
 
ESJ Natural/Life/Medical Sciences                                            Peer-reviewed 

 

www.eujournal.org                                                                                                                             1 

Highlighting Water Stress in Apple Seedlings Using HSI 

Texture with Machine Learning Technique 
 

Yanying An 

School of Information Technology, Murdoch University, Australia 

Qingdao Agricultural University, China 

Ran Wang 

Qingdao Agricultural University, China 

 
Doi:10.19044/esj.2024.v20n6p1

Submitted: 01 January 2024 

Accepted:  15 February 2024 

Published: 29 February 2024 

Copyright 2024 Author(s)  

Under Creative Commons CC-BY 4.0  

OPEN ACCESS 

 
Cite As:  

An Y. & Wang R. (2024). Highlighting Water Stress in Apple Seedlings Using HSI Texture 

with Machine Learning Technique. European Scientific Journal, ESJ, 20 (6), 1.  

https://doi.org/10.19044/esj.2024.v20n6p1 

 
Abstract 

Apples are known for their nutrition and economic value. Accurate and 

rapid diagnosis of water status in apple seedlings on an individual rootstock 

basis is a prerequisite for precision water management. This study presents a 

rapid and non-destructive approach for estimating water content in apple 

seedlings at leaf levels. A PIKA L system collects hyperspectral images (400-

1000nm) of apple leaves. Our research extracts spatial information, gray-level 

co-occurrence matrix (GLCM), from feature wavelength images of 

hypercubes. Machine learning methods are applied to these spatial feature 

matrixs to identify apple leaves under different water stresses. In addition, 

differences in spectral responses were analysed using machine learning 

techniques for sorting apple seedlings with varying water treatments (dry, 

normal, and overwatering). Also, we measure chlorophyll to determine the 

relationship between hyperspectral characteristics and physiological changes. 

The achievements of the research indicate that the fusion of texture and 

hyperspectral imaging coupled with machine learning techniques is promising 

and presents a powerful potential to determine the water stress in the leaves of 

apple seedlings. 
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1.       Introduction 
Apple (Malus domestica Borkh) is one of the world's most widely 

planted and nutritionally significant fruit crops (Duan et al., 2017). Apples are 
rich in nutrients vital for good health and disease prevention, making them a 
valuable choice each day for enhancing the quality of our diet. With increased 
income and public awareness of balanced nutrition, Global apple consumption 
is increasing annually (Li et al., 2013). Apple seedlings are tiny and 
propagated tree stems grafted onto a hardy rootstock (Loucks, 2021). They are 
hugely profitable. In 2021, according to Willis Orchard Co. (2021), ten 
seedling trees at the height of 1-2 feet made a profit of $34.95, whereas ten 
seedling trees at the height of 2-3 feet earned $59.95. 

Water management is vital for apple orchards (Lim and Nam, 2007). 
As a result of drought and increasing competition for water, orchardists need 
to adopt efficient water management strategies (PIRSA, 2006). Newly planted 
apple trees require weekly watering. Ideal apple tree irrigation involves deep 
root soaking (Ellis, 2021). The key is to let the water flow into the soil slowly 
to allow for deep watering until it is established (The Home Depot, 2021). A 
plant induces leaf senescence prematurely if water shortage exceeds a critical 
level (Lim and Nam, 2007). This process is characterised by loss of 
chlorophyll and leaf yellowing (Yamaguchi et al., 2010). If wilting leaves are 
observable, irreversible damage to plants and yield occurs (Behmann et al., 
2014). On the other hand, creating standing water and soggy roots can be as 
damaging as drought conditions for the apple seedlings. Too much water 
depletes oxygen from the soil, prevents the roots from absorbing necessary 
minerals, and makes a tree susceptible to rotting and infections (Ellis, 2021). 
The symptoms of overwatering also include wilting, yellowing of leaves, root 
rot and stunted growth (Canna, 2023). Our research focuses on detecting early 
drought and overwatering stresses, which are not yet visible to the naked eye. 
Detecting early symptoms of water stress and distinguishing it from normal 
variations timely requires further attention. 
  Water stress can be detected using various methods. Water stress is 
one of the crucial environmental factors inhibiting photosynthesis (Bradford 
and Hsiao, 1982). Studies have shown that decreased photosynthesis under 
water stress can be linked to the perturbations of the biochemical process 
(Graan and Boyer, 1990; Lauer and Boyer, 1992). In particular, PSII is 
sensitive to water stress (He et al., 1995).  Lu and Zhang (1999) studied the 
effect of water stress on PSII photochemistry and thermostability of PSII in 
wheat plants by measurement of chlorophyll fluorescence. However, 
chlorophyll fluorescence is destructive and damages the leaf as well. Pressure 
chambers, measuring plant water potential, are widely used in irrigation 
management (Waring and Cleary, 1967). They are not well suited to 
measurements of small plants such as grasses because a petiole must extend 
through the seal of the pressure chamber. In addition, plants with tender tissues 
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(e.g., new tillers on grasses) are easily damaged by the seal and cannot be used 
(Zhang et al., 2022). 
   Chlorophyll in plant leaves is crucial in plant metabolism and growth. 
Chlorophyll in apple leaves is essential in photosynthesis (Wang et al., 2016). 
It constituents a major component of plant leaves and is a useful indicator of 
the overall health condition of the plant. Determining chlorophyll content in 
plant leaves can be used to investigate plant physiological and nutritional 
status and consequently has important implications for plant stress detection 
(Jin et al., 2020). Generally, as plant stress levels increase, chlorophyll content 
tends to decrease (Schuerger et al., 2003). Traditional approaches for 
quantifying chlorophyll content mainly include acetone ethanol extraction, 
spectrophotometry and high-performance liquid chromatography (Zhang et 
al., 2022). Such destructive methods based on laboratory procedures are time-
consuming and expensive (Gholizadeh et al., 2017). Several spectral indices 
have been identified using spectroscopy and a portable chlorophyll meter, 
which can predict chlorophyll content in plant tissues in vivo (Jesperson et al., 
2016). However, manually operated portable chlorophyll meters are relatively 
biased, and spectroscopy techniques cannot measure the spatial distribution of 
chlorophyll in plant leaves (Gupta et al., 2013). These two methods are too 
labour-intensive to meet the needs of large-scale screening programs. 
  Hyperspectral imaging (HSI) is now emerging as a potential tool for 
rapid, non-destructive, and automated assessment of plant status (Kim et al., 
2015). Hyperspectral imaging integrates spectroscopic methods and imaging 
technology (Williams and Norris, 2001). In the pertinent hyperspectral image, 
each pixel contains a complete spectrum. No physicochemical analyses are 
needed, making it ideal for agri-food (Ayala, 2018). Using hyperspectral 
technology can identify stress symptoms before a human observer does so, 
which has obvious benefits (Lowe et al., 2017). 

