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Abstract 

This paper focuses on dealing with probability theory, and it adopted 

an objectivism philosophic approach, as well as a mathematical approach. 

These approaches aim to study the probability values behaviour as discrete 

quantities in the case of discrete sample space for independent events through 

fractions and composite functions. This requires a discussion of the usage of 

probability statements, the causes behind the existence of probabilistic 

phenomenon, and an explanation that admits to measuring causality in 

probability theory through the concept of complement and fractions. The 

paper uses an experiment with a design that addresses the shortcoming of 

traditional experiments through the concept of fractions. This, in turn, reflects 

some aspects of the probabilistic behaviour, including some important 

consequences that follow through. This paper also uses the relative frequency 

of events and the probability axioms, which provides the sample space to 

include all possible events in the form of sequences and sub sequences. The 

paper further provides some definitions that define some elements of the 

fractions probabilities and the sample space, alongside some proven 

propositions, lemma, and corollaries that admit to calculating composite 

probability functions. This is in addition to a brief discussion of the continuous 

cases.  
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Introduction 

The theory of probability precedes Pascal and Fermat. However, the 

important period of the development of probability theory was from 1575 to 

1825 (Todhunter, 1949). This is in addition to the periods of the nineteenth 

and twentieth centuries (Bingham, 2000). Here, the nature of probability 

theory has at least two main classes of concepts (Parzen, 1960). Concerning 

the concept of probability theory, if it had an ambiguous side, it would be an 

ambiguous use rather than an ambiguous sense of the probability statement. 

Therefore, this results to the following question: in what sense can the 

probability statement be used? A clear literary meaning of the scientific phrase 

sometimes helps to accept it more in the scientific approach. Also, when the 

statement “probability” carries a determination connotation in its use, without 

changing the meaning of the probability statement, it will be accepted more 

than mere speculation. Thus, if the need to use probability requires the 

statement of probability, then the statement of probability is true, otherwise, 

the statement is not necessarily true. Sémantique addresses the change of word 

meaning linguistically in detail (Guiraud, 1969). To discuss the question with 

some logic, there are two conditions. First, if the statement is applied to the 

occurrence of an absolute event, where the sample space would be unspecified. 

Therefore, if it means a kind of knowing, then it is not necessarily a probability 

statement but a non-numerical probability statement. Second, if the occurrence 

of an event is bounded by several options, such as winning or losing, which 

means that the sample space is known. Subsequently, if the statement means 

the unknowing, then it is also not necessarily a probability statement but a 

numerical probability statement. Therefore, when the prophet prophesies, he 

does that with feeling, and he does not depend on a sample space. This means 

that he saw without sample space, even if that has been taken as a kind of 

determinism. Such intuition mostly depends on the feeling that constitutes an 

aspect of its experience. If the statements in the previous case are considered 

as probability statements and if the probability statement is considered as a 

kind of knowing, with some conditions, rather than unknowing, then the 

knowing will refer numerically to finite or infinite and countability, and the 

unknowing will refer to uncountability. Thus, they can be studied with the aid 

of probability theory itself. 

This paper uses the plural form of the probability word to deal with 

probability as a set of probabilities. This is because a fraction or part means 

some, while deterministic may mean, in some possible sense, the whole or the 

integer. Probability does not mean deterministic and thus refers to the parts, 

not the whole. For example, suppose an observer, two events 𝐴, 𝐵, and the 

following conditions: If both events had occurred before, and if the event 𝐵 
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only occurs when the event 𝐴 does not occur, then the observer has some 

knowledge about the events 𝐴 and 𝐵 and their relations. But, if the event 𝐵 

had never occurred before, and the observer has known nothing about the 

event 𝐵, then the occurrence of event 𝐴 is not always truly deterministic. 

Falsely, the occurrence of event 𝐵 would not always be probable. Therefore, 

there is a fraction probability of 𝐵 occurrence, which does not appear. 

 

Probability Statement Usage 

Probability statements are frequently used in political expressions to 

avoid determination. Therefore, a single determinism statement could be 

responded to by some probabilistic statements, such as a strategy of the game. 

Thus, it is important to (𝑠1) denote the statement: Probability of an event. 

When this statement is taken from the point of view of usage, some meanings 

such as truth meanings or psychological meanings could be derived from the 

need to use the statement. Originally, the probability statement is used to carry 

the meaning of the occurrence of an event, rather than non-occurrence. 

However, with the mathematical development of probability theory, the 

probability statement became abstract in mathematical formulas. As a result, 

the concept of probability has acquired the value of 0 to denote the impossible 

event and 1 to denote the sure event. Thus, in gambling games, each player 

enters with an incentive probability that favors winning, otherwise, the player 

would not have entered the gambling game. For example, if someone 𝑦 used 

the statement to expect an event by 𝑥 probability, then the statement means 

that 𝑦 is likely getting 𝑥. Consequently, the probability will take a set of values 

in the interval (
1

2
, 1] or 

1

2
< 𝑥 ≤ 1. On the other hand, if 𝑦 uses it in the opposite 

case, then the statement means the doubt and the probability will take a set of 

values in the interval [0, 1

2
) or 0 ≤ 𝑥 <

1

2
. Nevertheless, when the word takes 

the meaning of possible, then its value falls at 
1

2
. In either case, some observers 

𝑦1, 𝑦2, … , 𝑦𝑛 will also put their probabilities 𝑥1, 𝑥2, … , 𝑥𝑛to measure 𝑦 

expectation. Here, the probability of the probabilities statement will, in 

principle, stand out as statement (𝑠2). The probability degree can be evaluated 

by who is expecting and the observers. In addition, when 𝑦 by  subjective 

probability predicts an event by 𝑥, a probability of an inconstant nature is 

given that does not carry a determined value. Also, truth will not be stated 

without a determined degree (Interval). Hence, probability needs an aspect of 

determination and should be a science that provides truth. In addition, if 

expectation gives different values of probability for one event at the same time, 

then there is a mental function 𝑓𝑦 that is wrong mathematically. Also, the 

observers have mental functions 𝑓𝑦1
, 𝑓𝑦2

, … , 𝑓𝑦𝑛
that are affected by different 

factors, which in turn give different values for one variable. In this case, if a 
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probability value is equal to 𝜑, then the observers values will be in the range 

of zero to 1. Nonetheless, a probability value that does not exceed 𝜑 could be 

expressed by function mapping. In addition, the value of 𝜑 would be created 

as a discrete quantity. 

