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Abstract 

Apples are known for their nutrition and economic value. Accurate 

and rapid diagnosis of water status in apple seedlings on an individual 

rootstock basis is a prerequisite for precision water management. This study 

presents a rapid and non-destructive approach for estimating water content in 

apple seedlings at leaf levels. A PIKA L system collects hyperspectral 

images(400-1000nm) of apple leaves. To the author's knowledge, no prior 

work was conducted using the spectral-texture approach in plant water stress. 

Our research extracts spatial information, gray-level co-occurrence matrix 

(GLCM), from feature wavelength images of hypercubes. Machine learning 

methods are applied to these spatial feature matrixs to identify apple leaves 

under different water stresses. In addition, differences in spectral responses 

were analysed using machine learning techniques for sorting apple seedlings 

with varying water treatments (dry, normal, and overwatering). Also, we 

measure chlorophyll to determine the relationship between hyperspectral 

characteristics and physiological changes. The achievements of the research 

indicate that the fusion of texture and hyperspectral imaging coupled with 

machine learning techniques is promising and presents a powerful potential 

to determine the water stress in the leaves of apple seedlings.  
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1.       Introduction 

Apple (Malus domestica Borkh) is one of the world's most widely 

planted and nutritionally significant fruit crops (Duan et al.,2017). Apples 

are rich in nutrients vital for good health and disease prevention, making 

them a valuable choice each day for enhancing the quality of our diet. With 

increased income and public awareness of balanced nutrition, Global apple 

consumption is increasing annually (Li et al.,2013). Apple seedlings are tiny 

and propagated tree stems grafted onto a hardy rootstock (Loucks, 2021). 

They are hugely profitable. In 2021, according to Willis Orchard Co. (2021), 

ten seedling trees at the height of 1-2 feet made a profit of $34.95, whereas 

ten seedling trees at the height of 2-3 feet earned $59.95. 

Water management is vital for apple orchards (Apple & Pear 

Australia Limited,2023). As a result of drought and increasing competition 

for water, orchardists need to adopt efficient water management strategies 

(PIRSA,2006). Newly planted apple trees require weekly watering. Ideal 

apple tree irrigation involves deep root soaking (Ellis,2021). The key is to let 

the water flow into the soil slowly to allow for deep watering until it is 

established (The Home Depot,2021). A plant induces leaf senescence 

prematurely if water shortage exceeds a critical level (Lim and Nam,2007). 

This process is characterised by loss of chlorophyll and leaf yellowing 

(Yamaguchi et al.,2010). If wilting leaves are observable, irreversible 

damage to plants and yield occurs (Behmann et al.,2014). On the other hand, 

creating standing water and soggy roots can be as damaging as drought 

conditions for the apple seedlings. Too much water depletes oxygen from the 

soil, prevents the roots from absorbing necessary minerals, and makes a tree 

susceptible to rotting and infections (Ellis,2021). The symptoms of 

overwatering also include wilting, yellowing of leaves, root rot and stunted 

growth (Canna, 2023). Our research focuses on detecting early drought and 

overwatering stresses, which are not yet visible to the naked eye. Detecting 

early symptoms of water stress and distinguishing it from normal variations 

timely requires further attention. 

  Water stress can be detected using various methods. Water 

stress is one of the crucial environmental factors inhibiting photosynthesis 

(Bradford and Hsiao,1982). Studies have shown that decreased 

photosynthesis under water stress can be linked to the perturbations of the 

biochemical process (Graan and Boyer,1990; Lauer and Boyer,1992). In 

particular, PSII is sensitive to water stress (He et al.,1995).  Lu and Zhang 

(1999) studied the effect of water stress on PSII photochemistry and 

thermostability of PSII in wheat plants by measurement of chlorophyll 
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fluorescence. However, chlorophyll fluorescence is destructive and damages 

the leaf as well. Pressure chambers, measuring plant water potential, are 

widely used in irrigation management (Waring and Cleary,1967). But they 

are not well suited to measurements of small plants such as grasses because a 

petiole must extend through the seal of the pressure chamber. In addition, 

plants with tender tissues (e.g., new tillers on grasses) are easily damaged by 

the seal and cannot be used (Water Potential,2022). 

   Chlorophyll in plant leaves is crucial in plant metabolism and 

growth. Chlorophyll in apple leaves is essential in photosynthesis (Wang et 

al.,2016). It constituents a major component of plant leaves and is a useful 

indicator of the overall health condition of the plant. Determining 

chlorophyll content in plant leaves can be used to investigate plant 

physiological and nutritional status and consequently has important 

implications for plant stress detection (Jin et al.,2020). Generally, as plant 

stress levels increase, chlorophyll content tends to decrease (Schuerger et 

al.,2003). Traditional approaches for quantifying chlorophyll content mainly 

include acetone ethanol extraction, spectrophotometry and high-performance 

liquid chromatography (Zhang et al.,2022). Such destructive methods based 

on laboratory procedures are time-consuming and expensive (Gholizadeh et 

al.,2017). Several spectral indices have been identified using spectroscopy 

and a portable chlorophyll meter, which can predict chlorophyll content in 

plant tissues in vivo (Jesperson et al.,2016). However, manually operated 

portable chlorophyll meters are relatively biased, and spectroscopy 

techniques cannot measure the spatial distribution of chlorophyll in plant 

leaves (Gupta et al.,2013). These two methods are too labour-intensive to 

meet the needs of large-scale screening programs. 