Current HSI in small-scale plant research focuses on chlorophyll and 

other plant-related endogenous pigments in the visible spectral range (400-

800nm) (Bauriegel and Herppich, 2014). Chlorophyll could be contrasted with 

predictions obtained from HSI spectral reflectance (Feng et al., 2019). Based 

on the characteristics of chlorophyll reflection and absorption of specific 

wavelength spectra, chlorophyll spectroscopy diagnosis of many plants has 

been carried out. Wen et al. (2019) visualised chlorophyll content distribution 

in apple leaves using hyperspectral imaging technology. Sun et al. (2018) took 

382-1019nm bands of hyperspectral imaging data as the research band using 

the Random Frog Leaping algorithm and partial least squares method, selected 

the sensitive bands and constructed an estimation model of chlorophyll content 

in potato leaves. Ding et al. (2015) used hyperspectral imaging technology to 

predict the chlorophyll content of rape leaves, and the correlation coefficient 

reached 0.834.  
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Artificial intelligence technologies are used extensively in image 

processing and many other fields (Ozdemir and Polat, 2020). As a result, 

classification studies are carried out on hyperspectral images with machine 

learning methods. Deep Learning, a specialised form of the artificial neural 

network, is highly preferred due to its unique structure, especially for 

classifying hyperspectral images containing complex information. In Yin et 

al’s research (2017), four geographical origins of Chinese wolfberries were 

studied using the HSI technique. The mean spectra of the wolfberry samples 

were analysed to build a support vector machine (SVM), neural network with 

radial basis function (NN-RBF) and extreme learning machine (ELM) models. 

Zhu et al. (2029) identified the freshness of spinach leaves stored at different 

temperatures using HSI, where Partial least squares discriminant analysis 

(PLS-DA), support vector machine (SVM), and extreme learning machine 

(ELM) were used to build models based on full spectra and effective 

wavelengths. Yamashita et al. (2020) employed five machine learning 

algorithms, Random Forest (RF), Support Vector Machine (SVM), Cubist, 

Stochastic Gradient Boosting (SGB), and Kernel-based Extreme Learning 

Machine (KELM) in the dissection of hyperspectral reflectance to estimate 

nitrogen and chlorophyll contents in tea leaves. Feng et al. (2019) predicted 

the chlorophyll contents of crops under salinity stress by combining 

hyperspectral data with Partial Least Square Regression (PLSR). A high 

predictive accuracy of SPAD was acquired in this study, as shown by the R-

value of 0.838.  

Many deep learning-based algorithms focus on deep feature extraction 

for classification improvement (Li et al., 2018). Features extracted from 

images are used for image matching and retrieving (Afifi and Ashour, 2012). 

The texture is one of the essential characteristics of hyperspectral images. 

Image texture analysis, an important area of research in image processing, 

aims to provide information about the spatial arrangement of colour or 

intensities in an image (Xu and Gowen, 2019). The texture information in the 

hyperspectral image is vital for automatic image processing. The texture 

pattern of different tissues and plants under differing water treatments contains 

various intensity patterns, which can be exploited for image classification 

(Bhagat et al., 2019). Besides, much research has demonstrated that adding 

textural features to characteristic spectral features could further enhance the 

performance and accuracy of the model (Jiang et al., 2019; Cheng et al., 2016; 

Liu et al., 2014). Through band grouping, sample band selection and guided 

filtering, the texture features of hyperspectral data are improved (Li et al., 

2018). Li et al. (2018) proposed a novel hyperspectral classification 

framework based on optimal Deep Belief Networks (DBNs) and a novel 

texture feature enhancement (TFE). After TFE, the optimal DBN is employed 

on the hyperspectral reconstructed data for feature selection and classification. 
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The texture feature extraction methods include many approaches, for example, 