On the other hand, the concept of probability and its interpretation are 

connected with epistemology by a function that investigates truth. For 

example, take into cognizance the mind (memory) of a blind man and the 

probability of knowing his friends subjectively or by their tones. On this note, 

if some one was writing the names after him, then the writer may write the 

wrong name, which may create a false statement or wrong science. Therefore, 

probability can be used to measure truth or certainty. This, however, may be 

affected by laws such as religions that reduce belief in probabilistic nature or 

state laws that adopt or do not adopt the probabilistic models. At the same 

time, if the intuition gives a deterministic statement about certain truth, and 

proves it theoretically with feasibility to adopt it, the general educational 

approach that needs a certain level with a goal that serves its need for different 

people has its effect to adopt or not adopt certain theory, as well as the 

intuition. 

  

Conditional and Complement As A Causality 

It can not be asserted that the laws of nature are based on probabilistic 

model, but it would be feasible to ascertain that they are built on the basis of 

scarcity and competition. However, it can be said that nature is built on 

deterministic laws, but there are causes that lead the results of these laws to 

have a probabilistic nature. This poses two questions: (a) why is there a 

probabilistic phenomenon? (b) what probability could measure the causes? 

Part of the answer of these questions may evolve through this significant 

question: is the space able to admit all phenomena to be deterministic?  

When tossing a coin, the speculation is the process of tossing. Subsequently, 

probability is the method of calculating or evaluating (Figure 1).  

 
Figure 1. Causes and Results; Speculation-Time-Probability 

 

However, when the process is done with a biased heavy weight, then 

the process is not speculation but a determinism process, relatively. The 

paradox here, that differs nature from speculation, shows that the deterministic 

nature can take two aspects: to determine a result with one description and one 
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value or to determine the result with two descriptions or more, with the same 

one value that was distributed over the descriptions, which in turn gives nature 

the probabilistic aspect. Furthermore, when supposing space, supposing time 

is marked with an aspect of scarcity. This means that the case can be changed 

from deterministic phenomenon to probabilistic phenomenon. In the case of 

several micro particles with large speed, some factors may carry a kind of 

scarceness. Bohr has shown in detail, in a number of interesting thought 

experiments, how the finite value of the frequently recurring constant ħ in 

uncertainty relation makes the coexistence of wave and particle both possible 

and necessary. If the probability of finding a particle in some bounded region 

of space decreases as time goes on, the probability of finding it outside of this 

region must increase by the same amount (Merzbacher, 1970). 

On the other hand, if the cause is constant, it may be considered as a 

constant law and the event may be dedicated from universal laws. Conversely, 

the event will be dedicated from initial conditions. Also, if the universal laws 

are considered as conditions, then they would be considered as events. These 

conditions take an event from space to space, such that for the conditional 

probability of an event 𝐵, given that an event 𝐴 has occurred, the sample space 

reduced from 𝑆 to 𝐴 (Meyer, 1970). Mathematically speaking, any law that 

exists denotes a function with known or unknown fixed operations (±,×,÷
, … ), including domain and variability with a range. In a probabilistic nature, 

events may take these paths: 𝐸𝑣𝑒𝑛𝑡1 (cause) gives an 𝑒𝑣𝑒𝑛𝑡2 (result). 𝐸𝑣𝑒𝑛𝑡1 

consists of 𝑒𝑣𝑒𝑛𝑡1, 𝑒𝑣𝑒𝑛𝑡2,..., 𝑒𝑣𝑒𝑛𝑡𝑖, while 𝑒𝑣𝑒𝑛𝑡2 also consists of 𝑒𝑣𝑒𝑛𝑡1, 

𝑒𝑣𝑒𝑛𝑡2,..., 𝑒𝑣𝑒𝑛𝑡𝑗. Thus, there would be a conditional so that the event may 

correspond to one or some events. Here, the concept of conditional can be used 

and expressed in terms of sub 𝜎-field of events. In some elementary case, the 

initial probability space (𝛺, 𝜉, 𝑃) is replaced by the probability space 
(𝛺, 𝜉, 𝑃𝐵), where 𝛺 is the sure event, 𝜉 is 𝜎-field of events, and 𝑃𝐵 is the 

conditional probability (Loève, 1978). Nevertheless, the condition gives a 

prior information or a prior event to the last event. Hence, if it synchronizes to 

the last event, it will be a complement and there will be an occurrence and a 

non-occurrence. If the phenomenon is a probabilistic phenomenon, it could be 

due to a set of causes, which could be fractions that may be created randomly, 

thus making the cause unknown. This actually poses a question: What is the 

phenomenon and the cause? If one tosses a true coin and is only looking for 

the head when the existence of the other face (tail) is not known, the 

phenomenon reveals that in many thousands trials, the head is gotten in half 

of these thousands trials. The unknown face is the cause or the causes to get 

the phenomenon of half, and the two halves are in competition nature. 

Therefore, probability is a science of competition. In probability theory, if the 

conditional is considered as a causality for dependent events, the concept of 

complement could be considered as a causality for independent events. 
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Conceptually, when probability measures an event's complement, it measures 

some causes. Also, competition has its causes, which is the scarcity (Figure 2) 

 

 
Figure 2. Variable Causality 

 

If the constant of the resulted value is considered as a deterministic 

result, the random order will break this deterministic. In the case of throwing 

10 true coins by one hand at the same time, the causality will be mixed and 

complicated than tossing 1 coin. Nonetheless, it will always give a constant 

frequency. 

In general, and in addition to the human boundary knowledge, there 

are many factors that may lead to the probabilistic phenomenon, such as 

political factors, moral, religion, as well as human and nature necessity. 