  Hyperspectral imaging (HSI) is now emerging as a potential 

tool for rapid, non-destructive, and automated assessment of plant 

status(Kim et al.,2015). Hyperspectral imaging integrates spectroscopic 

methods and imaging technology (Williams and Norris,2001). In the 

pertinent hyperspectral image, each pixel contains a complete spectrum. No 

physicochemical analyses are needed, making it ideal for agri-food 

(Ayala,2018). Using hyperspectral technology can identify stress symptoms 

before a human observer does so, which has obvious benefits (Lowe et 

al.,2017). 

Current HSI in small-scale plant research focuses on chlorophyll and 

other plant-related endogenous pigments in the visible spectral range(400-

800nm) (Bauriegel and Herppich,2014). Chlorophyll could be contrasted 

with predictions obtained from HSI spectral reflectance (Feng et al.,2019). 

Based on the characteristics of chlorophyll reflection and absorption of 

specific wavelength spectra, chlorophyll spectroscopy diagnosis of many 

plants has been carried out. Wen et al. (2019) visualised chlorophyll content 
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distribution in apple leaves using hyperspectral imaging technology. Sun et 

al. (2018) took 382-1019nm bands of hyperspectral imaging data as the 

research band using the Random Frog Leaping algorithm and partial least 

squares method, selected the sensitive bands and constructed an estimation 

model of chlorophyll content in potato leaves. Ding et al. (2015) used 

hyperspectral imaging technology to predict the chlorophyll content of rape 

leaves, and the correlation coefficient reached 0.834.  

  Artificial intelligence technologies are used extensively in image 

processing and many other fields (Ozdemir and Polat,2020). As a result, 

classification studies are carried out on hyperspectral images with machine 

learning methods. Deep Learning, a specialised form of the artificial neural 

network, is highly preferred due to its unique structure, especially for 

classifying hyperspectral images containing complex information. In Yin et 

al’s research(2017), four geographical origins of Chinese wolfberries were 

studied using the HSI technique. The mean spectra of the wolfberry samples 

were analysed to build a support vector machine (SVM), neural network with 

radial basis function (NN-RBF) and extreme learning machine (ELM) 

models. Zhu et al. (2029) identified the freshness of spinach leaves stored at 

different temperatures using HSI, where Partial least squares discriminant 

analysis (PLS-DA), support vector machine (SVM), and extreme learning 

machine (ELM) were used to build models based on full spectra and 

effective wavelengths. Yamashita et al. (2020) employed five machine 

learning algorithms, Random Forest (RF), Support Vector Machine (SVM), 

Cubist, Stochastic Gradient Boosting (SGB), and Kernel-based Extreme 

Learning Machine (KELM) in the dissection of hyperspectral reflectance to 

estimate nitrogen and chlorophyll contents in tea leaves. Feng et al. (2019) 

predicted the chlorophyll contents of crops under salinity stress by 

combining hyperspectral data with Partial Least Square Regression (PLSR). 

A high predictive accuracy of SPAD was acquired in this study, as shown by 

the R-value of 0.838.  

Many deep learning-based algorithms focus on deep feature 

extraction for classification improvement ( Li et al.,2018). Features extracted 

from images are used for image matching and retrieving (Afifi and Ashour, 

2012). The texture is one of the essential characteristics of hyperspectral 

images. Image texture analysis, an important area of research in image 

processing, aims to provide information about the spatial arrangement of 

colour or intensities in an image (Xu and Gowen,2019). The texture 

information in the hyperspectral image is vital for automatic image 

processing. The texture pattern of different tissues and plants under differing 

water treatments contains various intensity patterns, which can be exploited 

for image classification (Bhagat et al.,2019). Besides, much research has 

demonstrated that adding textural features to characteristic spectral features 
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could further enhance the performance and accuracy of the model (Jiang et 

al.,2019; Cheng et al.,2016; Liu et al.,2014). Through band grouping, sample 

band selection and guided filtering, the texture features of hyperspectral data 

are improved (Li et al.,2018). Li et al. (2018) proposed a novel hyperspectral 

classification framework based on optimal Deep Belief Networks (DBNs) 

and a novel texture feature enhancement (TFE). After TFE, the optimal DBN 

is employed on the hyperspectral reconstructed data for feature selection and 

classification. The texture feature extraction methods include many 

approaches, for example, the Gray level co-occurrence matrix(GLCM). In Lu 

et al. (2018)’s research using hyperspectral imaging to discriminate yellow 

leaf curl disease in tomato leaves, 24 texture features were extracted using a 

gray-level co-occurrent matrix(GLCM). AlSuwaidi et al. (2017) applied 

hyperspectral imaging on control, stressed Arabidopsis plant leaves, and 

employed Markov random field model(MRF) to facilitate spectral-texture 

analysis and enhance prediction performance. Zhang et al. (2022) classified 

flue-cured tobacco based on the fusion of hyperspectral and texture features; 

texture features were extracted using GLCM, whereas machine learning 

techniques KNN, RF, SVM and Naive Bayes Classifier (NB) were 

employed. GWO-ELM was used in hyperspectral estimation of SPAD value 

of cotton leaves under Verticillium Wilt stress (Yuan et al., 2023). The 

smooth and stable sigmoid function, which was easy to derive, was selected 

as the activation function of ELM, and the multiple trial-and-error method 

was applied to determine the number of nodes in the hidden layers, the size 

of the gray wolf population and the maximum number of iterations. Ni et al. 

