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Abstract 

This paper deals with probability theory, and it is an extension to a 

published paper that has the same title, but for the discrete case. This present 

paper is aiming to study probability values behavior, in the case of 

continuous sample space, through fractions intervals and composite function. 

This aim tends to study the value behavior rather than finding the value 

itself. Also, this aim requires usage of some concepts of continuity, 

geometric probability, and measure theory, which also need a brief 

treatment. This paper is mainly using an experiment with a design that helps 

to study the probability fractions values in the form of intervals in the case of 

one direction movement and in the case of different directions. As a result, 

every case reflects some aspects of probability values behavior and can 

clarify many important characteristics of the probability theory. In addition 

to applying the composite function by some important theorems of 

conditional probability. These are besides a proven proposition that helps to 

design experiment, upon the understanding of the case nature. In addition to 

a corollary that allows to visualize negative probability values, as a particular 

case (trial), that upon the validity of the explanation of negativity which 

should be consistent with the probability axioms. 
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Introduction 

The difference between haphazard, chance or accident, and the act is 

a thin thread. Such as the difference between finding a dumped coin and the 

chance between two players. The difference is that in the game of chance, 

every player has some information about the other and has his influence. But, 

in the first case no one has an idea about who may find the coin, in addition 

to the independence factor. In randomness, events happen without any 

intentional action, and it is difficult to be predicted, also it is rarely repeated, 

in addition to the factor of homogeneity. Laplace said : Les événements 

actuels ont avec les précédents une liaison fondée sur le principe évident, 

qu’une chose ne peut pas commencer d’être, sans une cause qui la produise. 

Cet axiome, connu sous le nom de principe de la raison suffisante, s’étend 

aux actions mêmes que l’on juge indifférentes. La volonté la plus libre ne 

peut, sans un motif déterminant, leur donner naissance ; car si, toutes les 

circonstances des deux positions étant exactement semblables, elle agissait 

dans l’une et s’abstenait d’agir dans l’autre, son choix serait un effet sans 

cause : elle serait alors, dit Leibnitz, le hasard aveugle des épicuriens. 

L’opinion contraire est une illusion de l’esprit qui, perdant de vue les raisons 

fugitives du choix de la volonté dans les choses indifférentes, se persuade 

qu’elle s’est déterminée d’elle-même et sans motifs. 

On the other hand, the continuous concept has a key role in 

randomness. In addition, in the probabilistic nature, the discrete process is 

usually part of a continuous process, and it appears if the continuous process 

has interrupted. Moreover, when human consciousness or technology ability 

cannot recognize the entire process or the uncountable instant such as the 

absolute speed, then there is a need to consider it as a continuous process. 

So, the unseen are the events that happened as discrete events in a continuous 

process or as an unrepeated discrete process, which may be considered as 

deterministic events. And it is worth noting that information may be regarded 

somewhat as events. 

In the process of tossing a true coin, there will be a continuous 

process as long as the coin is flipping. So, this is considered as kind of 

unknown, because there will be infinite and uncountable points and so an 

infinite and uncountable sample space. The continuous process is almost 

incontrollable, and it is in permanent change, and one can evaluate its limit 

rather than its exact value. So, there is less determination and more 

approximation. Moreover, science cannot visualize the discrete case 

precisely, except through its continuous case. So, the pervious paper 

(discrete case) has given some description of the continuous case, see 

corollary V (Jughaiman A., 2023). Now, suppose that if one monitors a coin 

at its flipping at specific points and specific time intervals, to get the result of 
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the head and tail such that (𝐻, 𝑇): (
49

100
,

51

100
). How this result, could be 

repeated? So, if this question is necessary, then the answer is also necessary. 

The notion of continuity dates back to Leonhard Euler (1707-1783). But the 

more modern version of continuity is credited to Bolzano (1817) and Cauchy 

(1821). And, both Bolzano and Cauchy were concerned with continuity on 

an interval, rather than continuity at a point (Stoll, 1997). 

In reality, the epistemological value of the theory of probability is 

revealed only by limit theorems. Moreover, without limit theorems it is 

impossible to understand the real content of the primary concept of 

probability. Historically, there are five considerable limit theorems, four of 

them deal with a sequence of independent events, (Gnedenko & 

Kolmogorov, 1968). 

 

Methods 

Experiment purpose: This experiment consists of observing the 

appearance of probability fractions (interval) of head or probability fractions 

(interval) of tail, in continuous processes. And to answer the following 

question: how does the continuous probability value behave?  

Experiment steps: This paper will use a coin, but after shaping it into 

a spherical shape (true ball), with radius of 𝑟. Then the ball will be divided 

theoretically into 𝑛 ordered closed circles with the replacement, for every 

half separately, where 𝑛 is unkown. Also, consider that the peak of each 

upper half of the ball is success, figure 1.  

 
Figure 1. Every half is divided into infinite uncountable fractions. 𝓹𝒏approachs 1, while 𝓹𝟎 

will represent ∅. 