 

Methods 

Until now, this paper has dealt with the concept of probability from a 

philosophical point of view. This is in addition to the linguistic and logical 

analysis, besides the examples. Also, since the experiment is possible, it will 

involve the direct method. This, in turn, needs mathematical techniques to 

provide mathematical results.  

Experiment purpose: This experiment consists of observing the 

appearance of fraction heads or fraction tails probability and providing 

answers to the following questions: (a) What is the probability of 𝓅𝑖? (b) how 

does the probability value behaves?  

Experiment steps: This paper will use a coin after shaping it into a 

spherical shape (true ball), with radius of 𝑟. Thereafter, the following steps 

will be taken: 

Step 𝟏: Determining 𝒎 and choosing 𝒏. 

Step 𝟐: Dividing curved surface area to find the fraction unit area, 

which will be: 𝐴 = (
4𝜋𝑟2

𝑚𝑛+𝑚
), and the area 4𝜋𝑟2 by some manner will 

constitute the sample space. However, this does not provide explanation until 

the ball is divided into 𝑛 order closed circles with replacement for every half 

separately. On every circle, the value of a probability fraction is recorded 

before throwing the ball. Also, the peak of each upper half of the ball is 

considered as success (Figure 3). 
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Figure 3. (𝓅𝑖) Values will be in An Ascending Order from the Middle to the Peak for each 

Half 

 

Consequently, dividing 360° by some numbers will not always give 

an integer or finite number. Therefore, one can do this experiment with dice. 

Also, the difference between this ball and any celestial body moving in an 

orbit shows that this ball is moving less freely. As a result, it is either static or 

moving under the influence of unnatural force. However, it would have been 

possible for its details to appear at each point of time 𝑡 with an approximated 

determined angle that makes the appearance known. In addition, it should be 

noted that the heavier the weight, the more stable the movement, and vice 

versa.  

Step 𝟑: Finding the sample space and building the probability model 

to identify fractions events probabilities.  

Sample description: This paper only considers the sample description 

of tossing a regular true coin. In addition, the zero fraction occurrence 

probability assumes (∅). The nil event is the event of non-occurrence, and the 

zero fraction of the head event {𝑯} is attached to the zero fraction of the tail 

event {𝑻}, which is one area or one fraction event. Accordingly, all events are 

considered independent. 

 

Results 

 Figure 4 explains the mathematical procedure and the derived 

expressions.  

 
 

Figure 4. Steps that Define Fractions Events and Fractions Events Probabilities Expressions 

Also consider the following: 

The probability of head in tossing a regular true coin one time is as 

follows:  

The sample space is 𝑺 =  {𝑯, 𝑻}, the probability model is 𝑃𝐻 =
𝐻

𝑠
, and 

the probability to a head is 𝑃𝐻 =
𝐻

𝑠
=

1

2
. 
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Definition 𝑰: The value 𝒇𝑨 =
𝒎𝑨

𝒎
 is called the relative frequency of 

event 𝑨, and it has the following properties; 

𝟏 − 𝟎 ≤ 𝒇𝑨 ≤ 𝟏. 

𝟐 − 𝒇𝑨 = 𝟎 if 𝑨 never occurs, and 𝒇𝑨 = 𝟏 if 𝑨 occurs on every repetition. 

𝟑 − If 𝑨 and 𝑩 are mutually exclusive events, then 𝒇𝑨∪𝑩 = 𝒇𝑨+𝒇𝑩 (Hines & 

Montgomery, 1990). 

Definition 𝐼𝐼: For every event with a probability value, the fractions of 

its probability value are events, regardless of how small they are. 

Definition 𝐼𝐼𝐼: The sample space of the experiment is the space that 

consists of all fractions events 𝓅𝑖=0,1,..𝑛.  

Let 𝔇 be the sample description or the possible descriptive outcomes 

of tossing a regular true coin and 𝑚 be the quantity of possible descriptive 

outcomes. Then, 𝔇 = (𝐻, 𝑇) = 2 = 𝑚. 

As a result, for throwing a true ball, there will be 𝑚𝑛 + 𝑚 events for 

each trial. Thus, for 𝒏 = 𝟏𝟎𝟎, the number of divisions is 
𝑚𝑛+𝑚

𝑚
= (𝑛 + 1) =

101 circles, for every half of the ball  (Table 1).  
Table 1. Sample Space for 𝑚 ≥ 2 

 
 

Let 𝔉 be the sample space and 𝒫𝐻 be the probability of an occurrence 

of the probability value fraction for head 𝓅𝑖 in throwing a true ball once. 

Thus, 𝔉 = (𝑃(𝐻0), 𝑃(𝐻1), … , 𝑃(𝐻100), 𝑃(𝑇0), 𝑃(𝑇1), … , 𝑃(𝑇100)). 

From probability definition, if 𝓅1 + 𝓅2 + ⋯ + 𝓅𝑛 = 1 and 

𝓅1 = 𝓅2 = ⋯ = 𝓅𝑛, then 𝑛𝓅𝑖 = 1 and 𝓅𝑖 =
1

𝑛
 for 𝑖 = 1, … 𝑛.  

Also, , 𝓅1 = 1 − (𝓅2 + ⋯ + 𝓅𝑛), 𝓅2 = 1 − (𝓅1 + 𝓅3 + ⋯ + 𝓅𝑛), … and so 

on. Then, 𝓅1 = 𝓅2 = ⋯ = 𝓅𝑛 = 1 − [(𝑛 − 1)𝓅𝑖]. .  

For 𝓅𝑖 =
1

𝑛
, 𝓅1 =  𝓅2 = ⋯ =  𝓅𝑛 = 1 − [(𝑛 − 1)

1

𝑛
] = 1 − [

(𝑛−1)

𝑛
] . … (Eq1)  

Therefore, by replacing (𝑛 − 1) by (𝑛 − 𝑖) for 𝑖 = 0,1. . . , 𝑛, there will be a 

cumulative with replacement, and  𝓅𝑖 has the following probability values: 

𝓅0 = 1 − (𝓅1 + ⋯ + 𝓅𝑛), 𝓅1 = 1 − (𝓅2 + ⋯ + 𝓅𝑛), … ,  𝓅𝑛 = 1. 