(2020) used online sorting of the film on cotton based on GWO-ELM. 

However, all those research focused on the texture feature of RGB images of 

hyperspectral imaging cube, our research makes a renovation by combing 

texture feature of images of main spectra with the spectral features.  

Our research aims to combine texture and color analysis of 

hyperspectral imaging with machine learning to identify apple seedling 

leaves under different water treatments (normalisation, overwatering, 

drought). The objectives are: (1) investigating and comparing apple leaves' 

hyperspectral characteristics in fusion with textural and color features under 

different water treatments using machine learning methods. (2) validating the 

classification result using chlorophyll content. A spectral-texture analysis 

framework is proposed for classifying hyperspectral images of apple 

seedling leaves of different water conditions. Advanced machine learning 

techniques are used to identify distinctive features in the spectral domain of 

hyperspectral images. In addition, texture properties are explored in the 

characteristic wavelength images. The framework integrates these two levels 

of properties at both feature extraction and classifying decision stages. The 

main crux of the work lies in the use of significant spectral and texture 
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features and a decision fusion mechanism to enhance the image properties, 

thus improving classification accuracy. 

 

2.       Material and Methods 

2.1       Material 

M9T337 apple seedlings with around 20 leaves per plant were grown 

in the National Agricultural and forestry science and Technology incubator 

seedling base in Zhucheng, China. Apple seedlings of similar growth were 

chosen. The height of the rootstock was around 15cm. Apple seedlings were 

transported to greenhouses at Qingdao Agricultural University. Two weeks 

after transplanting, all apple seedlings were treated with the complete 

nutrient solution and supplied with all the essential nutrients. The nutrient 

solution was provided to each plant using a trickle nozzle. 

The temperature of the greenhouse was around 23℃. The humidity of the 

greenhouse was 95%. Each pot contained one seedling. The substrate was 

composed of peat and vermiculite (1:1). The experiment occurred between 

September and November 2021. 

 

2.2       Experiment design 

There were three treatment groups, excessive water treatment group, 

drought group, and control group-normal watering group. For each 

treatment, 30 apple seedlings were used for hyperspectral imaging collection, 

and 30 apple seedlings were used for physiological index collection. Hence, 

there were 180 seedlings used in total. A pre-experiment was conducted to 

conclude that the daily amount of water a pot of apple seedlings needs was 

30mL. The night before the experiment, the three treatments apple seedlings 

were watered thoroughly. Once the apple seedlings of the drought group 

were watered, no further watering was required during the experiment. The 

excessive water treatment group maintained water at a depth of 1.5cm, and 

the water was uniformly replenished at 6 pm. In addition, 30mL of water was 

added to apple seedlings in the regular watering group every day at 6 pm. 

One leaf in the middle of each plant was employed for hyperspectral 

data collection. The acquisition occurred every other day after water 

treatment before apparent symptoms such as wilting and yellowing appeared 

on apple leaves (day 25). On day 0, the starting point of water treatment, 

only 30 hyperspectral images were collected (10 for each treatment) due to 

the similar conditions for all apple seedlings. From then on, 30 images were 

collected for each treatment. The information and sample collection period 

ranged from 9:00 am to 11:00 am. Table 1 shows the number of images 

collected.   
Table 1. Images collected 

Date 18 Sep 19 Sep 21Sep 23 Sep 25 Sep 27 Sep 29 Sep 
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No. of 

images  

30 90 90 90 90 90 90 

 

The physiological index group used a random block design, and 30 

seedlings constituted a small plot. Samples were measured on September 18 

(day 0), September 19 (day 1), till Sep 29 (day 11), respectively. The SPAD 

of leaves four and seven from the bottom of the apple seedlings were 

measured using a chlorophyll meter and taken as an average for each pear 

seedling.  

 

2.3      System Configuration (Imaging System-Hardware) 

 
Figure 2. Benchtop hyperspectral imaging system (Resonon Inc.,2019) 

 

Resonon SpectrononPro 5.3 was used in our research(figure 2). It 

comprised a PIKA hyperspectral imaging camera, linear translation stage, 

mounting tower, lighting assembly, and software control system 

(Resonon,2019). The imager and lighting assembly positions were adjusted 

along the tower’s length. Resonon’s hyperspectral images are line-scan 

imagers; two-dimensional images were constructed by translating the sample 

relative to the camera. A total of 8 Halogen lamps were used.  

A Windows® XP operating system with 512MB memory was used. 

It had a 2.0GHz Pentium 4 compatible processor and 64MB AGP graphics. 

In addition, a 32-bit standard PCI slot, FireWire 800 port, and OHCI 

standard IEEE 1394B host controller were used.  
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2.4       Image Correction 
Table 3. Parameter Settings 

Camera Settings 

Framerate 30 fps 

Integration time 12.904ms 

Gain 1.0000dB 

Update 

High cut percentage 98% 

Stage 

Swath 13.1cm 

Scanning speed 0.6993cm/s 

Step size 0.0333333333cm 

Homing speed 4.000cm/s 

Jogging speed 0.07938cm/s 

 

The system collected hyperspectral images in a wavelength range of 

400-1000 nm with a spectral resolution of 2.1 nm. Leaves were fixed on 

black cardboard with negligible reflectance and placed on the mobile 

platform. During image acquisition, the mobile platform for line scanning 

had an optimised velocity of 0.6993 cm/s, and the camera integration time 

was 12.904 ms (Table 3). A corrected hyperspectral image was calculated 

using the following equation: 

 

R= (image-dark)/(white-dark) 

 

Where: R was the relative reflectance image of the sample, 

image was the raw image of the sample, white was the white reference image 

acquired from a uniform, stable, and high reflectance ceramic tile 

(reflectance), and dark was the current dark image acquired by completely 

covering the camera lens with its non-reflective opaque black cap. 