 

It should be noting that, in the descrete case, 𝑖 is used to denote the 

number of fraction that is passable to happen in every throwing separately, 

(Jughaiman A., 2023). While in the continuous case, this present paper uses 

an interval to record fractions in some arbitrary time intervals. And, on every 

point at the peak, supposes a cumulative value of probability fractions 

(circles) starting by zero in an ordered  manner, taking 𝓅0 = 0 as a lower 

fraction (minimum and lower bound) and taking 𝓅𝑛 = 1, as an upper 

fraction (maximum and upper bound) in the closed interval [0,1]. But as the 
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points are infinite and uncountable, 𝓅𝑖 will be unknown. Where 𝓅𝑖 is 

approaching ±∞. Here, if 𝓅0 and 𝓅𝑛 are expressed as points, also they are 

expressed as intervals 𝓅𝑖=[0,0], 𝓅𝑖=[1,1] or into an interval 𝓅𝑖=[0,1]. 

In this experiment there are two cases; if the ball moves in a straight line, 

then there is one direction. The second, if the ball moves on unlevel surface, 

then there are different directions. In addition, this present paper will use the 

following procedures and derived expressions, figure 2. 

 

 
Figure 2. Used procedures and derived expressions 

 

Also, in this present paper, interval is mean the fractions interval, 

unless determined it. And, for the time sub-interval (𝑎, 𝑏), this paper 

considers that, the longest one to be the requiared time that the ball spends, 

through a distance from zero to 
𝜋

2
, in its fastest move. And the shortest one is 

when the ball still without any movement. 

 

Results 

If two arbitrary points are selected on the surface of a sphere of 

radius 𝑟. Then, the probability that an arc of a great circle passing through 

these points to make an angle less than 𝛼, where 𝛼 < 𝜋, is the area of the 

half surface of sphere minus this area multiple by cosine 𝛼, then all that 

divided by the whole area of the sphere surface. So, 

𝑝 =
2𝜋𝑟2−2𝜋𝑟2 cos  𝛼

4𝜋𝑟2 =
2𝜋𝑟2(1−cos  𝛼)

4𝜋𝑟2 =
(1−cos  𝛼)

2
= 𝑠𝑖𝑛2 𝛼

2
, figure 3. See 

problems in (Sveshnikov, 1968). 

 
Figure 3 

 

The probability that an arc of a great circle passing through points to 

make an angle equal to 𝜋, is the area of the half surface of sphere, 𝑝 =
2𝜋𝑟2

4𝜋𝑟2
=

1

2
, which equals to 𝑝 =

𝑝(𝐻)

𝑆
=

1

2
.  
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Case 1: One direction 

1. If the ball moves on a straight line, starting from zero with a 

constant velocity. Consider the following: every sub-interval of time will be 

corresponding to the fractions’ interval 𝑖 in movement of rotation of 90°. 

Here, the sample space will be all points on the great circle, figure 4.  

 
Figure 4. H is appearing completely when 𝓹𝟎 coincides with the x-axis 180°clockwise 

 

           Also, there will be an ordered head and tail fractions, but no 

randomness. Nevertheless, if one applies the probability theory, then the 

outcomes for {(𝐻), ( 𝑇)} will be the ordered pairs: {(0,1), (0,1), … + ∞}. 

Which are interpreting, why the probability value takes the values of 1 and 

0, and why the area under the density curve should be equal 1 in the case of 

continuous random variable. 

2. If the ball moves on a straight line, starting from zero with variant 

velocity then, there is only one direction for some intervals; 
[0, 𝑡1], [0, 𝑡2], [0, 𝑡3], … , [0, 𝑡]. Such that the values of 𝓅𝑖 tend to 𝓅𝑛 then 

tend to 𝓅0 again, and so on. And, as the rotation degree will be random for 

unconstant velocity, so the corresponding fractions on the curve will be 

unequal for equal time sub-intervals, figure 5.  

 
Figure 5. Equal and constant time intervals with unequal fractions intervals 

 

Also, if the speed of ball increases arbitrarily, then the intervals 

become narrower and narrower. And this can draw the normal distribution 

form (Gaussian distribution form), figure 6. Where, the probability 

distribution of a sum of independent random variables tends to become 

gaussian as the number of random varibles being summed increases without 

limit. Such as, the shot noise generated in a thermionic vacuum tube, and the 

voltage fluctuation produced by thermal agitation of electrons in a resistor 
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(Davenport, 1958). And as the ball stops, then the continuous case will be 

breakup at a discontinuity point and called the discrete case.  

 
Figure 6 

 

Proposition I: For every random process, the number of trial of any 

process is at least equal to the square number of the real events, 𝑚2.  

As this proposition may seem trifle, it is also useful. And it may reflect one 

of the sampling techniques as well as counting techniques. 

Proof: In principle, the number of trials in the case of a true coin, in a 

discrete process should be at least four trials to get head or tail, table 1. 
Table 1. The chances of every event 𝒎𝟐, not the permutation 𝑚! 