the Gray level co-occurrence matrix (GLCM). In Lu et al. (2018)’s research 

using hyperspectral imaging to discriminate yellow leaf curl disease in tomato 

leaves, 24 texture features were extracted using a gray-level co-occurrent 

matrix (GLCM). AlSuwaidi et al. (2017) applied hyperspectral imaging on 

control, stressed Arabidopsis plant leaves, and employed Markov random field 

model (MRF) to facilitate spectral-texture analysis and enhance prediction 

performance. Zhang et al. (2022) classified flue-cured tobacco based on the 

fusion of hyperspectral and texture features; texture features were extracted 

using GLCM, whereas machine learning techniques KNN, RF, SVM and 

Naive Bayes Classifier (NB) were employed. GWO-ELM was used in 

hyperspectral estimation of SPAD value of cotton leaves under Verticillium 

Wilt stress (Yuan et al., 2023). The smooth and stable sigmoid function, which 

was easy to derive, was selected as the activation function of ELM, and the 

multiple trial-and-error method was applied to determine the number of nodes 

in the hidden layers, the size of the gray wolf population and the maximum 

number of iterations. Ni et al. (2020) used online sorting of the film on cotton 

based on GWO-ELM. However, all those research focused on the texture 

feature of RGB images of hyperspectral imaging cube, our research makes a 

renovation by combing texture feature of images of main spectra with the 

spectral features.  

Our research aims to combine texture and color analysis of 

hyperspectral imaging with machine learning to identify apple seedling leaves 

under different water treatments (normalisation, overwatering, drought). The 

objectives are: (1) investigating and comparing apple leaves' hyperspectral 

characteristics in fusion with textural and color features under different water 

treatments using machine learning methods. (2) validating the classification 

result using chlorophyll content. A spectral-texture analysis framework is 

proposed for classifying hyperspectral images of apple seedling leaves of 

different water conditions. Advanced machine learning techniques are used to 

identify distinctive features in the spectral domain of hyperspectral images. In 

addition, texture properties are explored in the characteristic wavelength 

images. The framework integrates these two levels of properties at both feature 

extraction and classifying decision stages. The main crux of the work lies in 

the use of significant spectral and texture features and a decision fusion 

mechanism to enhance the image properties, thus improving classification 

accuracy. 

 

2.      Material and Methods 

2.1      Material 

M9T337 apple seedlings with around 20 leaves per plant were grown 

in the National Agricultural and forestry science and Technology incubator 
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seedling base in Zhucheng, China. Apple seedlings of similar growth were 

chosen. The height of the rootstock was around 15cm. Apple seedlings were 

transported to greenhouses at Qingdao Agricultural University. Two weeks 

after transplanting, all apple seedlings were treated with the complete nutrient 

solution and supplied with all the essential nutrients. The nutrient solution was 

provided to each plant using a trickle nozzle. 

The temperature of the greenhouse was around 23℃. The humidity of 

the greenhouse was 95%. Each pot contained one seedling. The substrate was 

composed of peat and vermiculite (1:1). The experiment occurred between 

September and November 2021. 

 

2.2       Experiment design 

There were three treatment groups, excessive water treatment group, 

drought group, and control group-normal watering group. For each treatment, 

30 apple seedlings were used for hyperspectral imaging collection, and 30 

apple seedlings were used for physiological index collection. Hence, there 

were 180 seedlings used in total. A pre-experiment was conducted to conclude 

that the daily amount of water a pot of apple seedlings needs was 30mL. The 

night before the experiment, the three treatments apple seedlings were watered 

thoroughly. Once the apple seedlings of the drought group were watered, no 

further watering was required during the experiment. The excessive water 

treatment group maintained water at a depth of 1.5cm (90mL per day) and the 

water was uniformly replenished at 6 pm. In addition, 30mL of water was 

added to apple seedlings in the regular watering group every day at 6 pm. The 

quantity of water used for each level of treatment (normalisation, 

overwatering, drought) is listed in Table 1. 
Table 1. Quantity of water used for each level of treatment 

Stress level Quantity of water needed 

normalisation 30mL per day 

overwatering 90mL per day 

drought 0 

 

One leaf in the middle of each plant was employed for hyperspectral 

data collection. The acquisition occurred every other day after water treatment 

before apparent symptoms such as wilting and yellowing appeared on apple 

leaves (day 25). On day 0, the starting point of water treatment, only 30 

hyperspectral images were collected (10 for each treatment) due to the similar 

conditions for all apple seedlings. From then on, 30 images were collected for 

each treatment. The information and sample collection period ranged from 

9:00 am to 11:00 am. Table 2 shows the number of images collected.   
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Table 2. Number of images collected 

Date 18 Sep 19 Sep 21Sep 23 Sep 25 Sep 27 Sep 29 Sep 

No. of 

images  

30 90 90 90 90 90 90 

 

The physiological index group used a random block design, and 30 

seedlings constituted a small plot. Samples were measured on September 18 

(day 0), September 19 (day 1), till Sep 29 (day 11), respectively. The SPAD 

of leaves four and seven from the bottom of the apple seedlings were measured 

using a chlorophyll meter and taken as an average for each pear seedling.  

 

2.3       System Configuration (Imaging System-Hardware) 

 
Figure 1. Benchtop HSI system (Resonon Inc., 2019) 

  

Resonon SpectrononPro 5.3 was used in our research (figure 1). It 

comprised a  hyperspectral imaging camera, linear translation stage, mounting 

tower, lighting assembly, and software control system (Resonon, 2019). The 

imager and lighting assembly positions were adjusted along the tower’s 

length. Resonon’s hyperspectral images are line-scan imagers; two-

dimensional images were constructed by translating the sample relative to the 

camera. A total of 8 Halogen lamps were used.  