Or, 𝓅0 = 1 − [
(𝑛−0)

𝑛
] , 𝓅1 =  1 − [

(𝑛−1)

𝑛
] , … , 𝓅𝑛 = 1 − [

(𝑛−𝑛)

𝑛
]. ... (Eq 2). 

Hence, the following sequence  {𝓅𝑛} : 𝓅0 < 𝓅1 < ⋯ < 𝓅𝑛 has the following 

limit, lim
𝑛→∞

𝓅𝑛 =  lim
𝑛→∞

(1 − [
(𝑛−𝑛)

𝑛
])  = 1, and it is convergent. 
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It is also included in each other 𝓅0 ⊂ 𝓅1 ⊂ ⋯ ⊂ 𝓅𝑛.  

Furthermore, let 𝐻 = 1 and 𝑇 = 2, then 𝒫𝐻(𝓅𝑖) =  𝒫1(𝓅𝑖) and 𝒫𝑇(𝓅𝑖) =
 𝒫2(𝓅𝑖). 
 

Here are some terms of 𝒫1(𝓅𝑖): 

𝒫1(𝓅25 = 0.25) = 2 [
0.25

202
] = 0.002475248. 

𝒫1(𝓅100 = 1) = 2 [
1

202
] = 0.00990099. 

𝒫1(𝓅0 = 0) = 2 [
0

202
] = 0.  

Here is the sum of each series: 

∑ 𝒫1(𝓅𝑖)
100
𝑖=0 = 𝑚 [

(1−1)

𝑚𝑛+𝑚  
+

(1−0.99)

𝑚𝑛+𝑚  
+ ⋯ +

(1−(
1

𝑛
))

𝑚𝑛+𝑚  
+

(1−0)

𝑚𝑛+𝑚  
] =

1

2
=

1

𝑚
. 

∑ 𝒫2
100
𝑖=0 (𝓅𝑖) = 𝑚 [

(1−1)

𝑚𝑛+𝑚  
+

(1−0.99)

𝑚𝑛+𝑚  
+ ⋯ +

(1−(
1

𝑛
))

𝑚𝑛+𝑚  
+

(1−0)

𝑚𝑛+𝑚  
] =

1

2
=

1

𝑚
. 

As a result, the sequence associated with the last two finite series is not 

necessarily a random sequence until it satisfies some conditions, and it could 

be equidistributed (𝑘 −distributed) (∞ − distributed). It also depends on a 

precise definition of random sequence, even if it behaves as a random. This 

depends on the experiment or phenomenon nature. Knuth (1998) provides 

more details about random sequence and its conditions. 

Table 𝟐 provides the order values of 𝒫1(𝓅𝑖). In this case, one may agree that 

the sample space consists of 101 points. Feller (1950) further expantiates on 

sample space and more applications. 
Table 2. Result of 101 H Fractions 
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To generalize, let 𝒫𝑗(𝓅𝑖) for 𝑚 ≥ 2, 𝑗 = 1,2, … 𝑚. Where 𝑚 is a 

positive integer number, 𝑖 and 𝑛 is initially a positive integer number, but it 

could be extended to take positive real number 𝑅. However, for 𝑖 to take 

negative value, it should be in an absolute sign.  

Also, 𝑗 > 1, 𝓅𝑖 = 1 − (
𝑗𝑛−𝑗𝑖

𝑗𝑛
) and is considered as a distribution for 

(
1

2
,

1

2
) mass in some fractions 𝑛. This distribution thus provides a description 

of 𝓅𝑖 behaviour (Larson, 1973).  

Therefore, 𝒫𝑗(𝓅𝑖) = 𝑚 [
1−(

𝑗𝑛−𝑗𝑖

𝑗𝑛
)

𝑚𝑛+𝑚
].  

{𝒫𝑗(𝓅𝑖)} is the sequence of the following probability values: 

𝒫1(𝓅0, … , 𝓅𝑛), 𝒫2(𝓅0, … , 𝓅𝑛), … , 𝒫𝑚(𝓅0, … , 𝓅𝑛). 

It has the following limit, lim
𝑚→∞
𝑛→∞

𝒫𝑚(𝓅𝑛) = lim
𝑚→∞
𝑛→∞

𝑚

𝑚𝑛+𝑚
[1 − (

𝑚𝑛−𝑚𝑛

𝑚𝑛
)] = 

lim
𝑛→∞

1

𝑛+1 
[1 − (

𝑛−𝑛

𝑛
)] = lim

𝑛→∞
(

1

𝑛+1 
) − lim

𝑛→∞
(

𝑛−𝑛

𝑛2+𝑛
)= lim

𝑛→∞
(

1

𝑛+1 
∙

𝑛+1

𝑛+1 
) − 0 = 

lim
𝑛→∞

(
(𝑛+1)

(𝑛+1)(𝑛+1) 
) = lim

𝑛→∞
(

(
𝑛

𝑛
+

1

𝑛
)

(
𝑛

𝑛
+

1

𝑛
)(

𝑛

𝑛
+

1

𝑛
) 

) = lim
𝑛→∞

(
(1+

1

𝑛
)

(1+
1

𝑛
)(1+

1

𝑛
) 

) = 1, and it is 

convergent. 

Hence, ∑ ∑ 𝒫𝑗(𝓅𝑖)
𝑛
𝑖=1

𝑚
𝑗=1 = [𝒫1(𝓅0) + 𝒫1(𝓅1) + ⋯ + 𝒫1(𝓅𝑛)] +

[𝒫2(𝓅0) + 𝒫2(𝓅1) + 𝒫2(𝓅𝑛)] + ⋯ + [𝒫𝑚(𝓅0) + 𝒫𝑚(𝓅1) + ⋯ +
𝒫𝑚(𝓅𝑛)] = 1. 
Subsequently, the domain of 𝒫𝑗(𝓅𝑖)is the set of all real numbers in the 

closed interval [0 , 1], and the range of 𝒫𝑗(𝓅𝑖) is the set of all real numbers 

in the closed interval [0,
𝑚

𝑚𝑛+𝑚 
], for all 𝑗, (Table 3). 

