result to negative 

effects on AD to some extent (Li et al., 2020). Ammonia, heavy metals, fatty 

and lipid molecules, and excessive salinity are just a few of the components 

that have been found to hinder the AD process. High salinity, which could 

severely limit AD, primarily contains cations of Na, K, Ca, Mg, and Fe (Oh et 

al., 2013; Chen et al., 2008;  Ngan et al., 2020). Also, in the study conducted 

by Yin et al. (2022), they found that increased salinity could trigger an 

expensive stress response for bacteria to balance the osmotic pressure in the 

cellular cytoplasm and reduce the energy available for metabolism. They 

further mentioned that methananositas, which belong to aceto-clastic 

methanogens, are subject to salt stress and their relative abundance is low. 

This is attributed to the inhibition of methane process at salt concentration 

higher than 25 g-NaCl/L (Yin et al., 2022). Biogas generation from solid OW 

is often carried out by several different anaerobic bacteria. The acid-forming 

and methane-forming microorganisms in AD have vastly different 

physiologies, dietary requirements, growth kinetics, and environmental 

sensitivity (Pohland et al., 1971). The principal cause of reactor instability is 

a failure to maintain the equilibrium between these two groups of bacteria. 

Therefore, this reference study aims to identify three things: to know the effect 

of high salinity levels on the process of AD and microbial activity, to reveal 

the effect of inhibition on acidification and methane processes at different 

salinity levels, and to review the modified kinetic model during anaerobic 

digestion of salt wastes, respectively. 

 

Effect of Salt Content on Biogas Production    

Although the composition of FW varies greatly depending on the 

source of collection, it usually contains a high level of salinity. The NaCl-

added FW had 10 to 35 g/L NaCl, while the non-washed FW included 11.6 

g/L NaCl (Shetty et al., 2008). It was reported that the FW from Shanghai 

cafeterias with an NaCl concentration of 8.0 g/L (Dai et al., 2013). The NaCl 

concentration in FW anaerobic digestate can reach 13.8 g/L (Wang et al., 

2016). This increased salinity could produce an osmotic stress imbalance in 

cells, leading to plasmolysis and/or cell activity loss, which impedes and 

perhaps result to failure of the AD process (Lefebvre et al., 2007). According 

to a previous study, despite its highly nutritious biomass (Nagai et al., 2002), 

the consumption of FW from soy sauce was problematic due to its high salinity 

of 10% (w/w). Another study looked at the impact of salinity on biogas 

generation from food waste leachate and discovered that 0.52 g/L NaCl 

increased methane yield whereas 5 and 10 g/L NaCl reduced methane yield by 

36 and 41 %, respectively (Lee et al., 2009). Rinzema et al. reported that at 

Na+ concentrations of 5, 10, and 14 g/L, the synthesis of methane from acetate 

is hindered by 10, 50, and 100%, respectively (Rinzema et al., 1988). Another 
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study found that Na+ concentration of 2 to 10 g/L inhibited methanogenic 

activity moderately, while a concentration exceeding 10 g/L inhibited strongly 

(Gourdon et al., 1989). It was reported that methanogenesis was impaired at 

an NaCl concentration of 5 g/L, while acidogenesis was significantly damaged 

(Lefebvre et al., 2007). At Na+ of 4.42 g/L, the greatest methane output of 

290.41 ± 34.21 mL of CH4/ gVS was obtained. Meanwhile, at a salt content 

of 4.42 g/L, greater VFA synthesis was found. In the same investigation, 

inhibitory concentration values of 10%, 50%, and 90% were found at Na+ 

concentrations of 6.3, 11.3, and 18.7 g/L respectively (Zhang et al., 2017).  