A Windows® XP operating system with 512MB memory was used. It 

had a 2.0GHz Pentium 4 compatible processor and 64MB AGP graphics. In 

addition, a 32-bit standard PCI slot, FireWire 800 port, and OHCI standard 

IEEE 1394B host controller were used.  
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2.4       Image Correction 
Table 3. Parameter setting 

Camera Settings 

Framerate 30 fps 

Integration time 12.904ms 

Gain 1.0000dB 

Update 

High cut percentage 98% 

Stage 

Swath 13.1cm 

Scanning speed 0.6993cm/s 

Step size 0.0333333333cm 

Homing speed 4.000cm/s 

Jogging speed 0.07938cm/s 

 

The system collected hyperspectral images in a wavelength range of 

400-1000 nm with a spectral resolution of 2.1 nm. Leaves were fixed on black 

cardboard with negligible reflectance and placed on the mobile platform. 

During image acquisition, the mobile platform for line scanning had an 

optimised velocity of 0.6993 cm/s, and the camera integration time was 12.904 

ms (Table 3). A corrected hyperspectral image was calculated using the 

following equation: 

 

             R= (image-dark)/(white-dark) 

Where: R was the relative reflectance image of the sample, image was 

the raw image of the sample, white was the white reference image acquired 

from a uniform, stable, and high reflectance ceramic tile (reflectance), and 

dark was the current dark image acquired by completely covering the camera 

lens with its non-reflective opaque black cap. 

 

2.5       Software 

Image acquisition was controlled by imaging data acquisition software 

(SpectrononPro, Resonon Inc., USA). Image correction was done using 

software ENVI 5.3 (The Environment for Visualizing Images, ITT Visual 

Information Solutions Corp., USA) and analysed using Matlab R2010a (The 

Mathworks, Inc., Natick, MA, USA).  

 

2.6       Data preprocessing 

Figure 2 demonstrates the workflow of this research. According to 

Figure 4, the detailed data analysis processes are: The IRIV method was 

applied to extract spectral fingerprint features. Next, neural networks ELM, 

and its variations, GWO-ELM, SSA-ELM, were used to evaluate the water 

stress using the spectral fingerprint features. Then, these three neural networks 
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were employed in the HSI, GLCM feature analysis, in addition to 

characteristic wavelengths fused with texture feature analysis. Also, the 

chlorophyll measurement was taken to corroborate the result. 

 
Figure 2. Data processing workflow 

 

In the IRIV selection, Root mean square error of prediction (RMSEP) 

= 3.8785, RMSEF = 0.5875. 15 bands were selected to represent the 300 bands 

of hypercubes. These are band185 (766.39nm), band213 (827.34nm), band222 

(847.06nm), band223 (849.21nm), band230 (864.65nm) , band234 

(873.46nm), band246 (899.97nm), band249 (906.61nm), band257 

(924.37nm), band259 (928.82nm),band262 (935.49nm),band276 

(966.75nm),band278 (971.22nm), band289 (995.91nm) and band290 

(998.16nm).  

 

3.      Texture analysis for identifying leaf water stress 

Due to significant leaf variations in surface textures, texture analysis 

was conducted to identify the leaf water stress. Texture analysis characterises 

regions in an image by their texture content in terms of smoothness, roughness, 

silkiness, or bumpiness in the context of an image. These characteristics refer 

to brightness values or grey level variations in this case. The most commonly 

used texture measures are derived from the grey-level co-occurrence matrix 

(GLCM).  

The grey-level co-occurrence matrix approach (GLCM) considers the 

pairs of pixels in certain spatial relations to each other. Co-occurrence matrices 

are used. They relate the relative frequencies P(i,j|dθ) that two pixels at a 

constant vector distance (d,θ) from each other have intensity (i,j): in the 

GLCM P(i,j|dθ), the (i,j) th entry of the matrix, represents the number of 
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occurrences of a pixel having the intensity value i that is separated from 

another pixel with intensity value j at a distance d in the direction θ. Two forms 

of co-occurrence matrix exist. In the first case, the matrix is symmetric, where 

pairs separated by d and –d (for a direction θ) are counted (Haralick et al., 

1973). In the second case, the matrix is not symmetric, and only pairs 

separated by a distance of d are counted (Conners and Harlow, 1980). This 

leads to a square matrix with a dimension equal to the number of intensity 

levels in the image for each distance d and orientation θ. If pixel pairs in the 

picture are highly correlated, the entries in the GLCM are gathered along the 

diagonal of the matrix. There are five features used in our study: 

1. energy: it provides information on image homogeneity; it has low 

values when the probabilities of the grey-level pairs are similar and high 

values otherwise. It is computed as ∑ ∑ 𝑃(𝑖, 𝑗|𝑑, 𝜃)2𝐺−1
𝑗=0

𝐺−1
𝑖=0   

2. entropy: it measures the disorder of the GLCM. It is computed as 

-∑ ∑ 𝑃(𝑖, 𝑗|𝑑, 𝜃)𝑙𝑜𝑔2
𝐺−1
𝑗=0

𝐺−1
𝑖=0 (P(i,j|d,θ)) 

3. correlation: it measures the grey-level linear dependence between pixels 

(relative to each other) at the specified positions; it has high values when the 

values are uniformly distributed in the GLCM and low values otherwise. 

4. local homogeneity (also called inverse difference moment): it is high 

when the same pairs of pixels are found (e.g., in the case of a spatial 

periodicity). It is computed as ∑ ∑
𝑃(𝑖,𝑗|𝑑,𝜃)

1+(𝑖−𝑗)2
𝐺−1
𝑗=0

𝐺−1
𝑖=0  

5. inertia (also called contrast): it quantifies local variations present in the 

image. It is computed as ∑ ∑ (𝑖 − 𝑗)2𝑃(𝑖, 𝑗|𝑑, 𝜃)𝐺−1
𝑗=0

𝐺−1
𝑖=0  

The GLCM approach consists in considering second-order statistics. 