Table 3. 𝓹𝒊Range is the Domain of 𝓟𝒋(𝓹𝒊)with Some Possible Intervals 

 

 

As a result of dividing the ball into 𝑛 order circles with replacement 

for every half separately, there will be unequal order divisions. Consequently, 

consider the following proposition: 

Proposition 𝐼: The greater the fraction probability value, the greater the 

probability of its occurrence. This denotes that the occurrence of 𝓅𝑛 implies 

the occurrence of 𝓅𝑛−1, … , 𝓅0, but the occurrence of 𝓅𝑛−1 does not imply the 

occurrence of  𝓅𝑛, and so on.  
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Proof: Suppose that, 

𝐼𝑟: = [0,
1

𝑟
] , 𝐼𝑟−1 =: [0,

1

𝑟−1
] , … , 𝐼𝑟−(𝑟−1) =: [0,

1

𝑟−(𝑟−1)
], 𝑟 > 1 are some 

intervals on the real line and 𝑙1, 𝑙2, … , 𝑙𝑘 are the lengths of these intervals, 

where 𝑘 and 𝑟 are positive integers and 𝔭0, 𝔭1, … , 𝔭𝑛 are some sets belonging 

to these intervals, respectively. Thus, if 𝐼𝑟 ⊂  𝐼𝑟−1 ⊂ ⋯ ⊂ 𝐼𝑟−𝑟+1 and 

𝑙1 <  𝑙2 < ⋯ < 𝑙𝑘, then 𝔭0 ⊂ ⋯ ⊂ 𝔭𝑛. Also, if 𝓅0 ∈ 𝔭0, … , 𝓅𝑛 ∈ 𝔭𝑛, then 

𝓅0 < 𝓅1 < ⋯ < 𝓅𝑛. This proposes that if this is true for the sub sequence 

{𝓅𝑖} of the sequence {𝒫𝑗}, then it is true for the sequence {𝒫𝑗}. To clarify the 

theoretical idea behind this proposition, suppose the experiment of tossing true 

coin in Table 4. 
Table 4. The Probability of 𝐻 is Greater than the Probability of 𝑇 in the Interval (𝑡2, 𝑡4] 

 

 

Definition 𝐼𝑉: The probability of probability is a composite function. 

Let 𝓅 and 𝒫 denote some functions, such that 𝓅: 𝐷1 → 𝑅1, and 𝒫: 𝑅1 → 𝑅2 

respectively, then (𝒫 ∘ 𝓅) is a composite function. To illustrate that, 

let 𝑥 = (𝑛 − 𝑖), 𝓅(𝑥) = 1 −
𝑥

𝑛
, 𝒫(𝑥) =  

𝑥

𝑛+1
 , for 𝑥 ≤ 𝑛, and 𝑥, 𝑛 ∈ 𝑅. 

Then, the composite function is: 𝒫(𝑥) =
1−

𝑥

𝑛

𝑛+1
=

𝑛−𝑥

𝑛(𝑛+1)
. 

Generally, if 𝑥 is a real number and 𝑋 is a discrete random variable (real valued 

function), the distribution function of the random variable 𝑋 is: 

Let 𝑥 denote the number of occurrences of 𝓅𝑖.  

𝐹𝑋 = 𝑃𝑋(𝑋 ≤ 𝑥), for all 𝑥 ∈ (−∞, ∞) and the probability function is: 

𝑃𝑋(𝑥𝑖) = 𝐹𝑋(𝑥𝑖) − 𝐹𝑋(𝑥𝑖−1). 
𝐹𝑋(𝑥𝑖) = 𝑃𝑋(𝑋 ≤ 𝑥𝑖) = ∑ 𝑃𝑋 (𝑥)𝑥≤𝑥𝑖

. 

Therefore, the probability distribution of 𝑋 is the collection of pairs:  

[(𝑥𝑖 , 𝑃𝑋 (𝑥𝑖), 𝑖 = 1,2, … ] (Hines & Montgomery, 1990). Dudewicz (1988) 

illustrates the possible graphs of the distribution function and its 

characteristics. On the other hand, the density function could be divided into 

𝑚 parts. For example, in the case of continuous random variable, if 

𝒫1(𝓅0, … , 𝓅𝑛), 𝒫2(𝓅0, … , 𝓅𝑛), … , 𝒫𝑚(𝓅0, … , 𝓅𝑛) are non-negative 

probability values that sum to 1, and if the interval (0, 𝑡] is divided into 𝑚 

parts, then the density function will be divided into 𝑚 parts and 𝐹1, 𝐹2, … , 𝐹𝑚 

are some distributions.  Knuth (1998) expantiates more on the techniques. 
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Definition 𝑉: For every fraction event, there is a probability of its 

occurrence denoted by 𝒫𝑗(𝓅𝑖). 

 

Corollary 𝐼: Every probability consists of a finite or countable infinite 

set of probabilities and every independent event consists of fractions events  

𝓅𝑖 = 1 − (
𝑛−𝑖

𝑛
). Here, the index of 𝓅 could be extended to 𝒫𝑗(𝓅𝑖1,2,…,𝑙

… ) 

(Borel, 1898; Khinchin, 1964). 

In addition, the following proves that 𝒫𝑗(𝓅𝑖) verifies the probability 

axioms:  

Proof:  

1- Since all values of 𝒫𝑗(𝓅𝑖) are not negative, then 𝒫𝑗(𝓅𝑖) ≥ 0.  

2- If 𝒫𝑗(𝓅𝑖) =
𝑓𝓅𝑖

𝑛
, where 𝑓𝓅𝑖

 is the frequency, and 𝑛 is a positive integer 

number such that 𝑓𝓅𝑖
≤ 𝑛 and 

𝑓𝓅𝑖

𝑛
≤ 1, then 𝒫𝑗(𝓅𝑖) ≤ 1.  