 
 

Because in the case of throwing a ball, if one records the fraction that 

the ball movement through the interval ended at, then at every instant of time 

there will be a new fraction. Such that, for infinite uncountable events 

(points) 𝓅𝑖 in the closed interval [0, 1], then ∑ 𝑃(𝓅𝑖) = 1∞
𝑖=0  and if this 

quantity is less than 1, then there are missing events. In other words, there 

are no sure or impossible events. And, as this is impossible because of the 

uncountable aspect of the real numbers. There is always need to enough 

intervals that should reflect the main characteristics in any experiment, 

besides avoiding the errors. Also, while this could be use to prove the 

uncountable aspect of the real numbers, continuity helps, on the other hand, 

to reduce the errors that cannot be recognized in the discrete process. 

In addition, in the case of discrete processes the outcome of tossing 

coin or throwing ball, has values with large difference, such as tossing a true 

coin twice with outcomes of 0 and 1. While in the continuous case, there is a 

value at every instant, and this value is very close to the previous value or the 

next value. So, the function should be a continuous function. “A small 

change in 𝑥 produces only a small change in the function value 𝑓(𝑥). This is 

not accurate description, but rather device to help develop an intuitive feeling 

for continuous functions”, (Swokowski, 1988).  

For a sequence {𝐴𝑛}, 𝑛 = 1, 2, …, the set of all point which belong to 

almost all 𝐴𝑛 (all but any finite number) is called the inferior limit of 𝐴𝑛 and 
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lim inf 𝐴𝑛 = ⋃ ⋂ 𝐴𝑘
∞
𝑘=𝑛

∞
𝑛=1 . Also, the set of all point which belong to 

infinitely many 𝐴𝑛 is called the superior limit of 𝐴𝑛 and lim sup 𝐴𝑛 =
⋂ ⋃ 𝐴𝑘

∞
𝑘=𝑛

∞
𝑛=1 . So, lim inf 𝐴𝑛 ⊂ lim sup 𝐴𝑛, but if lim inf 𝐴𝑛 and 

lim sup 𝐴𝑛 are equal to the same set 𝐴, then 𝐴 is called the limit of 𝐴𝑛. Also, 

a sequence {𝐴𝑛}, 𝑛 = 1, 2, …, is said to be monotone if it is either 

nondecreasing 𝐴1 ⊂ 𝐴2 ⊂ ⋯, and to write 𝐴𝑛 ↑, or if it is nonincreasing 

𝐴1 ⊃ 𝐴2 ⊃ ⋯, and to write 𝐴𝑛 ↓. So, every monotone sequence is 

convergent and lim 𝐴𝑛 = ⋃ 𝐴𝑛 𝑜𝑟 ⋂ 𝐴𝑛 according as 𝐴𝑛 ↑ or 𝐴𝑛 ↓ (Loève, 

1977). 

Corollary I: For a continuous process at some intervals, the 

probability of fraction events can take negative probability values in sub-

sequence of a sequence that sum to zero: 

𝒫𝑗↓(𝓅𝑖), where 𝑗 = 1, … , 𝑚 and 𝑖 = 1,2, … , ∞. 

Proof: 

From probability axioms, 

 0 ≤ 𝓅𝑖 ≤ 1, for 𝑖 =  1,2, … ∞. 

And if 𝓅𝑖, 𝑖 =  1,2, … ∞ are mutually disjoint sets in 𝔉 then, 

⋃ 𝓅𝑖 = ∑ 𝓅𝑖
∞
𝑖

∞
𝑖 . 

Also, as 𝒫𝐻(𝓅𝑖=0,1,..𝑛) + 𝒫𝑇(𝓅𝑖=0,1,..𝑛) = 1 and, 

𝒫𝐻(𝓅𝑖=0,1,..𝑛) = 𝒫𝑇(𝓅𝑖=0,1,..𝑛) then 𝒫𝐻(𝓅𝑖=0,1,..𝑛) =
1

2
. 

And, if the ball moves through an interval 𝑖, where is 
𝜋

2
< 𝑖 < 𝜋 and 

if, 

∑ 𝓅𝑖
∞
0 ≤ 𝑖 ≤ 

𝜋

2

= ∑ 𝓅𝑖
∞
 
𝜋

2
≤𝑖≤𝜋

=
1

2
. Then, ∑ 𝓅𝑖

∞
0 ≤ 𝑖 ≤ 

𝜋

2

 + ∑ 𝓅𝑖
∞
 
𝜋

2
<𝑖<𝜋

>
1

2
 , but this is 

contrary to the probability axioms. Therefore, one of the two series must be 

negative. So,  

0 ≤ ∑ 𝓅𝑖
∞
0 ≤ 𝑖 ≤ 

𝜋

2

 + ∑ 𝓅𝑖
∞
 
𝜋

2
<𝑖<𝜋

≤
1

2
 multiple by −1, gives 

−
1

2
≤ − ∑ 𝓅𝑖

∞
0 ≤ 𝑖 ≤ 

𝜋

2

 − ∑ 𝓅𝑖
∞
 
𝜋

2
<𝑖<𝜋

≤ 0, then take ∑ 𝓅𝑖
∞
0 ≤ 𝑖 ≤ 

𝜋

2

=
1

2
 and adding 

∑ 𝓅𝑖
∞
0 ≤ 𝑖 ≤ 

𝜋

2

, then 0 ≤ − ∑ 𝓅𝑖
∞
 
𝜋

2
<𝑖<𝜋

≤
1

2
 , and −

1

2
≤ ∑ 𝓅𝑖

∞
 
𝜋

2
<𝑖<𝜋

≤ 0.  