 

2.5       Software 

Image acquisition was controlled by imaging data acquisition 

software (SpectrononPro, Resonon Inc., USA). Image correction was done 

using software ENVI 5.3 (The Environment for Visualizing Images, ITT 

Visual Information Solutions Corp., USA) and analysed using Matlab 

R2010a (The Mathworks, Inc., Natick, MA, USA).  

 

2.6      Data preprocessing 
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Figure 4 demonstrates the workflow of this research. According to 

Figure 4, the detailed data analysis processes are: The IRIV method was 

applied to extract spectral fingerprint features. Next, neural networks ELM, 

and its variations, GWO-ELM, SSA-ELM, were used to evaluate the water 

stress using the spectral fingerprint features. Then, these three neural 

networks were employed in the HSI, GLCM feature analysis, in addition to 

characteristic wavelengths fused with texture feature analysis. Also, the 

chlorophyll measurement was taken to corroborate the result. 

 
Figure 4. Data processing workflow 

 

In the IRIV selection, Root mean square error of prediction (RMSEP) 

= 3.8785, RMSEF = 0.5875. 15 bands were selected to represent the 300 

bands of hypercubes. These are band185 (766.39nm), band213 (827.34nm), 

band222 (847.06nm), band223 (849.21nm), band230 (864.65nm) , band234 

(873.46nm), band246 (899.97nm), band249 (906.61nm), band257 

(924.37nm), band259 (928.82nm),band262 (935.49nm),band276 

(966.75nm),band278 (971.22nm), band289 (995.91nm) and band290 

(998.16nm).  

 

3.      Texture analysis for identifying leaf water stress 

Due to significant leaf variations in surface textures, texture analysis 

was conducted to identify the leaf water stress. Texture analysis characterises 

regions in an image by their texture content in terms of smoothness, 

roughness, silkiness, or bumpiness in the context of an image. These 

characteristics refer to brightness values or grey level variations in this case. 
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The most commonly used texture measures are derived from the grey-level 

co-occurrence matrix(GLCM).  

The grey-level co-occurrence matrix approach(GLCM) considers the 

pairs of pixels in certain spatial relations to each other. Co-occurrence 

matrices are used. They relate the relative frequencies P(i,j|dθ) that two 

pixels at a constant vector distance (d,θ) from each other have intensity (i,j): 

in the GLCM P(i,j|dθ), the (i,j)th entry of the matrix, represents the number 

of occurrences of a pixel having the intensity value i that is separated from 

another pixel with intensity value j at a distance d in the direction θ. Two 

forms of co-occurrence matrix exist. In the first case, the matrix is 

symmetric, where pairs separated by d and –d (for a direction θ) are 

counted(Haralick et al.,1973). In the second case, the matrix is not 

symmetric, and only pairs separated by a distance of d are counted(Conners 

and Harlow,1980). This leads to a square matrix with a dimension equal to 

the number of intensity levels in the image for each distance d and 

orientation θ. If pixel pairs in the picture are highly correlated, the entries in 

the GLCM are gathered along the diagonal of the matrix. There are five 

features used in our study: 

1. energy: it provides information on image homogeneity; it has low values 

when the probabilities of the grey-level pairs are similar and high values 

otherwise. It is computed as ∑ ∑ 𝑃(𝑖, 𝑗|𝑑, 𝜃)2𝐺−1
𝑗=0

𝐺−1
𝑖=0   

2. entropy: it measures the disorder of the GLCM. It is computed as 

-∑ ∑ 𝑃(𝑖, 𝑗|𝑑, 𝜃)𝑙𝑜𝑔2
𝐺−1
𝑗=0

𝐺−1
𝑖=0 (P(i,j|d,θ)) 

3. correlation: it measures the grey-level linear dependence between pixels 

(relative to each other) at the specified positions; it has high values when the 

values are uniformly distributed in the GLCM and low values otherwise. 

4. local homogeneity (also called inverse difference moment): it is high 

when the same pairs of pixels are found (e.g., in the case of a spatial 

periodicity). It is computed as ∑ ∑
𝑃(𝑖,𝑗|𝑑,𝜃)

1+(𝑖−𝑗)2
𝐺−1
𝑗=0

𝐺−1
𝑖=0  

5. inertia (also called contrast): it quantifies local variations present in the 

image. It is computed as ∑ ∑ (𝑖 − 𝑗)2𝑃(𝑖, 𝑗|𝑑, 𝜃)𝐺−1
𝑗=0

𝐺−1
𝑖=0  

The GLCM approach consists in considering second-order statistics. The 

GLCM method studies the grey-level distribution of pairs of pixels. This is 

why it is also known as the second-order histogram method. In the same 

way, higher-order statistics analyse the joint distribution of more than two 

pixels.  