Salt is harmful to bacteria and due to osmotic pressure, high quantities of salt 

concentrations dry the cells (Elefsiniotis et al., 2007; Feijoo et al., 1995). 
When the sodium content was ≤ 6.0 g/L, VFA production improved because 

the osmotic pressure was too low to change (Appels et al., 2011; Patel et al., 

1997). A previous study found that the level of electrical conductivity (EC) at                   

35 mS cm-1 (19 mg/L NaCl) hindered CH4 production. The EC level with a 

greater salt concentration of 80 mS cm-1 (44 mg/l NaCl) suppressed not only 

CH4 and CO2 production, but also organic compounds breakdown (Ogata et 

al., 2016). Increased salt concentration (0, 13, 30, and 60 g NaCl/L) had a 

negative influence on biogas volume produced from a co-digestion of food 

waste (Alhraishawi & Alani, 2018). Excessive salinity (NaCl >4.4 g/L) 

decreased AD performance. Additionally, the high salinity led to decreased 

microbial Ca2+ Mg2+ - ATPase activity, subpar EPS secretion, and the greatest 

variation in microbial operational taxonomic units, which together impeded 

AD process (Shi et al., 2021). 

 

Effect of Salt Content on Microbial Community   

Low salinity concentrations of 350 mg Na+/L (0.8 g/L NaCl) were 

advantageous for methanogen growth, while 8-13 g/L NaCl caused significant 

inhibition and values exceeding 20 g/L NaCl led to severe impairment (Appels 

et al., 2008; Chen et al., 2008; Omil et al., 1996). It was reported that the 

specific CO2 production rate in the high concentration of NaCl (High group) 

was much higher than in the blank group. Increasing NaCl concentrations up 

to a certain level had no negative impact on the bacteria's capacity to degrade 

organic compounds in acidogenesis. However, when the NaCl content reaches 

20 g/L, it might increase the acidogenic impact. In contrast to acidogenesis, 

the specific CH4 generation rate in methanogenesis showed a considerable 

suppression when NaCl concentrations were increased from 5 to 20 g/L, 

resulting in a 37.12 % decrease in the specific CH4 generation rate (Wang et 

al., 2017). A previous study by Pang et al. (2022) indicated that the protease 

activity significantly increased at the NaCl concentrations within the range of 

10–30 g/L, while the α-glucosidase activity decreased. It could be inferred that 

the hydrolysis of proteins improved and the hydrolysis of carbohydrates 
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inhibited in the NaCl helped promote anaerobic fermentation (Pang et al., 

2020). Acclimatization to high salt concentrations might result in the 

succession of halotolerant or even halophilic bacteria, thereby allowing the 

bioreactor to progressively restore its functionality (Luo et al., 2016). 

Increased salinity causes a shift in bacterial and hydrogenotrophic methanogen 

populations (Sudmalis et al., 2018). When salinity rises from low to high 

levels, archaea abundance and genes involved in methanogenesis decrease 

considerably. Similarly, gene abundance in the hydrogenotrophic pathway 

decreases (Wu et al., 2017). Acetoclastic methanogens, on the other hand, are 

more resistant to high salinity than hydrogenotrophic methanogens (Wang et 

al., 2017). The relative abundances of gram-negative Pseudomonadaceae sp. 

decreased, while salt-tolerant Thermovirgaceae and gram-positive 

Clostridium sp. increased 26% and 31%, respectively (Sierra et al., 2018). The 

hydrogenotrophic Methanobacterium sp. grew increasingly dominant among 

archaea. Another study also indicated that at high salinity, the dominance of 

Methanobacterium and Methanosaeta was observed. It was revealed that 

while the Methanosaeta sp. were dominant, they did not have a high salt 

tolerance (Onodera et al., 2017). A previous study conducted by Zhang et al. 

(2017) indicated that the dominant phyla of bacteria Bacteroidetes, 

Firmicutes, and Proteobacteria and the Methanobacterium, Methanosaeta, 

and Methanosarcina genera in archaea were predominant at different salinities. 

