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Abstract 

This paper focuses on probability value behavior in the case of 

continuous sample space by employing fractions intervals and composite 

functions. The study evaluates value behavior rather than finding values 

directly, which involves utilization of some concepts from continuity, 

geometric probability, and measure theory. This paper primarily uses an 

experiment that contains two major events, head H and tail T, in all their 

occurrence phases. This spread in infinite and uncountable fractions by a 

continuous motion within intervals and in the predominant circumstances 

where events are probabilistic values. As a result, every circumstance reflects 

many important characteristics of probability theory. Among the main results, 

this paper provides proven propositions that help design experiments upon 

understanding the case nature, with some explanations to the existing relation 

between probability value and the case nature. Also, this paper provides a 

proven corollary that allows visualizing negative probability values as a 

particular trial. This in turn proposes necessary uses for the composite 

probability function 𝒫𝑗(𝓅𝑖). Moreover, this paper provides numerical 

explanations of limits, which can demonstrate the nature of  𝒫𝑗(𝓅𝑖), alongside 

some techniques. Also, this paper considered conditional probability through 

some corollaries and the possibility of using the non-negative function of the 

interval i, alongside many important results in form of discussions.
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Introduction 

The difference between haphazard, chance or accident, and the act is a 

thin thread. The same applies to the difference between finding a dumped coin 

and the chance between two players. Notably, in the game of chance, every 

player has some information about the other and has some choices. However, 

in the first case, no one has an idea about who may find the coin, in addition 

to the independence factor. “Randomness is to be understood as a special case 

of the epistemic concept of the unpredictability of a process” (Eagle, 2005). In 

randomness, events happen without any intentional action, and it is difficult to 

predict their occurrence. Also, they are rarely repeated, in addition to the factor 

of homogeneity. According to Laplace, “Les événements actuels ont avec les 

précédents une liaison fondée sur le principe évident, qu’une chose ne peut 

pas commencer d’être, sans une cause qui la produise. Cet axiome, connu sous 

le nom de principe de la raison suffisante, s’étend aux actions mêmes que l’on 

juge indifférentes. La volonté la plus libre ne peut, sans un motif déterminant, 

leur donner naissance ; car si, toutes les circonstances des deux positions étant 

exactement semblables, elle agissait dans l’une et s’abstenait d’agir dans 

l’autre, son choix serait un effet sans cause : elle serait alors, dit Leibnitz, le 

hasard aveugle des épicuriens. L’opinion contraire est une illusion de l’esprit 

qui, perdant de vue les raisons fugitives du choix de la volonté dans les choses 

indifférentes, se persuade qu’elle s’est déterminée d’elle-même et sans motifs” 

(Laplace, 1995). 

On the other hand, the concept of continuity plays a significant role in 

randomness. This means that the discrete process is usually a segment of a 

continuous process, and it appears if the continuous process is interrupted. 

Moreover, when human consciousness or technology are unable to recognize 

the entire process or the uncountable instant such as in the case of absolute 

speed, there is need to consider the process as a continuous process. Therefore, 

the unseen indicates events which happened as discrete events from a 

continuous process or as unrepeated events in discrete processes, where the 

latter may be considered as deterministic events. Furthermore, information 

may be regarded somewhat as events. 

In the process of tossing a true coin, there will be a continuous process 

as long as the coin fluctuates. Subsequently, this is considered as a kind of 

unknown because of the infinite and uncountable points, thus resulting to an 

infinite and an uncountable sample space. The continuous process is almost 

uncontrollable since the change is permanent and one can evaluate its limit 

rather than its exact value. Therefore, there is less determination and more 

approximation. Moreover, science cannot visualize the discrete case precisely, 

except through its continuous case. As a result, the previous paper (discrete 

case) has provided some description of the continuous process (see Corollary 
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V) (Jughaiman, 2023). For instance, if a true coin is monitored during its 

fluctuation, at specific points and specific time intervals, to get the result of 

head and tail such that (𝐻, 𝑇): (
49

100
,

51

100
), how could this result be repeated? 