 

4.       Machine learning methods 

a.         ELM 

In this study, we compared and validated the ELM model with its 

variations, GWO-ELM, SSA-ELM and GOA-ELM.  
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Extreme Learning Machine (ELM) are feedforward neural networks, 

invented by Huang (2006). According to Huang (2006), this algorithm tends 

to provide good generalization performance at extremely fast learning speed. 

ELM doesn’t require gradient-based backpropagation to work. It used 

Moore-Penrose generalized inverse to set its weights.  

𝑓𝐿(x)=∑ 𝛽𝑖𝑔𝑖(𝑥)𝐿
𝑖=1 =∑ 𝛽𝑖𝑔(𝜔𝑖 ∗ 𝑥𝑗 + 𝑏𝑖), 𝑗 = 1, . . . , 𝑁𝐿

𝑖=1   (4) 

Where: L is a number of hidden units, N is a number of training 

samples, 𝛽 is weight vector between the hidden layer and output, 𝜔 is a 

weight vector between input and hidden layer, 𝑔 is an activation function, b 

is a bias vector, x is an input vector. 

 

b.        GWO-ELM 

The gray wolf optimisation algorithm, proposed in 2014, is a new 

swarm intelligence optimisation algorithm (Mirjalili et al.,2014). The GWO 

algorithm mainly maps the group predation behaviour of gray wolves to the 

machine learning field to realise the optimisation of parameters and 

algorithms. Its main features include fewer adjustment parameters, a simple 

structure, high efficiency and convenience, etc. The algorithm has a 

convergence factor adaptive mechanism and an information feedback 

mechanism, which can effectively avoid various defects of the traditional 

algorithm. It has advantages in the convergence speed and solution accuracy 

of the problem(Wang,2021).  

 
Figure 5. Gray wolf population classification 

 

The wolf group in the grey wolf optimisation algorithm is divided 

into four levels 𝛂, 𝛃, 𝛅, 𝛚 in the shape of a pyramid (figure 5). Among which 

𝛂 is the head wolf, whose main task is to coordinate the group’s decision-

making and conduct internal management, 𝛃’s main task is to assist 𝛂 in 

decision-making, and 𝛅 is mainly responsible for observation, hunting and 

nursing. 𝛚 is responsible for coordinating the relationship within the group. 

The wolves will constantly update their location according to their level of 

fitness. 
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c.     Sparrow Search Algorithm (Sparrow Search Algorithm, SSA) 

optimised ELM. 

In SSA, the first sparrow to obtain food is often the discoverer with 

the highest fitness value, leading the entire population to determine the 

location and direction of food. Therefore, the finder will search for food in a 

broader range than other sparrows and constantly explore the fitness values 

in different directions and positions. The position of the population needs to 

be updated iteratively to find out the best foraging position. 

Randomly initialise the population size of sparrows n and the maximum 

number of iterations max iter, and determine its objective function; the 

sparrow group position is initialised as: 

X=[

𝒇([𝒙𝟏,𝟏 ⋯ 𝒙𝟏,𝒅])

⋮ ⋮ ⋮
𝒇([𝒙𝒏,𝟏 ⋯ 𝒙𝒏,𝒅])

]  (5) 

In the formula, the value of each row in Fx represents the fitness 

value of the individual (Liu et al., 2022). 

 

5.  Neural network training 

The training target accuracy (goal) is set to 0.01, and the number of 

training is set to 100 times. When the training curve’s fitting accuracy(best) 

(train) reaches the target accuracy, that is, when the end point of the training 

curve, the fitting accuracy, and the target accuracy coincide, the neural 

network automatically stops training. Suppose the fitting accuracy never 

reaches the target accuracy. In that case, the neural network will repeat the 

training process until the number of training times is completed. 75% of the 

data were randomly selected as the training sample set, 15% as the validation 

data, and 15% as the test data. In table 6, the numbers of HSI data cube is the 

exact amount of data cubes taken during the experiment session (11 days 

collectively). The number of GLCM input data is the number of key 

wavelengths (15) multiplied by the number of data cubes collected, it is the 

same with the input data HSI fused with GLCM. Table 7 demonstrates the 

parameters of different learning algorithms. In both ELM variations GWO-

ELM and SSA-ELM, the number of hidden layers is 50, and the max 

iteration is 100.  
Table 6. Numbers of input data 

Input data number 

HSI 30+30×3×6 

GLCM 15×(30+30×6) 

HSI+GLCM 15×(30+30×6) 
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Table 7. Neural network parameters 

Machine learning networks parameters 

ELM hiddennum = 50;        

activate_model = 'sig';   

GWO-ELM hiddennum = 50; 

SearchAgents_no = 5;  

Max_iteration = 100;  

 

SSA-ELM hiddennum = 50;   

Pop= 5;                                             

activate_model = 'sig';  

Max_iteration = 100; 

 

5.2.1  Evaluation metrics 

A.  Confusion matrix 

Performance measurement is vital in defining the effectiveness of a 

program. Confusion matrixes are a common evaluation tool used in machine 

learning (An, 2020). Generally, they consist of a n× n table plotting actual 

class against predicted class (n denoting the number of classes, so a binary 

classifier would utilize a 2× 2 table), to which the true and false (determined 

by the actual classes) positives and negatives (determined by the predicted 

classes) fit within (Visa et al., 2011).  

 

B.  Accuracy 

In practical applications, we should take the accuracy of the classifier 

into consideration. Because scientists and farmers are more concerned with 

the situations where the classifier sorts the drought pear seedling leaves as 

sound ones if the classifier makes the wrong decision, which will hinder the 

timely watering of the plants, leading to more significant potential economic 

losses than discarding the plants.  