As a result, the negative value here is necessary, but in this case the 

sum of the probability values in an infinite interval for both, head and tail, 

will be zero.  

Now, suppose that the ball moves in one direction at constant speed 

through the time interval [𝑡0, 𝑡] which is corresponding to the fraction 

interval [0,
𝜋

2
], then the displacement 𝜃 = 𝓋∆𝑡, and if 𝓋 = 1 then, 𝜃 = ∆𝑡 =

𝑡.  

Let 𝑡 = 𝑛, then 𝑛 − 1 ≤ 𝑡 ≤ 𝑛 + 1. And,  

𝑛 ≤ 𝑡 + 1 ≤ 𝑛 + 2. So, 𝑡 + 1 ≤ 𝑛 + 2 or 𝑛 ≤ 𝑡 + 1. 
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Also, if 𝒫𝐻(𝓅𝑖=0,1,..𝑛) = 𝒫𝐻↑(𝓅𝑖=0,1,..𝑛) + 𝒫𝐻↓(𝓅𝑖=1,..𝑛). And, 

if the integration of [∫ 𝑓(𝑥) 𝑑𝑥] + [∫ 𝑓(𝑥) 𝑑𝑥] = 0
0

𝜋

2

𝜋

2
0

.  

Recall 𝒫𝐽(𝓅𝑖) in the discrete case, where 

∑ ∑ 𝒫𝐽(𝓅𝑖)
𝑛
𝑖

𝑚
𝑗 𝑗

= ∑ ∑
1

𝑛+1
[1 −

𝐽(𝑛−𝑖)

𝐽𝑛
 ]𝑛

𝑖
𝑚
𝑗 , and for 𝑟 rounds, this will be; 

(−1)𝑟+1 ∑ 𝒫𝐻↑(𝓅𝑖) + (−1)𝑟+1 ∑ 𝒫𝐻↓(𝓅𝑖) + ⋯𝑛
𝑖

𝑛
𝑖  for 𝑟 = 1,2, … 

∑ 𝒫𝐻↑(𝓅𝑖) = 𝒫𝐻↑(𝑡0, 𝑡)𝑛
𝑖 =

(−1)2

𝑡
∫ 𝒫𝐻↑(𝜃)𝑑𝜃

𝑡

𝑡0
 =

1

𝑡
∫ 1 −

(𝑡−(𝑡−𝑡0))

𝑡

𝑡

𝑡0
 𝑑𝜃. 

=
1

𝑡
∫

𝑡−𝑡+(𝑡−𝑡0)

𝑡

𝑡

𝑡0
 𝑑𝜃. 

=
1

𝑡
∫

(𝑡−𝑡0)

𝑡

𝑡

𝑡0
 𝑑𝜃 =

1

𝑡2 ∫ 𝜃
𝑡

𝑡0
 𝑑𝜃 =

1

𝑡2
[

𝜃2

2
]

𝑡0

𝑡

=
𝑡2

2𝑡2
=

1

2
 𝑅𝑒𝑠𝑢𝑙𝑡 1.  

Also, for the time interval (𝑡, 𝑡0). 

∑ 𝒫𝐻↓(𝓅𝑖)
𝑛
𝑖 = 𝒫𝐻↓(𝑡, 𝑡0) =

(−1)3

𝑡2 ∫ (𝑡0 − 𝑡)
𝑡0

𝑡
𝑑𝜃. 

=
−1

𝑡2 ∫ 𝜃
2𝑡

𝑡
𝑑𝜃 =

−1

𝑡2 [
𝜃2

2
]

𝑡

2𝑡

= −
𝑡2

2𝑡2 = −
1

2
 𝑅𝑒𝑠𝑢𝑙𝑡 2.  

And, 𝒫𝐻(𝓅𝑖=0,1,..𝑛) = 𝒫𝐻↑(𝓅𝑖=0,1,..𝑛) + 𝒫𝐻↓(𝓅𝑖=1,..𝑛) = 0 𝑅𝑒𝑠𝑢𝑙𝑡 3.  
Here, for all the following intervals, 

(0, 0), (0, 𝜋), ( 0, 2𝜋), ( 0, 3𝜋), … , (0, 𝑛𝜋) the probability value will be 0. 