Hence, if this question is necessary, then the answer is also necessary. 

The notion of continuity dates back to Leonhard Euler (1707-1783). 

However, the more modern version of continuity is credited to Bolzano (1817) 

and Cauchy (1821). Interestingly, Bolzano and Cauchy were concerned with 

continuity on an interval, rather than continuity at a point (Stoll, 1997). 

In reality, however, the epistemological value of the theory of 

probability is revealed only by limit theorems. Moreover, without limit 

theorems, it is impossible to understand the real content of the primary concept 

of all the sciences connected to the concept of probability. Historically, there 

are five considerable limit theorems and the first four deals with a sequence of 

independent events (Gnedenko & Kolmogorov, 1968). 

 

Methods 

The experiment focuses on observing the appearance of probability 

fractions (intervals) of head or probability fractions (intervals) of tail in a 

continuous process. However, it is important to answer the following question: 

How does the continuous value of probability behave?  

This paper utilizes a true coin, shaping it into a spherical form (true 

ball), with a radius of 𝑟. Thereafter, the ball is theoretically divided into 𝑛 

ordered closed circles with replacement for every half separately, where 𝑛 is 

unknown. At every point up to the peak, a cumulative value of probability 

fractions (circles) is supposed in an ordered  manner, starting from the event 

𝓅0 = 0 as the lower fraction (minimum and lower bound) up to the event 

𝓅𝑛 = 1 as the upper fraction (maximum and upper bound) of the closed 

interval [0,1]. However, since the points are infinite and uncountable, 𝓅𝑖 is 

unknown, where 𝓅𝑖 is approaching ±∞. If 𝓅0 and 𝓅𝑛 are expressed as points, 

they can also be expressed as intervals 𝓅𝑖=[0,0], 𝓅𝑖=[1,1], or inside an interval 

𝓅𝑖=[0,1]. The composite function 𝒫𝑗(𝓅𝑖) can be expressed as a sequence 

{𝒫𝑗=1,..,𝑚(𝓅𝑖=0,…,𝑛)}. In addition, the peak of the upper half of the ball 

represents success as shown in Figure 1. 

 
Figure 1.  Every half is divided into infinite uncountable fractions 
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It should be noted that in the discrete case, 𝑖 is used to denote the 

number of fraction that can possibly happen by every throw separately 

(Jughaiman, 2023). However, in the continuous case, 𝑖 is used to denote the 

fractions intervals at some arbitrary time intervals. In addition, this present 

paper utilizes the procedures and expressions illustrated in Figure 2. 

 
 

 
Figure 2. Used procedures and expressions 

 

Where interval, unless specified otherwise, denotes the fractions 

interval. Regarding the time sub-interval (𝑎, 𝑏), this paper considers the longest 

time sub-interval as the required time interval for the ball to traverse a distance 

from zero to 
𝜋

2
, at its fastest motion. The shortest one occurs when the ball 

remains motionless. In this experiment, two circumstances arise: if the ball 

moves along a straight line, then there is one direction; secondly, if the ball 

moves on an uneven surface, then there are different directions (Here, the 

physical circular motion is disregarded).  

 

Results 

If “two arbitrary points are selected on the surface of a sphere of radius 

𝑅”, then “the probability that an arc of a great circle passing through these 

points will make an angle less than 𝛼, where 𝛼 < 𝜋”, is the area of the half 

surface of sphere minus this area multiplied by cosine 𝛼. This is further 

divided by the total area of the sphere’s surface.  

Thus, 

"𝑝 = "
2𝜋𝑅2 − 2𝜋𝑅2 cos  𝛼

4𝜋𝑅2
= "

2𝜋𝑅2(1 − cos  𝛼)

4𝜋𝑅2
" =

(1 − cos  𝛼)

2

= "𝑠𝑖𝑛2
𝛼

2
" 

 

This is shown in Figure 3 (Sveshnikov, 1968).  