 

Accuracy=
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
    (18) 

 

Accuracy (total correct divided by the total number of assessments), 

however, does not consider the significance of misidentified class (Halimu et 

al., 2019) and tends to be an overaly optimistic performance indicator.  

 

C.         Evaluation metrics for classification algorithms 

Commonly used evaluation metrics for classification algorithms 

include recall, precision, F1 score and mse-loss. Recall measures the ability 
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to identify positive samples, precision measures the accuracy of positive 

sample predictions, and F1 score is a metric that combines recall and 

precision. MSE-loss is a criterion that measures the mean squared error 

between each element in the input and target.These metrics can be selected 

and weighted based on specific requirements. The formulas for these metrics 

are provided accordingly. 

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (19) 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (20) 

F1 score=
2×𝑃×𝑅

𝑃+𝑅
 (21) 

Where TP is true positive, TN is true negative, FP is false positive, 

FN is false negative, P is precision, and R is recall (Shu et al., 2023). 

 

6. Physiological Data 

6.1  Chlorophyll 

 
Figure 8. SPAD of apple leaves under different water treatments. The small vertical line on 

the graph represents the standard deviation of the mean(LSD=0.05). 

 

The leaf chlorophyll content is an essential indicator of the growth 

and photosynthesis of apples under water stress (Sun et al.,2021). Figure 8 

shows the amount of chlorophyll produced by photosynthesis in leaves under 

different water treatments. There was a significant difference in chlorophyll 

among other water treatment groups. The chlorophyll of apple leaves in the 

normal treatment group increased, reached its maximum on October 5th, and 

then slowly decreased. This can be explained by the fact that the leaves in 

the normal water treatment group are sufficient in water, and the 
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photosynthesis capability is vital. By comparison, the chlorophyll of apple 

leaves in the drought treatment group slowly decreased as plants did not have 

enough water. As Pour-Aboughadareh et al. (2019) stated, water deficit 

stress reduced the relative chlorophyll content (SPAD). Chlorophyll is the 

main component of photosynthesis-one of the physiological processes most 

sensitive to environmental stress (Hussain et al.,2019). Like high 

temperature, water deficiency may induce lipid peroxidase and electrolytic 

leakage from chloroplast and thylakoid membranes, leading to a loss of 

chlorophyll content (Ristic et al.,2007). The chlorophyll of leaves in the 

overwatering group increased slightly but soon decreased as the water 

provided exceeded what the plant needed. In waterlogged soil, there is not 

enough oxygen for the roots. The roots start to rot fast, thus leading to 

pigmentation loss (Green,2022). 

The spectral reflectance of leaves is closely related to the leaf surface 

characteristics, leaf thickness, water content, and the contents of chlorophyll 

and other pigments (Feng et al., 2004). The wavelength region (500 to 900 

nm) contains wavelengths with pigment absorption features (Merzlyak et al., 

2003) as well as the red edge (700 to 750 nm) (Mutanga and Skidmore, 

2007). The results of this study indicated that changes in chlorophyll content 

could be used to validate hyperspectral imaging changes in apple seedlings 

exposed to water stress 

 

7.  Classification results 

Table 9 shows the classification results from different machine 

learning methods using different input data. According to the table, when 

fused with GLCM texture features, the performance of these three models 

significantly increased. GWO-ELM and SSA-ELM performed better than 

ELM; where the combination of HSI and GLCM can reach a test accuracy of 

65.73% and 63.64% respectively. In GWO-ELM, when HSI is fused with 

GLCM features, the precision rate is 0.6657, recall rate is 0.6561, and F1 

value is 0.6518. 
Table 9. Performance metrics 

Machine learning 

algorithms 

Different data 

input 

Test 

accuracy 

Precision Recall Loss F1 

ELM HSI 64.94% 0.6957 0.5714 77.92% 0.6275 

GLCM 61.04% 0.6857 0.7059 74.03% 0.6957 

HSI+GLCM 64.94% 0.7826 0.6000 70.13% 0.6792 

GWO-ELM HSI 62.69% 0.6258 0.6369 82.09% 0.6270 

GLCM 53.85% 0.5363 0.5358 90.21% 0.5342 

HSI+GLCM 65.73% 0.6657 0.6561 61.54% 0.6518 

SSA-ELM HSI 58.21% 1 1 91.04% 1 

GLCM 47.56% 1 1 83.92% 1 

HSI+GLCM 63.64% 1 1 84.62% 1 
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7.1      Confusion matrix 

A.       ELM 

Figure 10 shows the confusion matrix of ELM with three different 

input data. In the training data of HSI, 120 out of 160 normal samples were 

correctly identified (75%). But 26 overwatering samples were wrongly 

treated as normal, and 7 overwatering samples were wrongly treated as 

drought (26.6%). In the test data of HSI, 17 out of 25 samples were correctly 

identified as overwater (68%), but 4 normal samples were recognized as 

overwatered and 8 normal samples were treated as drought (42.9%). 

In the training data of GLCM, 106 out of 154 normal samples were 

correctly recognized (68.8%), but 19 overwater samples were treated as 

normal, 41 drought samples were recognized as overwatered. In the test data 

of GLCM, 24 out of 35 samples were correctly identified as normal (68.6%), 

while 8 normal samples were treated as overwatered. 