On the other hand, these results reflect the fact that 𝓅(+∞) = 1, and the fact 

that 𝓅(−∞) = 0. Also, these resultes reflect that the nil value does not only 

mean that the impossible event is happening, but it also means that there is 

no discrete process. At the same time, in the discrete case, nil value does not 

only mean that the impossible event is happening, but it also means that there 

is a continuous process. Also, this value may provide an explanation of the 

limit value for lim
𝑛→∞

1

2𝑛 = 0.  

Also, in 𝑅𝑒𝑠𝑢𝑙𝑡 3, if 𝒫𝐻↑(𝓅𝑖=0,1,..𝑛) is multiplied by 2, as a weight, 

then it will be; 𝒫𝐻(𝓅𝑖=0,1,..𝑛) = 2𝒫𝐻↑(𝓅𝑖=0,1,..𝑛) + 𝒫𝐻↓(𝓅𝑖=1,..𝑛) =
1

2
, 

𝑅𝑒𝑠𝑢𝑙𝑡 3′. Also, this result could be obtaind by sequaring the both functions. 

But for the distribution function and under the probability axioms, the case is 

still different: “A function of 𝑡, 𝐹(𝑡) is never decreasing”, (Uspensky, 1937). 

So, to not loss generality in results 1, 2 and 3, let 𝑡 + 1 ≥ 𝑛, where 𝜃 should 

be 0 ≤ 𝜃 ≤ 𝑡, and if 𝑡 = 1 then the integration is; 

∑ 𝒫𝐻↑(𝓅𝑖) = ∑ 𝒫𝐻↓(𝓅𝑖)
𝑛
𝑖 = 𝒫𝐻↑(𝑡0, 𝑡)𝑛

𝑖 =
1

𝑡+1
∫

𝑡−𝑡+(𝑡−𝑡0)

𝑡

𝑡

𝑡0
 𝑑𝜃. Then 

1

𝑡(𝑡+1)
∫ 𝑡 − 𝑡 + (𝑡 − 𝑡0)

𝑡

𝑡0
 𝑑𝜃 =

1

𝑡(𝑡+1)
∫ 𝜃

𝑡

𝑡0
 𝑑𝜃 =

1

𝑡(𝑡+1)
[

𝜃2

2
]

𝑡0

𝑡

=
1

4
. 𝑅𝑒𝑠𝑢𝑙𝑡 4. 

And, this explains that the ball is divided by 4 quarters, every face 

has two attached quarters with positive signs. Also, if one supposes that the 

value of 𝑡 (displacement) is increasing infinitely such that 0 ≤ 𝜃 < +∞, then 
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ESI Preprints                                                                                               January 2024 

www.esipreprints.org                                                                                                                   580 

the probability of probability value is also increasing to approach the value 

of 
1

2
, but it does not exceed it. Which proves numerically that the limit of the 

function is 
1

2
, table 1. At the same time, as the value of 𝑡 decreases infinitely, 

then the probability of probability value is decreases to approaches zero, but 

it does not exceed it. So, these also explain the results of 1, 2 and 3. 
Table 2. A small change in 𝑡 produces a small change in the function. 

Also, whatever the acceleration of 𝑡 is, the function has less acceleration 

 
 

Also, in continuous processes the conditional concept could be 

considered. So, for some intervals; 

𝒫𝐻↑(𝓅
𝑖=

𝑛+𝑖

2
,…,𝑛

| 𝓅𝑖=1,…,
𝑛

2
) = 𝒫𝐻↓(𝓅

𝑖=
𝑛−𝑖

2
,…,1

| 𝓅𝑖=𝑛,…,
𝑛

2
). 

            In this case 𝓅𝑖+1↑ occurring if 𝓅𝑖↑ occurs is given, and this is a result 

of the physical situation that subjected to the conditionality. And it is 

sufficient, that every point in 𝓅𝑖↑ is also in 𝓅𝑖+1↑ which is satisfying that the 

points is in 𝓅𝑖↑𝓅𝑖+1↑.  

For a probability space (𝔉, 𝔅, 𝒫(⋅)) if 𝔉 is uncountable, then 𝔅 

cannot in general be the set of all subsets. But, once one has one probability 

defined over (𝔉, 𝔅), then one can define other probabilities that are called 

conditional probabilities (Tucker, 1967).  

Corollary II (From Multiplication Rule): For every 𝑛 events 

𝓅1, … , 𝓅𝑛for which 𝒫𝑗=1,..,𝑚(𝓅1 … 𝓅𝑛−1) > 0. Then, 

𝒫𝑗=1,..,𝑚(𝓅1 … 𝓅𝑛) =

𝒫𝑗=1,..,𝑚(𝓅1)𝒫𝑗=1,..,𝑚(𝓅2|𝓅1) ⋯ 𝒫𝑗=1,..,𝑚(𝓅𝑛|𝓅1 … 𝓅𝑛−1).  

For the theorem and proof see (Tucker, 1967). 