 
Figure 3. The probability that an arc 𝟎⁀𝜶, passing through two points is less than the 

probability that an arc, 𝟎⁀ 𝝅, passing through these points by 𝟐𝝅𝑹𝟐 𝐜𝐨𝐬  𝜶 /𝟒𝝅𝑹𝟐. 
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Therefore, the probability that an arc of a great circle passing through 

two arbitrary points makes an angle equal to 𝛼, where 𝛼 < 𝜋, and if 𝛼 =
𝜋

2
 , is 

given as: 

𝑝 =
2𝜋𝑟2

4𝜋𝑟2 =
1

2
, which equals to 𝑝 =

𝑝(𝐻)

𝑆
=

1

2
. 

 

Circumstance 1:One Direction 

1. If the ball moves in a straight line, starting from zero with constant 

velocity, consider the following: Every sub-interval of time will correspond to 

the fractions of interval i in a motion of rotation of 90°. Thus, for an infinite 

number of sub-intervals of time, the sample space will encompass all points 

on the great circle (Figure 4).  

 
Figure 4. H is appearing completely when 𝓹𝟎 coincides with the x-axis, 𝟏𝟖𝟎°clockwise 

 

           Also, there will be ordered head fractions and ordered tail fractions, but 

no randomness. Nevertheless, as values are subjected to probability axioms, 

then these values can reflect probability characteristics. Also, if one applies 

probability theory, then the outcomes for {(𝐻), ( 𝑇)} will be the ordered 

triplets: {(0,1,0), (0,1,0), … + ∞}. This interprets why probability value takes 

the values of 0 and 1, and why the area under the density curve should be 

equal 1 in the case of continuous random variable.  

2. If the ball moves in a straight line, starting from zero with variant 

velocity, then there is only one direction. However, as the rotation degree will 

be random for inconstant velocity, the corresponding fractions intervals on the 

curve will be unequal for equal time sub-intervals (See Figure 5).  

 
Figure 5.  Equal and constant time intervals with unequal fractions intervals 

 

This can result in drawing the normal distribution form (Gaussian 

distribution form). In addition, if the velocity of the ball increases arbitrarily, 

then the intervals become narrower and narrower (see Figure 6). The 

probability distribution of a sum of independent random variables tends to 

become gaussian as the number of random variables being summed increases 

without limit, such as, the shot noise generated in a thermionic vacuum tube 

and the voltage fluctuation produced by thermal agitation of electrons in a 
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resistor (Davenport, 1958). As soon as the ball stops, the continuous case will 

breakup at a discontinuity point, and it is called the discrete case.  

 
Figure 6. The intervals where H or T probability fractions are increasing and decreasing 

 

Proposition I: For every random process, the number of trials is at least 

equal to the square number of the fundamental events, 𝑚2.  

While this proposition may seem trivial, it is also quite useful as it can 

reflect various sampling and counting techniques. For an alternative 

proposition and evaluation, refer to Uspensky (1937). 

Proof: In principle, for the case of a true coin in a discrete process, the 

number of trials should be at least four to obtain either head or tail (Table 1).  
Table 1.  The chances of all events 𝒎𝟐, not the permutation 𝒎!. 

 
 

In the case of throwing a ball, if one records the fraction that the ball 

moves through at every interval’s end, then at every instant of time, there will 

be a new fraction, such that, for an infinite number of uncountable events 

(points) 𝓅𝑖, inside the closed interval [0, 1], where ∑ 𝑃(𝓅𝑖) = 1∞
𝑖=0 .  If this 

quantity is less than 1, then there are missing events. In other words, there is 

no certain event. Since this is true and because of the uncountable aspect of 

real numbers, there is always a need for enough intervals that reflect the main 

characteristics in any experiment, besides avoiding errors. Furthermore, while 

this could be used to prove the uncountable aspect of real numbers, continuity, 

on the other hand, it helps to reduce errors that cannot be recognized in the 

discrete process. Consequently, if every event has besides its increasing path, 

a decreasing path towards all complement events, then this will clearly support 

the proposition I (Figure 10) to the left.  