In the training data of HSI fused with GLCM, 113 out of 158 normal 

samples were correctly identified (71.5%), while 17 overwater samples were 

treated as normal, and 16 overwater samples were treated as drought 

(25.6%). In the test data of HSI fused with GLCM, 18 normal samples and 

18 overwater samples were correctly identified. 

 
(1) HSI 

 
(2) GLCM 
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(3) HSI fused with GLCM 

Figure 10. Confusion matrix for ELM using HSI (1),  

GLCM (2) and HSI fused with GLCM (3) 

 

B.        GWO-ELM 

Figure 11 shows the confusion matrix for GWO-ELM using three 

inputs. In the training data of HSI, 115 out of 132 normal samples were 

correctly identified (87.1%), but 13 normal samples and 2 overwater samples 

were treated as drought (15.5). In the test data of HSI, 24 out of 42 samples 

were correctly identified as overwatered (57.1%), but 8 and 4 overwater 

samples were mis-treated as normal and drought respectively (33.3%). 

In the training data of GLCM, 101 out of 126 samples were correctly labeled 

as normal (80.2%), but 9 overwater samples were wrongly taken as normal 

and 13 overwater samples as drought (21.2%). In the test data of GLCM, 26 

out of 52 samples were correctly identified as overwater (50.0%), but 9 

overwater and 9 drought samples were wrongly classified as normal (36.7%), 

In the training data of HSI fused with GLCM, 80 out of 98 drought samples 

were correctly identified (81.6%), but 8 normal samples and 6 overwater 

samples were wrongly labeled as drought (14.9%). In the test data of HSI 

fused with GLCM, 36 out of 44 samples were correctly identified as normal 

(81.8%), while 14 drought samples were wrongly taken as overwatered. 

 
(a) HSI 
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(b) GLCM 

 
(c) HSI fused with GLCM 

Figure 11. Confusion matrix for GWO-ELM using HSI (1), 

 GLCM (2) and HSI fused with GLCM (3) 

 

Figure 12 demonstrates the confusion matrix for SSA-ELM using 

HSI, GLCM and HSI fused with GLCM. Figure 12 demonstrates the 

confusion matrix for SSA-ELM using HSI, GLCM and HSI fused with 

GLCM. In the training data of HSI, 107 out of 135 samples were correctly 

identified as normal (79.3%), but 15 normal samples and 8 overwater 

samples were wrongly taken as drought (22.5%). In the test data of HSI, 20 

out of 36 overwater samples were correctly identified (55.6%), but 10 

drought samples and 7 drought samples were taken as normal and overwater 

respectively (40.5%). 

In the training data of GLCM, 99 out of 132 normal samples were 

correctly identified (75%), but 19 normal and 14 normal samples were 

wrongly taken as overwater and drought respectively (25%). In the test data 

of GLCM, 33 out of 56 normal samples were correctly identified (58.9%), 

but 4 drought samples were wrongly taken as normal, 13 overwater samples 

were wrongly taken as drought. 
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In the training data of HSI fused with GLCM, 106 out of 132 samples 

were correctly identified as normal (80.3%), but 17 overwater samples were 

wrongly taken as normal, 3 overwater samples were wrongly taken as 

drought (19.2%). In the test data of HSI fused with GLCM, 17 normal 

samples were wrongly taken as overwatered. Only 26 out of 42 drought 

samples were correctly identified (61.9%). 

 
(a) HSI 

 
(b) GLCM 

 
(c) HSI fused with GLCM 

Figure 12. Confusion matrix for SSA-ELM using HSI (1),  

GLCM (2) and HSI fused with GLCM (3) 
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8.        Conclusion and discussion 

This study explored the feasibility of using hyperspectral imaging 

techniques and texture features combined with machine learning to detect 

and identify water stress on apple leaves. The results proved that texture 

features fused with hyperspectral imaging performed better than merely 

using hyperspectral imaging for machine learning classification. The spectral 

behaviour was closely related to the changes in the leaf’s physiological status 

caused by the water stress. Apple leaves under water stress produced a 

different specific and characteristic reflectance spectrum from regular leaves, 

which was difficult to observe by eyes in the early stage.  

To identify the categories of water effectively, standard normal 

variate was used to preprocess the data. Subsequently, the multivariate 

stepwise linear regression method was applied to extract spectral fingerprint 

features, simplifying the training model and accelerating the calculation 

speed. These characteristic wavelengths correlated to spectral behaviours and 

cellular structure were selected in association with chlorophyll. The number 

of input spectral fingerprint features was only five, which are Band 

85(564.26nm), Band 174(753.41nm), Band 156(714.65nm), Band 

116(629.43nm), Band 194(796.79nm), Band 144(688.95nm) and Band 

285(998.16nm), which decreased by more than 97% compared with the 

original spectral data. The absorbances are associated with the combinations 

of fundamental vibrations of C-H and O-H functional groups (Kamruzzaman 

et al.,2016). The 710–760 nm (red-edge) band and band around 700 nm are 

related to chlorophyll (ElMasry et al., 2007; Pacumbaba and Beyl, 2011). 

Also, chlorophyll absorptions are found in the visible region of the spectrum 

near 430, 460, 640, and 660 nm (Curran, 1989). Subtle absorption at 780nm 

and 980nm may be associated with the third and second overtones of O-H 

stretching, which may be relevant to water (ElMasry et al.,2012). Absorption 

at 940 nm is related to C-H third overtone(Kamruzzaman et al.,2016). 