Corollary III (From Theorem of Total Probabilities): If 

𝒫𝑗=1,..,𝑚(⋃ 𝓅𝑖
𝑛
𝑖=1 ) = 1, where {𝓅𝑖} are a finite or denumerable sequence of 

disjoint events, if 𝒫𝑗=1,..,𝑚(𝓅𝑖) > 0 for every 𝑖, and if 𝐴 ∈ 𝔅. Then,  

𝒫𝑗=1,..,𝑚(𝐴) = ∑ 𝒫𝑗=1,..,𝑚(𝐴|𝓅𝑖)𝑛
𝑖=1 𝒫𝑗=1,..,𝑚(𝓅𝑖). For the theorem and proof 

see (Tucker, 1967). It should be noting that, in the present case 

𝒫𝑗=1,..,𝑚(𝓅0) ≥ 0, so it is excluded. 

But the difference in the discrete case is that the events are 

independent in every throwing, where in the present case every event is 

supposed to be dependent on the previous event. “Among Markov’s own 

significant contributions to probability theory were his pioneering 
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investigations of limit theorems for sum of dependent random variables and 

the creation of a new branch of probability theory, the theory of dependent 

random variables that form what we now call a Markov chain”. (Shiryaev, 

2016). 

3. If the ball moves in one direction but it diffuses in all directions at 

a speed that is more than the speed of its movement, then the points turn 

away. And at every instant there would be unknown point (uncountable), 

figure 7. 

 
Figure 7. As point is undefined, it is also unknown (uncountable) 

 

Case 2: Different directions 

The sample space will be all points on the ball. If one considers that 

all events are equally likely, then it will also bring result 3, figure 8. 

 
Figure 8 

 

Definition I: Let Ω be a measurable subset of 𝑛-dimensional 

Euclidean space with positive, finite Lebesgue measure. Let further 𝒜 be the 

set of all measurable subsets of Ω and 𝜇(𝐴) the 𝑛-dimensional Lebesgu 

measure of the measurable set 𝐴. Let 𝑃(𝐴) be defined by 
𝜇(𝐴) 

𝜇(Ω) 
, and if 

(Ω, 𝒜, 𝑃) is a kolmogorov probability space. Then in this probability space 

probabilities may be obtained by geometric determination of measures 

(Rényi, 1970). 

The selections of measurable sets and of concepts of limit in range-

spaces are rooted in the properties of the Euclidean line: Real line 

𝑅 =(−∞, +∞) with Euclidean distance |𝑥 − 𝑦| of points (numbers, reals) 

𝑥, 𝑦. Species of spaces vary according to the preserved amount of these 

properties, an amount which increases as we pass from separated spaces to 

metric spaces, then to Banach spaces and to Hilbert spaces (Loève, 1977). 
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Theoritacly, if one bends the portion of the real line of the closed interval 

[0,1] as figure 9 shows. Then, this will represent the infinite uncountable 

fractions (circles). 

 
Figure 9. The portion of the real line that bends over every quarter of the ball 

 

It is well known that we can establish a one-to-one correspondence 

between all real numbers and all points on the line. Also, a correspondence 

may be established between all pairs of real numbers (𝑥1, 𝑥2) and all points 

in a plane or between all triplets of real numbers (𝑥1, 𝑥2, 𝑥3) and all points in 

a three-dimensional space. Moreover, the length of a finite interval (𝑎, 𝑏) in 

𝑅1is the non-negative quantity and zero for the degenerate interval. Thus, 

with every interval 𝑖 = (𝑎, 𝑏) associated a definite non-negative length, 

which may be finite or infinite. And, we may expressed this by saying that 

the length 𝐿(𝑖) is non-negative function of the interval 𝑖 and writing, 𝐿(𝑖) =
𝑏 − 𝑎, or 𝐿(𝑖) = +∞, (Cramér, H., 1946). In the present case, interval 

𝓅𝑖=[0,0] is a degenerate interval. In addition, in the problem of uncountable 

points, if area is used instead of numbering, for the process of tossing a true 

coin then the probability of head will be the area of head / the area of the 

coin. Intuitively, if the ball considered as one event that divided by many 

events (portions), then the entire area cannot be divided by unequal portions. 

Also, in this present case for each face, if the two intervals [0, 1] and (0, 1) 

are considered separately. So, for some successive intervals without common 

points, the whole fractions sub-intervals will take a length of less than or 

equal to 1. So, it is possible to represent the function 𝐿(𝑖) by the function 

𝒫𝑗(𝓅𝑖). 

           Also, if the end points of any interval will be from an infinite 

uncountable sample space, then the intervals are infinite and uncountable 

intervals. 

Geometrcaly, by a random vector in 𝑅3 is meant a vector drawn in a 

random direction with a length 𝐿 which is a random variable independent of 

its direction. The probabilistic properties of a random vector are completely 

determiend by those of its projection on the 𝑥-axis, and using the latter it is 

frequently possible to avoid analysis in three dimensions, (Feller, 1971). 
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As the ball moves in different directions, with various velocities then 

there would be vectors and scalars. And, every vector has initial point 𝑣0, 

terminal point 𝑣1 and length as a magnitude, which will be the time interval 

length. Which also depends on the velocity. Simply, every point 𝑎 has a 

probability value equal to 
𝑎

𝑡
.  