In addition, in the case of discrete processes, the outcome has values 

with a large difference, such as tossing a true coin twice with outcomes of 0 

and 1. In contrast, in the continuous case, there is a value at every instant, and 

this value is very close to the previous value or to the next value. Functions 

that are continuous at every number in a given interval are sometimes thought 

of as functions whose graphs can be sketched without lifting the pencil from 

the paper. Also, “a small change in 𝑥 produces only a small change in the 

function value 𝑓(𝑥). These are not accurate descriptions, but rather devices to 

help develop an intuitive feeling for continuous functions (Swokowski, 1988).  
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For a sequence 𝐴𝑛, the set of all those points which belong to almost all 𝐴𝑛 

(all but any finite number) is called the inferior limit of 𝐴𝑛 and lim inf 𝐴𝑛 =
⋃ ⋂ 𝐴𝑘

∞
𝑘=𝑛

∞
𝑛=1 . Also, the set of all those points which belong to infinitely 

many 𝐴𝑛 is called the superior limit of 𝐴𝑛 and lim sup 𝐴𝑛 =
(⋃ ⋂ 𝐴𝑘

∞
𝑘=𝑛

∞
𝑛=1

𝑐
)𝑐 = ⋂ ⋃ 𝐴𝑘

∞
𝑘=𝑛

∞
𝑛=1 . This implies that lim inf 𝐴𝑛 ⊂

lim sup 𝐴𝑛. Thus, if the reverse inclusion is true, lim inf 𝐴𝑛 and lim sup 𝐴𝑛 

are equal to the same set 𝐴. Therefore, 𝐴 is called the limit of 𝐴𝑛. Also, a 

sequence 𝐴𝑛 is said to be monotone if it is either nondecreasing: 𝐴1 ⊂ 𝐴2 ⊂
⋯, and it is written as 𝐴𝑛 ↑; or if it is nonincreasing: 𝐴1 ⊃ 𝐴2 ⊃ ⋯, and it is 

written as 𝐴𝑛 ↓. Hence, “every monotone sequence is convergent, and 

lim 𝐴𝑛 = ⋃ 𝐴𝑛 𝑜𝑟 ⋂ 𝐴𝑛 according as 𝐴𝑛 ↑ or 𝐴𝑛 ↓” (Loève, 1977).  

Corollary I: For fundamental events 𝑚, with probabilities of 

occurrence that equal to zero in a continuous process, the probabilities of 

fractions take negative probability values in a sub-sequence 

{𝒫𝑗=1,…,𝑚↓(𝓅𝑖=0,…,𝑡)} of a sequence {𝒫𝑗=1,..,𝑚(𝓅𝑖=0,…,𝑡)} that sum to zero, 

where the composite functions 𝒫𝑗↑(𝓅𝑖) = −𝒫𝑗↓(𝓅𝑖) for 𝑗 = 1, … 𝑚, 𝑖 = 0, … 𝑡 

and {𝒫𝑗=1,…,𝑚↑(𝓅𝑖=0,…,𝑡)} is also a sub-sequence of the sequence 

{𝒫𝑗=1,…,𝑚(𝓅𝑖=0,…,𝑡)}. 

Proof: From probability axioms, 0 ≤ 𝓅𝑖 ≤ 1, for 𝑖 =  0,1,2, … ∞. And 

if 𝓅𝑖, 𝑖 =  0,1,2, … ∞ are mutually disjoint sets in 𝔉, then ⋃ 𝓅𝑖 = ∑ 𝓅𝑖
∞
𝑖

∞
𝑖 . 