According to Lu et al. (2022), a small reflectance peak appeared in the band 

around 550 nm, which is caused by the reflection of chlorophyll; a trough 

appeared in the red band around 680 nm, which is caused by the strong 

absorption of chlorophyll. Finally, diverse classifiers (ELM, GWO-ELM, 

SSA-ELM) were developed and evaluated on hyperspectral images and 

spectral-textural hyperspectral imaging analysis. For water stress detection, 

all classification models obtain relatively good accuracy (>90%) and robust 

performance, recognising the water stress before the signs of wilting or 

yellowing appear notably in the apple leaf. Also, the neural networks 

regarding textural analysis in fusion with hyperspectral imaging reached a 

satisfactory result. It should be mentioned that the classification result of the 

selected texture parameters fused with hyperspectral imaging outperformed 

those using only hyperspectral imaging data.  
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Recent research has made efforts to integrate spectral and image 

characteristics in order to obtain sufficient information and enhance the 

practical outcomes of hyperspectral imaging (HSI) applications (Wang et al., 

2015; Ru et al., 2019). When compared to the accuracy achieved in 

identifying yellow rust in wheat leaves using spectral data alone, the 

accuracy of identification increases by 7.3% when utilizing both spectral and 

texture features (Guo et al., 2020). Furthermore, the incorporation of 

spectral, texture, and morphological features can lead to a 2% improvement 

in accuracy for the germ side and a 1.3% improvement for the endosperm 

side (Yang et al., 2015). 

Previous studies have employed statistical analysis methods, such as 

the gray level co-occurrence matrix (GLCM) and morphological parameter 

calculations, to extract texture and morphological features from images. 

However, these methods are known for their complexity, time-intensive 

nature, reliance on spatial scale considerations, and the need for prior 

information (Sachar and Kumar, 2021). In recent years, deep learning has 

emerged as a powerful technique for feature extraction and has found 

widespread application, particularly in the field of imaging (Yu et al., 2020).  

Our study confirmed the results of other research. In Zhang et al. 

(2022)’s analysis of distinguishing flue-cured tobacco samples, the texture 

features of flue-cured tobacco were selected by gray-level co-occurrence 

matrix (GLCM). Then the texture features and spectral features were 

normalised and fused. SPA chose twenty-five feature bands, and the 

classification accuracy using feature bands was decreased. The classification 

effect was improved significantly after the fusion of hyperspectral and 

texture characteristics. Zhu et al. (2017) investigated the feasibility and 

potentiality of presymptomatic detection of tobacco disease using 

hyperspectral imaging, combined with the variable selection method and 

machine learning classifiers. Four texture features, including contrast, 

correlation, entropy, and homogeneity were extracted according to grey-level 

co-occurrence matrix (GLCM). Additionally, different machine-learning 

algorithms were developed and compared to detect and classify disease 

stages with effective wavelengths, texture features and data fusion 

respectively. Yu et al. (2018) researched the prediction of polysaccharides 

and total sugar in wolfberry based on spectral and texture information from 

hyperspectral images. According to the absolute value of the average weight 

coefficient of each wavelength under the first three principal component 

images of 300 wolfberry samples, five characteristic wavelengths were 

selected ( 578. 42, 622. 97, 699. 61,809. 39, 865. 40 nm). Graycomatrix was 

used to extract the texture features of hyperspectral images corresponding to 

five characteristic wavelengths. After the screening, partial Least Squares 
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Regression was used to examine the correlation between polysaccharide 

content and spectra data. The correlation result was satisfactory. 

Based on the spectral fingerprint features combined with the 

supervised classification algorithm developed in this study, a hyperspectral 

imaging detection system was potentially designed for identifying the 

categories and water stress levels in apple leaves. In future research, we will 

focus on (1) contrasting the spectral fingerprint features extracted in the field 

conditions (uncontrolled lighting) with those in the laboratory, (2) increasing 

more samples with different stress levels to generate and collect more image 

profiles of apple seedling leaves, therefore, making the algorithm more 

accurate and robust, (3) building a detailed time course to record the 

physiological and hyperspectral characteristics of leaves under different 

water treatments in differential time frames and (4) expanding our finding to 

other plant species, and applying the methodology in a real-world sorting 

environment for online and reliable plant or leaf water stress detection, to 

achieve excellent plant water and nutrition management. 

This research introduces a new method, texture analysis of 

hyperspectral imaging and machine learning tools to identify apple seedling 

leaves under different water treatments. This otherwise cannot be identified 

by human eyes, except at the late stages, when the leaves are turning yellow 

or have wilted. The proposed method offers a new approach and the 

possibility of effective differentiation of leaves under different water 

treatments. Furthermore, leaves’ chlorophyll corroborates our findings using 

HSI and machine learning. 
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Appendix 

 
a. HSI 

 
b. GLCM 

 
c. HSI fused with GLCM 

(1) ELM 
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a.HSI 

 
b.GLCM 

 
c.HSI+GLCM 

(2) GWO-ELM 
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a. HSI 

 
b. GLCM 

 
c.HSI+GLCM 

(3) SSA-ELM 

Figure 12. Classification result of ELM (1), GWO-ELM (2) and SSA-ELM (3) with an 

input of HSI (a), GLCM (b) and HSI+GLCM (c) 
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