The GLCM method studies the grey-level distribution of pairs of pixels. This 

is why it is also known as the second-order histogram method. In the same 

way, higher-order statistics analyse the joint distribution of more than two 

pixels.  

4.       Machine learning methods 

a.         ELM 

In this study, we compared and validated the ELM model with its 

variations, GWO-ELM, SSA-ELM and GOA-ELM.  

Extreme Learning Machine (ELM) are feedforward neural networks, 

invented by Huang (2006). According to Huang (2006), this algorithm tends 

to provide good generalization performance at extremely fast learning speed. 

ELM doesn’t require gradient-based backpropagation to work. It used Moore-

Penrose generalized inverse to set its weights.  

𝑓𝐿(x)=∑ 𝛽𝑖𝑔𝑖(𝑥)𝐿
𝑖=1 =∑ 𝛽𝑖𝑔(𝜔𝑖 ∗ 𝑥𝑗 + 𝑏𝑖), 𝑗 = 1, . . . , 𝑁𝐿

𝑖=1   (4) 
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Where: L is a number of hidden units, N is a number of training 

samples, 𝛽 is weight vector between the hidden layer and output, 𝜔 is a weight 

vector between input and hidden layer, 𝑔 is an activation function, b is a bias 

vector, x is an input vector. 

 

b.         GWO-ELM  

The gray wolf optimisation algorithm, proposed in 2014, is a new 

swarm intelligence optimisation algorithm (Mirjalili et al.,2014). The GWO 

algorithm mainly maps the group predation behaviour of gray wolves to the 

machine learning field to realise the optimisation of parameters and 

algorithms. Its main features include fewer adjustment parameters, a simple 

structure, high efficiency and convenience, etc. The algorithm has a 

convergence factor adaptive mechanism and an information feedback 

mechanism, which can effectively avoid various defects of the traditional 

algorithm. It has advantages in the convergence speed and solution accuracy 

of the problem(Wang,2021). 

 
Figure 3. Gray wolf population classification 

 

The wolf group in the grey wolf optimisation algorithm is divided into 

four levels 𝛂, 𝛃, 𝛅, 𝛚 in the shape of a pyramid (figure 3). Among which 𝛂 is 

the head wolf, whose main task is to coordinate the group’s decision-making 

and conduct internal management, 𝛃’s main task is to assist 𝛂 in decision-

making, and 𝛅 is mainly responsible for observation, hunting and nursing. 𝛚 

is responsible for coordinating the relationship within the group. The wolves 

will constantly update their location according to their level of fitness. 

c. Sparrow Search Algorithm (Sparrow Search Algorithm, SSA) 

optimised ELM. 

In SSA, the first sparrow to obtain food is often the discoverer with the 

highest fitness value, leading the entire population to determine the location 

and direction of food. Therefore, the finder will search for food in a broader 

range than other sparrows and constantly explore the fitness values in different 

directions and positions. The position of the population needs to be updated 

iteratively to find out the best foraging position. 
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Randomly initialise the population size of sparrows n and the 

maximum number of iterations max iter, and determine its objective 

function; the sparrow group position is initialised as: 

X=[

𝒇([𝒙𝟏,𝟏 ⋯ 𝒙𝟏,𝒅])

⋮ ⋮ ⋮
𝒇([𝒙𝒏,𝟏 ⋯ 𝒙𝒏,𝒅])

]  (5) 

 

In the formula, the value of each row in Fx represents the fitness value 

of the individual (Liu et al., 2022). 

 

5.  Neural network training 

The training target accuracy (goal) is set to 0.01, and the number of 

training is set to 100 times. When the training curve’s fitting accuracy(best) 

(train) reaches the target accuracy, that is, when the end point of the training 

curve, the fitting accuracy, and the target accuracy coincide, the neural 

network automatically stops training. Suppose the fitting accuracy never 

reaches the target accuracy. In that case, the neural network will repeat the 

training process until the number of training times is completed. 75% of the 

data were randomly selected as the training sample set, 15% as the validation 

data, and 15% as the test data. In table 4, the numbers of HSI data cube is the 

exact amount of data cubes taken during the experiment session (11 days 

collectively). The number of GLCM input data is the number of key 

wavelengths (15) multiplied by the number of data cubes collected, it is the 

same with the input data HSI fused with GLCM. Table 5 demonstrates the 

parameters of different learning algorithms. In both ELM variations GWO-

ELM and SSA-ELM, the number of hidden layers is 50, and the max iteration 

is 100.  
Table 4. Numbers of input data 

Input data number 

HSI 30+30×3×6 

GLCM 15×(30+30×6) 

HSI+GLCM 15×(30+30×6) 

  
Table 5. Neural network parameters 

Machine learning networks parameters 

ELM hiddennum = 50;        

activate_model = 'sig';   

GWO-ELM hiddennum = 50; 

SearchAgents_no = 5;  

Max_iteration = 100;  

SSA-ELM hiddennum = 50;   

Pop= 5;                                             

activate_model = 'sig';  

Max_iteration = 100; 
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5.2.1  Evaluation metrics 

A.  Confusion matrix 

Performance measurement is vital in defining the effectiveness of a 

program. Confusion matrixes are a common evaluation tool used in machine 

learning (An, 2020). Generally, they consist of a n× n table plotting actual 

class against predicted class (n denoting the number of classes, so a binary 

classifier would utilize a 2× 2 table), to which the true and false (determined 

by the actual classes) positives and negatives (determined by the predicted 

classes) fit within (Visa et al., 2011).  