Also, if ∑ 𝒫𝐻(𝓅𝑖)
𝑛
𝑖=0 + ∑ 𝒫𝑇(𝓅𝑖)

𝑛
𝑖=0 = 1 and if ∑ 𝒫𝐻(𝓅𝑖) = ∑ 𝒫𝑇(𝓅𝑖)

𝑛
𝑖=0

𝑛
𝑖=0 , 

then ∑ 𝒫𝐻(𝓅𝑖)𝑛
𝑖=0 = ∑ 𝒫𝑇(𝓅𝑖) =

1

2

𝑛
𝑖=0 . Also, it is well known from the discrete 

case that, ∑ 𝒫𝐻(𝓅𝑖)0≤ 𝑖 ≤𝑛 = ∑ 𝒫𝐻(𝓅𝑖)0≤ 𝑖 ≤
𝑛

2
+ ∑ 𝒫𝐻(𝓅𝑖)𝑛

2
< 𝑖 ≤𝑛 =

1

2
. 

Therefore, for a continuous motion, if 𝑛 = 𝜋 and if, 

∑ 𝒫𝐻(𝓅𝑖)0≤ 𝑖 ≤
𝜋

2
= ∑ 𝒫𝐻(𝓅𝑖)𝜋

2
< 𝑖 ≤𝜋 =

1

2
. Then, 

∑ 𝒫𝐻(𝓅𝑖)0≤ 𝑖 ≤
𝜋

2
 + ∑ 𝒫𝐻(𝓅𝑖)𝜋

2
< 𝑖 ≤𝜋 >

1

2
. 

 

This is contrary to the probability axioms. Therefore, one of the two 

series should be negative. Hence,  

0 ≤ ∑ 𝒫𝐻(𝓅𝑖)0≤ 𝑖 ≤
𝜋

2
 + ∑ 𝒫𝐻(𝓅𝑖)𝜋

2
< 𝑖 ≤𝜋 ≤

1

2
. 

 

By multiplying both sides of every inequality by −1, we will arrive at: 

−
1

2
≤ − ∑ 𝒫𝐻(𝓅𝑖)0≤ 𝑖 ≤

𝜋

2
 − ∑ 𝒫𝐻(𝓅𝑖)𝜋

2
< 𝑖 ≤𝜋 ≤ 0. 
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Then, by taking ∑ 𝒫𝐻(𝓅𝑖)0≤ 𝑖 ≤
𝜋

2
=

1

2
 and adding it to the both sides of 

every inequality, then 0 ≤ − ∑ 𝒫𝐻(𝓅𝑖)𝜋

2
< 𝑖 ≤𝜋 ≤

1

2
 , or −

1

2
≤

∑ 𝒫𝐻(𝓅𝑖)𝜋

2
< 𝑖 ≤𝜋 ≤ 0.  

As a result, the negative value here is necessary.  

Now, suppose that the ball moves in one direction at constant velocity 
𝓋 through the time interval [𝑡0, 𝑡], which is corresponding to the fraction 

interval [0,1]. And if 𝑡0 = 0, then the displacement 𝜃 = 𝓋∆𝑡, where ∆𝑡 is the 

change of 𝑡. However, if 𝓋 = 1, then 𝜃 = ∆𝑡 where 0 ≤ 𝜃 ≤ 𝑡. Also, if 𝑡 =
𝑛, then 𝑛 − 1 ≤ 𝑡 ≤ 𝑛 + 1. Consequently, 𝑡 ≤ 𝑛 + 1, where 𝑡 includes all 

possible values, recall 𝒫𝐽(𝓅𝑖) from the discrete case, where 

 ∑ ∑ 𝒫𝐽(𝓅𝑖)
𝑛
𝑖

𝑚
𝑗 = ∑ ∑

1

𝑛+1
[1 −

𝐽(𝑛−𝑖)

𝐽𝑛
 ]𝑛

𝑖
𝑚
𝑗 .  