Hydrogenotrophic methanogens such as Methanobacterium can tolerate 

salinity up to 85 g/L, whereas acetoclastic methanogens, Methanosaeta, and 

Methanosarcina were severely inhibited at salinity greater than 65 g/L (Zhang 

et al., 2017). 

 

Kinetic Equations on the Effect of the Salt Content on Biogas Production 

There are several kinetic models that have been applied during the AD 

process. Among these kinetic models is the modified Gompertz model, which 

provides information on the lag phase and the maximum rate of specific 

methane production (Pramanik et al., 2019), as shown in the equations below: 

                                                                                    (1) 

 

M = cumulative methane production (ml), Rm = maximum methane 

production rate (ml/day), P = methane production potential (ml),  = lag phase 

(days) and t = time of digestion (days), E: methane production potential (mL) 

constant (2.7182). 

The first-order model showed a better fit than the modified Gompertz. 

Nonetheless, when a lag phase was reported, the modified Gompertz model 

better predicted the BMP compared to the first order (Strömberg et al., 2015). 
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From the original form, the modified Gompertz equation is established as 

shown in equation (2): 

                                                                                     (2) 

 

where r0 and  are parameters in Gompertz which is directly related to 

Rm and λ in Eq. (1) (Jijai et al., 2017). According to the study by Anwar et al. 

(2016), the modified Gompertz model predicted cumulative methane yield 

(CMY) accurately (R2 > 0.99) under low salt concentrations. When the sodium 

salt concentration was increased, the lag period showed a relative increase, 

with λ being around 5 days for 2-8 g/L. However, it extended with higher 

sodium salt concentrations. λ was about 19.2 days for the reactor (with the 

addition of 16 g/L NaCl). Conversely, the methane production potential at 16 

g/L decreased from 591 to 212 mL/g VS added, while the maximum methane 

production rate decreased from 39.4 mL/g VS added to 3.9 mL/g VS added 

(Anwar et al., 2016). In another study, the results showed that adding salt 2-4 

g/L, which is the appropriate salt addition according to the results of the 

modified Gompertz model, could accelerate biogas production and improve 

the maximum biogas production rate (Rmax). The delay periods were also very 

low with the exception of high doses of salt. More so, the researchers proved 

that the interaction of salt concentration and fermentation was significant for 

FW characterized by carbohydrates and protein (p < 0.05). High salt 

concentration and fermentation could break the AD system when the feed 

material is FW marked with carbohydrate. On the other hand, for FW marked 

with protein, the interaction of fermentation concentrations and addition of salt 

could mitigate the degrees of inhibition (Li et al., 2019). In another study, it 

was also shown that adding 4g/L of salt had a positive effect on gas production 

since the kinetic parameters obtained from the modified Gompertz equation 

were: P = 328.8 ml CH4/gVS, Rmax = 13.15 ml CH4/(gVS.day), and λ = 2.1 

day. A short lag phase of 2.1 day was observed for methane production. A 

sharp increase in methane production was observed from 2.1 to 6 days and 

methane production gradually increased (Han et al., 2012).  

 

Conclusion  

AD is a waste treatment technique that uses natural anaerobic 

decomposition to minimize waste volume while also producing biogas. For a 

long time, it has been used to treat waste from agricultural and industrial 

processes. The waste stream may contain inhibitory or even hazardous 

elements, such as salt content, depending on the source. Reduced biogas 

output and/or methane concentration in the biogas, as well as the possibility 

of reactor failure, could result from the accumulation of these compounds. The 

results of earlier investigations on the inhibition of anaerobic processes vary 
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significantly due to differences in anaerobic microorganisms, waste 

composition, experimental methodologies, and circumstances. Obtaining 

information on waste components is critical for AD to work properly. It has 

been discovered that the right amount of salt can boost microbial activity and 

nutrient release, thereby increasing biogas generation. To avoid severe 

methane inhibition and poor decomposition performance, it is recommended 

that the sodium salt concentration in AD be kept below 8 g/L. 
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