 

B.        Accuracy  

In practical applications, we should take the accuracy of the classifier 

into consideration. Because scientists and farmers are more concerned with 

the situations where the classifier sorts the drought pear seedling leaves as 

sound ones if the classifier makes the wrong decision, which will hinder the 

timely watering of the plants, leading to more significant potential economic 

losses than discarding the plants.  

 

Accuracy=
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
  (18) 

 

Accuracy (total correct divided by the total number of assessments), 

however, does not consider the significance of misidentified class (Halimu et 

al., 2019) and tends to be an overaly optimistic performance indicator.  

 

C.         Evaluation metrics for classification algorithms 

Commonly used evaluation metrics for classification algorithms 

include recall, precision, F1 score and mse-loss. Recall measures the ability to 

identify positive samples, precision measures the accuracy of positive sample 

predictions, and F1 score is a metric that combines recall and precision. MSE-

loss is a criterion that measures the mean squared error between each element 

in the input and target.These metrics can be selected and weighted based on 

specific requirements. The formulas for these metrics are provided 

accordingly. 

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (19) 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (20) 

F1 score=
2×𝑃×𝑅

𝑃+𝑅
 (21) 

 

Where TP is true positive, TN is true negative, FP is false positive, FN 

is false negative, P is precision, and R is recall (Shu et al., 2023). 
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6. Physiological Data 

6.1  Chlorophyll 

 
Figure 4. SPAD of apple leaves under different water treatments 

 

The small vertical line on the graph represents the standard deviation 

of the mean(LSD=0.05). 

The leaf chlorophyll content is an essential indicator of the growth and 

photosynthesis of apples under water stress (Sun et al., 2021). Figure 4 shows 

the amount of chlorophyll produced by photosynthesis in leaves under 

different water treatments. There was a significant difference in chlorophyll 

among other water treatment groups. The chlorophyll of apple leaves in the 

normal treatment group increased, reached its maximum on October 5th, and 

then slowly decreased. This can be explained by the fact that the leaves in the 

normal water treatment group are sufficient in water, and the photosynthesis 

capability is vital. By comparison, the chlorophyll of apple leaves in the 

drought treatment group slowly decreased as plants did not have enough water. 

As Pour-Aboughadareh et al. (2019) stated, water deficit stress reduced the 

relative chlorophyll content (SPAD). Chlorophyll is the main component of 

photosynthesis-one of the physiological processes most sensitive to 

environmental stress (Hussain et al.,2019). Like high temperature, water 

deficiency may induce lipid peroxidase and electrolytic leakage from 

chloroplast and thylakoid membranes, leading to a loss of chlorophyll content 

(Ristic et al., 2007). The chlorophyll of leaves in the overwatering group 

increased slightly but soon decreased as the water provided exceeded what the 

plant needed. In waterlogged soil, there is not enough oxygen for the roots. 

The roots start to rot fast, thus leading to pigmentation loss (Green, 2022). 

The spectral reflectance of leaves is closely related to the leaf surface 

characteristics, leaf thickness, water content, and the contents of chlorophyll 

and other pigments (Feng et al., 2004). The wavelength region (500 to 900 
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nm) contains wavelengths with pigment absorption features (Merzlyak et al., 

2003) as well as the red edge (700 to 750 nm) (Mutanga and Skidmore, 2007). 

The results of this study indicated that changes in chlorophyll content could 

be used to validate hyperspectral imaging changes in apple seedlings exposed 

to water stress. 

 

7. Classification results 

Table 6 shows the classification results from different machine 

learning methods using different input data. According to the table, when 

fused with GLCM texture features, the performance of these three models 

significantly increased. GWO-ELM and SSA-ELM performed better than 

ELM; where the combination of HSI and GLCM can reach a test accuracy of 

65.73% and 63.64% respectively. In GWO-ELM, when HSI is fused with 

GLCM features, the precision rate is 0.6657, recall rate is 0.6561, and F1 value 

is 0.6518. 
Table 6. Performance metrics 

Machine 

learning 

algorithms 

Different 

data input 

Test 

accuracy 

Precision Recall Loss F1 

ELM HSI 64.94% 0.6957 0.5714 77.92% 0.6275 

GLCM 61.04% 0.6857 0.7059 74.03% 0.6957 

HSI+GLCM 64.94% 0.7826 0.6000 70.13% 0.6792 

GWO-ELM HSI 62.69% 0.6258 0.6369 82.09% 0.6270 

GLCM 53.85% 0.5363 0.5358 90.21% 0.5342 

HSI+GLCM 65.73% 0.6657 0.6561 61.54% 0.6518 

SSA-ELM HSI 58.21% 1 1 91.04% 1 

GLCM 47.56% 1 1 83.92% 1 

HSI+GLCM 63.64% 1 1 84.62% 1 

 

7.1  Confusion matrix 

A.  ELM 

Figure 10 shows the confusion matrix of ELM with three different 

input data. In the training data of HSI, 120 out of 160 normal samples were 

correctly identified (75%). But 26 overwatering samples were wrongly treated 

as normal, and 7 overwatering samples were wrongly treated as drought 

(26.6%). In the test data of HSI, 17 out of 25 samples were correctly identified 

as overwater (68%), but 4 normal samples were recognized as overwatered 

and 8 normal samples were treated as drought (42.9%). 