3- To prove that 𝒫𝑗(𝔉) = 1. Suppose 𝔉 = {𝐻} then,  

𝑃(𝔉) = 𝑃(𝐻) = 1 and for 𝒫𝑗(𝔉) when 𝑚 = 1, let ∑ 𝒫𝑗(𝓅𝑖)𝑛
𝑖=0 =

𝒫(𝔉) and ∑ 𝒫(𝓅𝑖)
𝑛
𝑖=0 =

1

(𝑛+1)
∑ 𝓅𝑖

𝑛
𝑖=0 = 1then, 

(𝑛 + 1)𝓅𝑖=0,… ,𝑛 = (𝑛 + 1) = 1 = 𝒫(𝔉) For  𝔉 = {𝐻}, suppose 

tossing a coin with 𝐻 on both sides once.  

Also, the countable infinite property can be proved intuitively in 

Figure 5. 

 
Figure 5. The Set of 𝓟𝒋(𝓹𝒊) Infinite Elements  

 

Lemma 𝐼: For every independent event 𝐸, the complement event 

probability 𝑃(�̅�) is the fraction event of that event, if 𝑃(𝐸) = 𝑃(�̅�) and if they 

are homogenous. 

Proof: Let 𝐸1,  𝐸2 be the independent events and 𝓅𝑖 be the fraction event of 

𝑃(𝐸1). If 𝑃(𝐸1) = 𝑃( 𝐸2), then 𝑃(𝐸1) = 𝑃(�̅�1). Thus, the fraction of 𝑃(𝐸1) 

is 𝓅𝑖 = 
𝑃(𝐸1)

𝑛
 and 𝓅𝑖 =

𝑃(�̅�)

𝑛
. If 𝑛 = 1, then 𝓅𝑖 = 𝑃(�̅�). 

For 𝑚 > 2, note that if 𝐸 ∩ �̅� = ∅, then 𝑃(�̅�1) = 𝑃(𝐸2) ∪ … ∪ 𝑃(𝐸𝑚). 
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Corollary 𝐼𝐼: For every fraction event 𝓅𝑗𝑖
, a complement event  𝓅�̅� 𝑖

 is 

𝓅�̅� 𝑖
= 𝓅𝑗𝑛

− 𝓅𝑗𝑖
+ 𝓅𝑙𝑖=1,… ,𝑛,… ,𝑚𝑖=1,.…,𝑛

, 𝑙 ≠ 𝑗, if 𝓅𝑗𝑖
 satisfies the proposition 𝐼. 

Also, every fraction event 𝓅𝑖 is a fraction of a fraction event 𝓅𝑖+1, if 𝓅𝑖 <
1. Proof: Eqs 2. 

Intuitively, set involves different elements with common features or 

certain source, and every set is constructed by 𝜙, besides some axioms. This 

means that for some sets 𝐴 and 𝐵 with only one element 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 and 

without any common elements (𝑎 ≠ 𝑏). Also, if (𝑎 = 𝑎 or 𝑎 = ∅) and (𝑏 =
𝑏 or 𝑏 = ∅), then 𝐴 ∩ 𝐵 = ∅. At the same time, if (𝑎 ≠ 𝑎 and 𝑎 ≠ ∅) or (𝑏 ≠
𝑏 and 𝑏 ≠ ∅), then one of the two sets does not exist. Therefore, for every set 

to exist, it should consist of at least ∅. Thus, there exists an empty set with ∅ 

of some features (or description) and without any element. From the set theory, 

a power of set could be 2𝑁 and if a sample space is a set of events, then there 

are 2𝑁 subsets, where 𝑁 is a finite size for a sample description space (Parzen, 

1960). In the present case where 𝑚 = 2, and for throwing the ball twice, there 

will be 2𝑚2𝑛2
 subsets after excluding 𝒫1𝓅0 and 𝒫2𝓅0, which is represented 

by 𝜙 in 𝔉𝔉.  

Subsequently, ((𝑃(𝐻0), 𝑃(𝑇0)): 𝓅𝐻0
, 𝓅𝑇0

: ∅). 

((𝓅𝐻1
, 𝓅𝑇1

), … , (𝓅𝐻100
, 𝓅𝑇100

), (𝓅𝑇1
, 𝓅𝐻1

), … , (𝓅𝑇100
, 𝓅𝐻100

), 

(𝓅𝐻1
, 𝓅𝐻1

, … , (𝓅𝐻100
, 𝓅𝐻100

),(𝓅𝑇1
, 𝓅𝑇1

, … , (𝓅𝑇100
, 𝓅𝑇100

). 

Also, if 𝔉1 = (𝓅𝐻1
, 𝓅𝑇1

), 𝔉2 = (𝓅𝐻1
, 𝓅𝑇2

), 𝔉3 = (𝓅𝐻1
, 𝓅𝑇3

), …, then 𝔉𝔉 =

{{𝔉1}, {𝔉2}, {𝔉3}, {𝔉4}, … , {𝔉1, 𝔉2}, … , 𝔉, 𝜙} 

Thus, if 𝔉 is the fundamental set of events, let 𝐴 and 𝐵 represent any 

two events of 𝔅 (𝐴 ∈ 𝔅, 𝐵 ∈ 𝔅).  Then, let 𝐴 ∪ 𝐵 ∈ 𝔅, complement �̅� ∈ 𝔅 

and 𝐴 ∩ 𝐵 ∈ 𝔅. Consequently, a non-empty collection of subsets 𝔅 of a set 𝔉 

is a 𝜎-field of subsets of 𝔉. 

Definition 𝑉𝐼: A probability measure 𝑃(⋅) on a 𝜎-field of subsets 𝔅 of 

a set 𝔉 is a real valued function having a domain that satisfies the following 

properties:  

1 − 𝒫𝑗(𝓅𝑖) ≥ 0 for all 𝓅𝑖 ∈ 𝔉.. 

2 − 𝒫𝑗(𝔉) = 1.. 

3 − If 𝓅𝑖 , 𝑖 = 1,2,3 … are mutually disjoint sets in 𝔉 then, 

 𝒫𝑗(⋃ 𝓅𝑖
∞
𝑖 ) = ∑ ∑ 𝒫𝑗(𝓅𝑖)

∞
𝑖

𝑚
𝑗 . 