The infinite 𝑟 rounds in the alternating infinite sequence (−1)𝑟+1 is 

given as: 

(−1)𝑟+1 ∑ 𝒫𝐻(𝓅𝑖) + (−1)𝑟+1 ∑ 𝒫𝐻(𝓅𝑖) + ⋯𝑡
𝑖

𝑡
𝑖  for 𝑟 = 1,2, … So, for 𝑡 > 0, 

(−1)2 ∑ 𝒫𝐻(𝓅𝑖) = (−1)2𝒫𝐻(𝑡0, 𝑡)𝑡
𝑖 =

(−1)2

𝑡
∫ [𝒫𝐻(𝜃)] 𝑑𝜃

𝑡

𝑡0
 = 

1

𝑡
∫ [1 −

(𝑡−(𝑡−𝑡0))

𝑡

𝑡

𝑡0
] 𝑑𝜃 =

1

𝑡
∫ [

𝑡−𝑡+(𝑡−𝑡0)

𝑡

𝑡

𝑡0
] 𝑑𝜃 =

1

𝑡
∫ [

(𝑡−𝑡0)

𝑡

𝑡

𝑡0
] 𝑑𝜃 =

1

𝑡2 ∫ [𝜃]
𝑡

𝑡0
 𝑑𝜃 =

1

𝑡2 [
𝜃2

2
]

𝑡0

𝑡

=
(𝑡)2−(𝑡0)2

2𝑡2 =
(𝑡)2−0

2𝑡2 =
𝑡2

2𝑡2 =
1

2
. 𝑅𝑒𝑠𝑢𝑙𝑡 1. 

Also, for the same interval (𝑡0, 𝑡), (−1)3𝒫𝐻(𝑡0, 𝑡) =
(−1)3

𝑡2 ∫ [(𝑡 −
𝑡

𝑡0

𝑡0)] 𝑑𝜃 = 

−1

𝑡2 ∫ [𝜃]
𝑡

𝑡0
𝑑𝜃 =

−1

𝑡2 [
𝜃2

2
]

𝑡0

𝑡

= −
(𝑡)2−(𝑡0)2

2𝑡2 = −
(𝑡)2

2𝑡2 =
−𝑡2

2𝑡2 = −
1

2
 𝑅𝑒𝑠𝑢𝑙𝑡 2. 

Also, from the integration ∫ 𝑓(𝑥) 𝑑𝑥 = −
𝑏

𝑎
∫ 𝑓(𝑥) 𝑑𝑥

𝑎

𝑏
 (Lebesgue, 

1989), if the theoretical part of the ball is restricted on the arc 0⁀𝜋

2
, then 

𝑟𝑒𝑠𝑢𝑙𝑡𝑠 1 and 2 can be obtained directly by: 

1

(
𝜋

2
)2 ∫ [𝜃] 𝑑𝜃 =

1

(
𝜋

2
)2

 [
𝜃2

2
]0

𝜋

2 =
(

𝜋

2
)2−(0)2

2(
𝜋

2
)2

𝜋

2
0

=
(

𝜋

2
)

2

2(
𝜋

2
)

2 =
1

2
. 

1

(
𝜋

2
)2 ∫ [𝜃] 𝑑𝜃 =

1

(
𝜋

2
)2

 [
𝜃2

2
]𝜋

2

0 =
(0)2−(

𝜋

2
)2

2(
𝜋

2
)2

0
𝜋

2

= − 
(

𝜋

2
)

2

2(
𝜋

2
)

2 = −
1

2
. 

So, 
1

(
𝜋

2
)2 ∫ [𝜃]𝑑𝜃 +

1

(
𝜋

2
)2 ∫ [𝜃]𝑑𝜃 =

1

2
+ (−

1

2
)

0
𝜋

2

𝜋

2
0

. 