In the training data of GLCM, 106 out of 154 normal samples were 

correctly recognized (68.8%), but 19 over water samples were treated as 

normal, 41 drought samples were recognized as overwatered. In the test data 

of GLCM, 24 out of 35 samples were correctly identified as normal (68.6%), 

while 8 normal samples were treated as overwatered. 
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In the training data of HSI fused with GLCM, 113 out of 158 normal 

samples were correctly identified (71.5%), while 17 over water samples were 

treated as normal, and 16 overwater samples were treated as drought (25.6%). 

In the test data of HSI fused with GLCM, 18 normal samples and 18 overwater 

samples were correctly identified. 

 
(1) HSI 

 
(2) GLCM 

 
(3) HSI fused with GLCM 

Figure 5. Confusion matrix for ELM using HSI (1),  

GLCM (2) and HSI fused with GLCM (3) 
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B.       GWO-ELM 

Figure 6 shows the confusion matrix for GWO-ELM using three 

inputs. In the training data of HSI, 115 out of 132 normal samples were 

correctly identified (87.1%), but 13 normal samples and 2 overwater samples 

were treated as drought (15.5). In the test data of HSI, 24 out of 42 samples 

were correctly identified as overwatered (57.1%), but 8 and 4 overwater 

samples were mis-treated as normal and drought respectively (33.3%). 

In the training data of GLCM, 101 out of 126 samples were correctly 

labeled as normal (80.2%), but 9 overwater samples were wrongly taken as 

normal and 13 overwater samples as drought (21.2%). In the test data of 

GLCM, 26 out of 52 samples were correctly identified as overwater (50.0%), 

but 9 overwater and 9 drought samples were wrongly classified as normal 

(36.7%), 

In the training data of HSI fused with GLCM, 80 out of 98 drought 

samples were correctly identified (81.6%), but 8 normal samples and 6 

overwater samples were wrongly labeled as drought (14.9%). In the test data 

of HSI fused with GLCM, 36 out of 44 samples were correctly identified as 

normal (81.8%), while 14 drought samples were wrongly taken as 

overwatered. 

 
(a) HSI 

 
(b) GLCM 
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(c) HSI fused with GLCM 

Figure 6. Confusion matrix for GWO-ELM using HSI (1),  

GLCM (2) and HSI fused with GLCM (3) 

 

Figure 7 demonstrates the confusion matrix for SSA-ELM using HSI, 

GLCM and HSI fused with GLCM. Figure 8 demonstrates the confusion 

matrix for SSA-ELM using HSI, GLCM and HSI fused with GLCM. In the 

training data of HSI, 107 out of 135 samples were correctly identified as 

normal (79.3%), but 15 normal samples and 8 overwater samples were 

wrongly taken as drought (22.5%). In the test data of HSI, 20 out of 36 

overwater samples were correctly identified (55.6%), but 10 drought samples 

and 7 drought samples were taken as normal and overwater respectively 

(40.5%). 

In the training data of GLCM, 99 out of 132 normal samples were 

correctly identified (75%), but 19 normal and 14 normal samples were 

wrongly taken as overwater and drought respectively (25%). In the test data 

of GLCM, 33 out of 56 normal samples were correctly identified (58.9%), but 

4 drought samples were wrongly taken as normal, 13 overwater samples were 

wrongly taken as drought. 

In the training data of HSI fused with GLCM, 106 out of 132 samples 

were correctly identified as normal (80.3%), but 17 overwater samples were 

wrongly taken as normal, 3 overwater samples were wrongly taken as drought 

(19.2%). In the test data of HSI fused with GLCM, 17 normal samples were 

wrongly taken as overwatered. Only 26 out of 42 drought samples were 

correctly identified (61.9%). 
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(a) HSI 

 
(b) GLCM 

 
(c) HSI fused with GLCM 

Figure 7. Confusion matrix for SSA-ELM using HSI (1),  

GLCM (2) and HSI fused with GLCM (3) 

 

Conclusion and discussion 

This study explored the feasibility of using hyperspectral imaging 

techniques and texture features combined with machine learning to detect and 

identify water stress on apple leaves. The results proved that texture features 

fused with hyperspectral imaging performed better than merely using 

http://www.eujournal.org/


European Scientific Journal, ESJ                                ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

February 2024 edition Vol.20, No.6 

www.eujournal.org    20 

hyperspectral imaging for machine learning classification. The spectral 

behaviour was closely related to the changes in the leaf’s physiological status 

caused by the water stress. Apple leaves under water stress produced a 

different specific and characteristic reflectance spectrum from regular leaves, 

which was difficult to observe by eyes in the early stage.  

To identify the categories of water effectively, standard normal variate 

was used to preprocess the data. Subsequently, the multivariate stepwise linear 

regression method was applied to extract spectral fingerprint features, 

simplifying the training model and accelerating the calculation speed. These 

characteristic wavelengths correlated to spectral behaviours and cellular 

structure were selected in association with chlorophyll. The number of input 

spectral fingerprint features was only five, which are Band 85(564.26nm), 

Band 174(753.41nm), Band 156(714.65nm), Band 116(629.43nm), Band 

194(796.79nm), Band 144(688.95nm) and Band 285(998.16nm), which 

decreased by more than 97% compared with the original spectral data. The 

absorbances are associated with the combinations of fundamental vibrations 

of C-H and O-H functional groups (Kamruzzaman et al.,2016). The 710–

760 nm (red-edge) band and band around 700 nm are related to chlorophyll 

(ElMasry et al., 2007; Pacumbaba and Beyl, 2011). Also, chlorophyll 

absorptions are found in the visible region of the spectrum near 430, 460, 640, 

and 660 nm (Curran, 1989). Subtle absorption at 780nm and 980nm may be 

associated with the third and second overtones of O-H stretching, which may 

be relevant to water (ElMasry et al.,2012). Absorption at 940 nm is related to 

C-H third overtone (Kamruzzaman et al.,2016). According to Lu et al. (2022), 

a small reflectance peak appeared in the band around 550 nm, which is caused 

by the reflection of chlorophyll; a trough appeared in the red band around 680 

nm, which is caused by the strong absorption of chlorophyll. Finally, diverse 

classifiers (ELM, GWO-ELM, SSA-ELM) were developed and evaluated on 

hyperspectral images and spectral-textural hyperspectral imaging analysis. 