On the other hand, in the case where the ball is still without 

movement, every point at a random position on the ball could sketch a ball, 

and as the points are uncountable, there will be uncountable balls. Also, 

when the ball moves, then every point takes the position of the other one. So, 

if there are uncountable balls, then the probability to pull one of them, will 

be such as the experiment of drwing a random ball in a continuous process. 

And for arbitrary time interval, it is impossible to find how many balls can 

be drawen. 

Nevertheless, since there are random velocities and random 

directions, then the value will behave as following: 

1. The points at the peak remain around its position, if the ball move 

around its axle , so the value remains within a bounded range. 

2. The points at the peak remain around its orbit, if the ball move 

around this orbit, so the value remains within the some greate circles. 

3. The point move in random directions, so the value changes randomly. 

 

From these, if one supposes that every point is moving on random 

orbits, then by use these orbits instead of points, there are fixed infinite 

uncountable orbits. And the argument being, what is the probability value of 

every orbit the moving ball may take. And, how long the interval is for the 

ball in its moving, remains at a specific half (head or tail). Therefore, there 

would be some kinds of behaviors such that: 

1. The behavior of the value in a specific time interval. 

It will subjected to the conditions of the existing case. Meant, the 

events occurrence will not be equally likely (limited-time interval). 

2. The behavior of the value in an infinite time interval. 

It will reflect the value behavior that depends on the ball movement 

behavior. Meant, the events occurrence will be equally likely. 

 

Approach 

To approach the ball movement problem to the stochastic processes’ 

problems. Consider the following examples:  

            “In the Bohr model of the hydrogen atom, the electron may be found 

in one of certain admissible orbits. This is a Markov chain with an infinite 

number of states (although in principle only)”, (Gnedenko, 1963).  
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             Also, for example: “A man starts at the origin and takes a step in any 

direction of length ∆. He then stops, selects a new arbitrary direction, and 

proceeds to take another step of length ∆ in this new direction. He continues 

his walk for 𝑛 steps. The angles through which he proceeds on the 𝑛 steps 

are chosen independently and at random and thus may be taken as 

independent random varibles. Therefore, let 𝑎𝑘 be a random variable whose 

value determines the angle made with the 𝑥 axis in the 𝑘𝑡ℎ step and assume 

that it is uniformly distributed from 0 to 2𝜋, that is, the frequency function is 
1

2𝜋
 for 0 ≤ 𝑎𝑘 ≤ 2𝜋 and zero elsewhere.” Also, “for a stationary and ergodic 

random process, we consider the motion of a perfectly elastic billiard ball on 

a frictionless circular table with perfectly elastic boundaries. We assume the 

diameter of the ball to be zero and its speed to be a constant 𝑣. It is clear that 

upon each impact with the boundary of the table the direction of motion of 

the ball changes by the fixed amount 𝛼. From elementary geometry it is 

found that all paths are tangent to an inner circle of radius 𝑟0 = 𝑅 cos  (
𝛼

2
) 

and that each chord length is 2𝑅 sin (
𝛼

2
)”, (Laning, et., 1956). 

 

Discussion 

As soon as making partions on the ball such as if considering 

alternative design, figure 10 to the right, then there would be discontinuity 

points, for the true coin state from 𝐻 to 𝑇. Also, figure 10 at the middle, 

consider finite sample space for the structure of single-member event, which 

is an event that contains exactly one description, (Parzen, 1960). In this case, 

the exactly description will be positive finite interval or negative finite 

interval, and the sum of the fractions of probability will be 𝓅𝑛 or 1, for every 

face, and 
1

2
 for the composite function respectively, (Jughaiman A., 2023). In 

addition, it is possible to record the negative values (probability negative 

values) on the quarter of every half, by considering that the quarters of every 

half are equally likely, no matter what the directions are. At the same time, 

the probability of probability will be positive. 

 
Figure 10. To left, the sum of possibility for any face is ±

1

2
. And to right it cannot in a 

continuous process to flip the coin from face to face directly, or without zero fraction, ∅. 
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In 𝑟𝑒𝑠𝑢𝑙𝑡 4, for any interval less or more than 𝑡 = 1, such as 

(𝑡𝑖, 𝑡𝑖+𝑟), and because the two quarters of every half are symmetric, also 

because the function, 𝒫𝐻↑(𝑡0, 𝑡) =
1

𝑡+1
∫

𝑡−𝑡+(𝑡−𝑡0)

𝑡

𝑡

𝑡0
 𝑑𝜃, is a cumulative 

function, it should be multiplied by 𝑣−1 to be; 𝒫𝐻↑(𝑡𝑖, 𝑡𝑖+𝑟) =
𝑣−1

𝑡+1
∫

𝑡−𝑡+(𝑡𝑖+𝑟−𝑡𝑖)

𝑡

𝑡𝑖+𝑟

𝑡𝑖
 𝑑𝜃. This is to give a probability value that equals to the 

fraction area frequency. Also, every quarter of every face could be consider 

as a mirror for the other quarter. 