Also, the probability space is (𝔉, 𝔅, 𝒫(⋅)) (Heol et al., 1971). 

Here, 𝑃(⋅) could be defined by different functions, which may give 

different values. Nonetheless, this will depend on the explanation of 

experiment, sample space, and the description of event (Parzen, 1960). The 

function behaviour could also reflect some aspects of probability values 

behaviour. 
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Corollary 𝐼𝐼𝐼: The impossible occurrence happens if the occurrence 

probability of all events are 𝓅𝑛 simultaneously. (Here the peak point of every 

event is supposed to be 𝓅𝑛). 

Proof: If the occurrences of 𝒫𝑗=1,…,𝑚𝓅𝑖,…,𝑛 happens only when 

𝒫𝑙=1,…,𝑚
 𝑙≠𝑗

𝓅𝑖,…,𝑛 is not happen, then 𝒫𝑙=1,…,𝑚
 𝑙≠𝑗

𝓅𝑖,…,𝑛 = 0. Thus, if 

𝒫𝑗=1…,𝑚𝓅𝑖,…,𝑛 = 𝒫𝑙=1,…,𝑚
 𝑙≠𝑗

𝓅𝑖,…,𝑛 simultaneously, then 𝒫𝑗=1,…𝑚𝓅𝑖,…,𝑛 = 0.  

Therefore, there is no occurrence. 

Corollary 𝐼𝑉: The nil (equally fractions) occurrence happen if the 

occurrence probabilities of fractions events of all or some events are 𝓅0 

simultaneously. 

Proof: It is analogous to the previous proof and has the same result. 

However, the difference here reveals that the peak point of all or some events 

will be zero or 𝓅0 simultaneously, with a representation of ∅. 

Corollary 𝑉: For more than one continuous function of independent 

event, if one of them expresses non-decreasing function at time 𝑡 in the open 

interval (
1

𝑚
, 1), then the other one indicates decreasing function at time 𝑡, in 

the open interval (0,
1

𝑚
). 

Proof: Take 𝑚 = 2 and suppose that 𝒫1(𝓅𝑖) > 𝒫2(𝓅𝑖) and 
1

2
<

𝒫1(𝓅𝑖) < 1. From 𝒫1(𝓅𝑖) + 𝒫2(𝓅𝑖) = 1 then 𝒫2(𝓅𝑖) = 1 − 𝒫1(𝓅𝑖). 

Also, from 𝒫1(𝓅𝑖) > 𝒫2(𝓅𝑖) then 𝒫1(𝓅𝑖) > 1 − 𝒫1(𝓅𝑖). It is clear 

that every increase in 𝒫1(𝓅𝑖) gives a decrease in 𝒫2(𝓅𝑖),  if 

𝒫1(𝓅𝑖) and 𝒫2(𝓅𝑖) are continuous functions in the open intervals (
1

2
, 1) and 

(0,
1

2
), respectively. Thus, the function behaviour reflects the probability 

values behaviour of these two events. 

The construction of 𝒫𝑗(𝓅𝑖) is not restricted to the coin experiment. 

However, it could be constructed for any random experiment, such as 

Brownian motion for two independent continuous parameter random variables 

𝑋𝑑(𝑡) and 𝑋𝑙(𝑡), where {𝑋(𝑡), 0 ≤ 𝑡 < ∞} (Parzen, 1962). 

 

Discussion 

What are the deterministic aspects that probability theory can carry? 

This includes the description that the probability theory provides by specific 

sample space, including the finite and infinite countable aspects. Furthermore, 

the statistical probability may carry more determination characteristics than 

the inductive probability. 

How can the statement “probability of probability” be carried out? A 

probability of probability statement (𝑠2) will take an analogous concept of the 
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mathematical statements of 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑥)   or √√𝑥, and employ the statement of 

𝑠2 in same function of the statement 𝑠1. Similarly, the statement 𝑠2 derived 

from statement 𝑠1 does not merely measure the statement 𝑠1, it further 

provides a necessary meaning of the statement 𝑠1. Also, it is not necessarily a 

mathematical necessity, but a conceptional necessity. 

Why are the fractions unequal in the experiment design? It is necessary for the 

fractions to have an order probability value to be unequal, and this happens 

because every fraction had been taken with replacement. Nonetheless, the two 

faces are likely equal. Also, this unequal order can provide a description for 

the moments of 𝒫𝐻(𝓅𝑖) and 𝒫𝑇(𝓅𝑖) tendency to the value of 
𝑚

𝑚𝑛+𝑚 
 

(Proposition 𝐼). 

Is it possible to distribute fractions events randomly on the ball? And 

what is the reasonable criteria to choose 𝒏 divisions? It is possible and useful 

in some cases to distribute the fractions events with a random topology that 

extends in directions and curvatures. In this case, the uniformity of head or tail 

will be impossible. Also, the main criteria to choose 𝒏 divisions is to determine 

the required fraction quantity that can change event occurrence prior to the last 

step, regardless of how small it is. At the same time, it is possible to represent 

a pairwise occurrence (𝒫1(𝓅𝑖) , 𝒫2(𝓅𝑖)) if the upper half of the ball (instead 

of the peak) is considered as success. Hence, there would be occurrence and a 

fraction of an occurrence, which is affected by the replacement law even for a 

large 𝑚 and a large 𝑛. This provides an explanation for the case when the peak 

is considered as success. As a result, an event will not appear on the peak, and 

it will not acquire its probability of occurrence, until more than 
1

2𝑚
 of its 

fractions appear on the half of the ball.  

How to explain zero fraction  

Since there is no physical fraction that has zero value,  the probability of zero 

is zero or ∅. However, zero occurrence means that there is no occurrence and 

every event does not occur, simultaneously. At the same time, when every 

event occurs simultaneously, the same result will be produced. However, a 

mixed process alongside some events with different values may result in an 

occurrence or fraction. Accordingly, in the case of true coin, if the coin lands 

on the edge, the probability will not be 𝑃(𝐻) = 𝑃(𝑇) =
1

3
, unless the weight 

is considered (Taylor & Karlin, 1998). 