For water stress detection, all classification models obtain relatively good 

accuracy (>90%) and robust performance, recognising the water stress before 

the signs of wilting or yellowing appear notably in the apple leaf. Also, the 

neural networks regarding textural analysis in fusion with hyperspectral 

imaging reached a satisfactory result. It should be mentioned that the 

classification result of the selected texture parameters fused with hyperspectral 

imaging outperformed those using only hyperspectral imaging data.  

Recent research has made efforts to integrate spectral and image 

characteristics in order to obtain sufficient information and enhance the 

practical outcomes of hyperspectral imaging (HSI) applications (Wang et al., 

2015; Ru et al., 2019). When compared to the accuracy achieved in identifying 

yellow rust in wheat leaves using spectral data alone, the accuracy of 

identification increases by 7.3% when utilizing both spectral and texture 
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features (Guo et al., 2020). Furthermore, the incorporation of spectral, texture, 

and morphological features can lead to a 2% improvement in accuracy for the 

germ side and a 1.3% improvement for the endosperm side (Yang et al., 2015). 

Previous studies have employed statistical analysis methods, such as 

the gray level co-occurrence matrix (GLCM) and morphological parameter 

calculations, to extract texture and morphological features from images. 

However, these methods are known for their complexity, time-intensive 

nature, reliance on spatial scale considerations, and the need for prior 

information (Sachar and Kumar, 2021). In recent years, deep learning has 

emerged as a powerful technique for feature extraction and has found 

widespread application, particularly in the field of imaging (Yu et al., 2020).  

Our study confirmed the results of other research. In Zhang et al. 

(2022)’s analysis of distinguishing flue-cured tobacco samples, the texture 

features of flue-cured tobacco were selected by gray-level co-occurrence 

matrix (GLCM). Then the texture features and spectral features were 

normalised and fused. SPA chose twenty-five feature bands, and the 

classification accuracy using feature bands was decreased. The classification 

effect was improved significantly after the fusion of hyperspectral and texture 

characteristics. Zhu et al. (2017) investigated the feasibility and potentiality of 

presymptomatic detection of tobacco disease using hyperspectral imaging, 

combined with the variable selection method and machine learning classifiers. 

Four texture features, including contrast, correlation, entropy, and 

homogeneity were extracted according to grey-level co-occurrence matrix 

(GLCM). Additionally, different machine-learning algorithms were 

developed and compared to detect and classify disease stages with effective 

wavelengths, texture features and data fusion respectively. Yu et al. (2018) 

researched the prediction of polysaccharides and total sugar in wolfberry 

based on spectral and texture information from hyperspectral images. 

According to the absolute value of the average weight coefficient of each 

wavelength under the first three principal component images of 300 wolfberry 

samples, five characteristic wavelengths were selected (578. 42, 622. 97, 699. 

61,809. 39, 865. 40 nm). Graycomatrix was used to extract the texture features 

of hyperspectral images corresponding to five characteristic wavelengths. 

After the screening, partial Least Squares Regression was used to examine the 

correlation between polysaccharide content and spectra data. The correlation 

result was satisfactory. 

Based on the spectral fingerprint features combined with the 

supervised classification algorithm developed in this study, a hyperspectral 

imaging detection system was potentially designed for identifying the 

categories and water stress levels in apple leaves. In future research, we will 

focus on (1) contrasting the spectral fingerprint features extracted in the field 

conditions (uncontrolled lighting) with those in the laboratory, (2) increasing 
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more samples with different stress levels to generate and collect more image 

profiles of apple seedling leaves, therefore, making the algorithm more 

accurate and robust, (3) building a detailed time course to record the 

physiological and hyperspectral characteristics of leaves under different water 

treatments in differential time frames and (4) expanding our finding to other 

plant species, and applying the methodology in a real-world sorting 

environment for online and reliable plant or leaf water stress detection, to 

achieve excellent plant water and nutrition management. 

This research introduces a new method, texture analysis of 

hyperspectral imaging and machine learning tools to identify apple seedling 

leaves under different water treatments. This otherwise cannot be identified 

by human eyes, except at the late stages, when the leaves are turning yellow 

or have wilted. The proposed method offers a new approach and the possibility 

of effective differentiation of leaves under different water treatments. 

Furthermore, leaves’ chlorophyll corroborates our findings using HSI and 

machine learning. 

 
a. HSI 

 

 
 

b.GLCM 
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b. HSI fused with GLCM 

(1) ELM 

 
a.HSI 

 

 
b.GLCM 
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c.HSI+GLCM 

(2) GWO-ELM 

 

 
a. HSI 

 

 
b. GLCM 
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c.HSI+GLCM 

(3) SSA-ELM 

Figure 8. Classification result of ELM(1), GWO-ELM(2) and SSA-ELM(3) with an input of 

HSI(a), GLCM(b) and HSI+GLCM(c) 
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