On the other hand, for unequal fractions intervals, there would be 

unequal areas. So, one cannot assign an event to every subset of the area, 

where areas cannot be defined for every subset such that it is completely 

additive and the areas of cogruent figures are equal, in general, the 

distribution of probability is said to be uniform, if the probability that an 

object situated at random lies in a subset can be obtained according to the 

definition (I) form a geometric measure invariant under displacement (Rényi, 

1970). Also, in the continuous process, the occurrence of H can not be 

discontinuity point of the occurrence of 𝑇, they are considered as one 

phenomenon, which often being as one homogenous physical body.  

To accommodate and to admit the negativity, in 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 1, 2 and 3, 

consider the following: First of all, probability theory has treated the non-

decreasing and non-increasing functions to find the density functions 

precisely. “The case in which the function 𝑔(∙) is differentiable at every real 

number 𝑥 and, further, either 𝑔′(𝑥) > 0 for all 𝑥 or 𝑔′(𝑥) < 0 for all 𝑥”, 

(Parzen, 1960). But in principle in the present case, note that all fractions are 

positive, and when the probability value behaves in non-increasing sequance, 

this sequance should be a sub-sequance of a sequance which sums to value 

that is satisfying the probability axioms which is the zero value, as a 

particular case. From here, if the probability value is admited to take 

negative sign, it takes it to reflect the continuous process in some directions. 

On the other hand, it could be explained such that: the values from 0 to 1 

being in the success intervals, for the occurrence of fractions that precede or 

tend to the sure event. At the same time, the value from 1 (0) to 0 (-1) being 

in the failure intervals, for the occurrence of fractions that precede or tend to 

the impossible event. For example, in one direction movement, if the interval 

(−
1

2
, −1) means the actual occurrence of an event, then the next interval 

will be the complement event. “There are at least two directions from which 

the fundamental axioms of probability theory may be approached: 

probability theory concepts may be built up, mechanically, from the concept 

of the event and its probability, or they may be derived as special 

applications of the theory of measurable spaces” (Allen, 1976). 
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How to prove that 𝓅𝑖=0,1,..𝑛 has an infinite and uncountable number 

of points? This can be proved from the fact that the real numbers are 

uncountable which proveded in 1873 by Cantor in diagonal argument from 

that the closed interval [0,1] is uncountable, (Stoll, 1997). 

Also, for infinite time sub-intervals, there would be infinite fractions 

sub-intervals which are necessarily with common points. Moreover, for a 

random velocity, these sub-intervals have random lengths, which are 

considered as random variables, where the endpoints could also be 

considered in specific fraction intervals as random variables, which are not 

necessarily independents. For more discussion, see (Justicz et al., 1990). 

 

Conclusion 

This paper concluded that, the experiment of tossing a true coin can 

be represented geometrically using the fractions and the composite 

probability function in a continuous case, which provides a sense that is 

visualizing the probability value behavior. Also, this paper concluded that 

the continuous process can explain clearly the theoretical concept of discrete 

process for probability values of 1 and 0. In addition, this paper proposes to 

include the counting principal in the experiment design. 

This paper concluded that the sum of probability values in a move of 

rotation of 180° can represent the smallest picture of the continuous infinite 

rotation towards ±∞. Also, this paper concluded that the randomness in a 

continuous process is explained by the sample space and the recurrence 

(repeating) of event. While in the discrete process the randomness is 

explained by the extent of the difference of probability value that the event 

takes. 

This paper concluded that the continuity could be considered as the 

nature of all events. Also, this paper concluded that the present experment 

can interpret the continutiy by the small change of fraction, compared to the 

large change of fraction in the discrete case. Also, this paper concluded that 

the negative values of probability do not appear in the discrete processes but 

they appear in the continuous processes. Therfore, the random processes 

could be described in more details in the continuous processes. 

This paper concluded that, there are maxima and minima limits for 

the given function which reflect the probability value behavior. Also, it is 

clear that the probability of non-decreasing sequence is equal to the 

probability of the non-increasing sequence, which are cancelling each other. 

On the other hand, it is possible to assuming that the non-increasing values, 

take the meaning of failure for the event under study, then the meaning of 

success for the complement event, that for a given purpose. 

This paper concluded that, the negative values at some points in some 

intervals is considered as a particular case (trial), and they can not be 
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discontinuity poins from the continuous case as negative values, but as 

positive discrete values. Also, the adopting of the negative probability value 

is depending on the extent of the explanation of the non-increasing sequence, 

and on the extent of the need to negative value. On the other hand, by some 

amendments of the experiment design, the negative values could be 

calculated by the composite function to give positive values with 

𝒫𝐻(𝓅𝑖=0,1,..𝑛) + 𝒫𝑇(𝓅𝑖=0,1,..𝑛) = 1. So, the probability of probability has a 

mathematical necessity. Also, the composite function can be used in the 

conditional probability, if 𝔉 is uncountable. 
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