Is there a natural necessity in the experiment of tossing a true coin? 

Here, both events should be considered as one event and the natural necessity, 

if it exists, will be a common one. At the same time, there will be missing 

events, and this does not satisfy the natural necessity condition (for example, 

the edge in the true coin experiment will be the missing one). Therefore, the 

fall should be less restrained, as nature tends to be distributed towards optimal 
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fair shape. Furthermore, it could be assumed in this experiment that the 

physical body fractions is represented theoretically by a probability value. In 

other words, the physical body exists as a probability that takes values from 𝟎 

to 𝟏, which are also mathematical values. Heisenberg (1930) expounds more 

on physical experiment, while Rényi (1970) proffers the definition of 

experiment. 

How to explain Corollary 𝑉 in reality 

For instance, in the case of dice, face 1 and face 2 could be in an inverse 

relation with at least two faces of (3,4,5,6), in the prior step to the last step, 

where the intervals will be critical in determining the showed up face and how 

many faces are in relation. In the probability theory, the functions behavior 

will depend on the dimensions, rather than the number of events. Therefore, 

the behavior in two dimensions will be different from the behavior in the case 

of more than two dimensions such as in the case of random diffusion, where 

there would be a function of velocity. As a result of this experiment, the 

fractions will reflect this fact. 

Mathematically, how does the result use the probability theory? 

The result used the probability axioms through a composite function in several 

sequences for discrete sample space. The concepts of distribution, moment 

(implicitly), complement, impossibility, and stochastic (implicitly) are also 

used. Nevertheless, if the ball continues to move randomly, by throwing it 

once on an unlevelled surface and observing 𝓅𝑖 on the peak of the ball at every 

time 𝑡 until the ball stops completely, then the function will be continuous at 

time 𝑡. In addition, all neighborhood fractions to the peak could take different 

measures and have the sense of distance from the peak or the distance between 

two events. In some physical problems, constructing the probability space will 

depend on the following questions: (a) Is there a 𝜎-field 𝔅 that contains all 

intervals as members? (b) Is there a probability measure defined on 𝔅 that 

assigns the desired probability to the interval? Here, these intervals could 

represent coherent quantities, regardless of how small they are (Heol et al., 

1971; Feller, 1971; Tucker, 1967; Loève, 1977; Lebesgue, 1904). Li & Shao 

(2001) throw more light on processes such as centered Gaussian processes 

known as “fractional brownian motion” with advanced treatment. On the other 

hand, for theoretical studies of randomness regarding the infinite sequence that 

is ∞ − distributed, the following defintion can be an appropriate basis: “A 

[0,1) sequence is defined to be random if it is an ∞ − distributed sequence” 

(Knuth, 1998).  

Does the result repeat the concept of distribution function or the 

concept of the probability sum? The distribution function outlines how the 

values of the random variable are distributed and gives the distribution of 

values in cumulative form (Mood et al., 1974). However, the resulted function 

is a non-decreasing function, and only the {𝓅𝑖}  sub sequence behaves as a 
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distribution function. At the same time, 𝓅𝑖 depends on 𝒏 and not on the trials 

number . Also, the result does not interpret the fractions of the probability into 

a total probability, but rather seeks to interpret the probability as a set of 

fractions probabilities. Subsequently, it is not partitioning set into a subset, 

even if it uses partitioning techniques. 

How does the result differ from the frequency theory of Von Mises? 

The result differs in the experiment aspect and it gives value to the probability 

of probabilities, which does not proceed as each event has a certain character 

(Popper, 2002; Mises, 1957). 

 

Conclusion 

This paper concludes that the probability statement sense depends on 

the necessity to use it, and this necessity also depends on the level of 

knowledge. Furthermore, probability theory is connected with epistemology 

as an approach to investigating truth or as a science to provide truth. Thus, 

probability values can be expressed in different methods. As a result, this 

necessity may add or omit some conditions that the probability values 

behavior may be subject to.  

In addition, the most important cause behind the existence of the 

probability phenomenon is the cause of scarceness. This scarceness creates 

conditions that probability values depend on or are independent of. Since the 

fractions appearance is necessary (inevitable) and the complement event is 

considered as a cause, it could be treated as fractions event. Hence, the 

probability theory can measure causes by measuring the fractions of events. 

One of its results shows that the greater the fraction probability value, the 

greater the probability of its occurrence.  

 Furthermore, the experiment designing should be significant in order 

to achieve the natural logic of the occurrence. This admits to searching for all 

possible outcomes. Also, the design of this experiment eliminates some 

inevitability in the case of the experiment of the true coin. In addition, the 

notion of one-to-one correspondence is employed as a natural necessity 

condition. This condition would not be unique for each event without the 

fraction element. Similarly, this experiment is able to represent a unique 𝜙. 

This is in addition to the concept of sample space extended to be 𝑚𝑛 + 𝑚 

outcomes. 

The composite function 𝒫𝑗(𝓅𝑖), can be expressed in terms of sequence 

{𝒫𝑗(𝓅𝑖)} and sub sequence {𝓅𝑖}, with probability values. In addition, the 

outcome of the experiment is described by a discrete sample space  𝔉 with a 

probability function 𝑃(⋅) of a discrete random variable and the corresponding 

distribution function. 

At least for two events, the concept of impossibility can be explained 

by the Impossible  value and the nil value, where events behave towards 𝓅𝑛 
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inversely. At the same time, they behave towards 𝓅0 directly, depending on 

the number of events and their directions. Conversely, for more than one 

continuous function of independent events, these functions behave inversely 

in some open intervals. This depends on the intervals and the dimensions, 

rather than the events number. 

Therefore, every independent event probability can be expressed in a 

finite or a countable infinite set of probabilities, and the composite probability 

function can be used as a technique to study the probability values behavior. 

In addition, the probability values behavior can be interpreted as a discrete 

quantity that consists of coherent quantities. As a result, this can reflect the 

dynamic part of the probability theory. This, in turn, can describe the 

probability values behavior as a stochastic process. 
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