{𝒫𝐻(𝓅𝑖=0,…,𝑡)} = {𝒫𝐻↑(𝓅𝑖=0,…,𝑡)}  + {𝒫𝐻↓(𝓅𝑖=0,…,𝑡)} = 0 𝑅𝑒𝑠𝑢𝑙𝑡 3. 
Consequently, this process is a continuous process on [0, 1], where the 

composite function 𝒫𝐻(𝓅𝑖) does not cease at any point. Therefore, these 

results reflect the fact that 𝓅(+∞) = 1 and 𝓅(−∞) = 0. Also, these results 
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reflect that nil value does not only mean that the impossible event is 

happening, but it also means that there is no discrete process. At the same time, 

in the discrete case, nil value does not only mean that the impossible event is 

happening, but it also means that there is a continuous process. The zero value 

here provides an explanation of the limit value for lim
𝑛→∞

1

2𝑛
= 0. 𝑅𝑒𝑠𝑢𝑙𝑡 3′ 

If the density of the probability 𝑓(𝑧) is subject to two conditions: (𝑎) 

𝑓(𝑧) ≥ 0 for all 𝑧 in (𝑎, 𝑏). (𝑏) ∫ 𝑓(𝑧) 𝑑𝑧 = 1
𝑏

𝑎
. However, in all cases, the 

largest possible interval may be taken from −∞ to +∞. To this end, it suffices 

to define the density outside the originally given interval as being = 0. Thus, 

the density is defined for all real values of 𝑧 and satisfies the conditions: (𝑎) 

𝑓(𝑧) ≥ 0 for all 𝑧. (𝑏) ∫ 𝑓(𝑧) 𝑑𝑧 = 1
+∞

−∞
. Furthermore, the probability for 𝑥 

to be in any interval (𝑐, 𝑑) will be given by∫ 𝑓(𝑧) 𝑑𝑧
𝑑

𝑐
. In particular, taking 

𝑐 = −∞ and writing 𝑡 instead of 𝑑, 𝐹(𝑡) = ∫ 𝑓(𝑧) 𝑑𝑧
𝑡

−∞
 represents the 

probability that 𝑥 will not exceed or will be less than 𝑡. Considered as a 

function of 𝑡, 𝐹(𝑡) is never decreasing (Uspensky, 1937).  

From another point of view, the negative part in 𝑟𝑒𝑠𝑢𝑙𝑡 2 is not defined 

as being = 0. However, it is satisfying the axioms if result 1 is solely 

considered as enough condition that is satisfying the axioms. Thus, the sum’s 

axiom is explained by the inequalities instead of equality. If that is the case, 

then the importance of probability axioms will lie in that,  

0 ≤ ∫ 𝑓(𝑧) 𝑑𝑧 ≤ 1
+∞

−∞
. Therefore, it is significant to know how the sum in this 

interval (−∞, +∞) can spread between these two inequalities. 

On the other hand, if ∑ 𝒫𝐻(𝓅𝑖)0≤ 𝑖 ≤𝜋 =
1

2
 ,  

then ∑ 𝒫𝐻(𝓅𝑖)0≤ 𝑖 ≤
𝜋

2
=

1

2
− ∑ 𝒫𝐻(𝓅𝑖)𝜋

2
< 𝑖 ≤𝜋 . In addition, 𝑡 + 1 ≥ 𝑛 

implies that both quarters of every half are included in 𝑡 + 1, where 0 ≤ 𝜃 ≤
𝑡, 𝑡0 = 0 and 𝑡 = 1, Here, if 𝑡 = 1, then 𝑡 + 1 implies that "1" is an interval. 

In the discrete case, "1" is a point, and 𝑛 are also points (Discussion-

Supposition). Thus, ∑ 𝒫𝐻(𝓅𝑖)
𝑡+1
𝑖 = ∑ 𝒫𝐻(𝓅𝑖) + ∑ 𝒫𝐻(𝓅𝑖)

𝑡
𝑖

𝑡
𝑖 . 

The integration is 𝒫𝐻(𝑡0, 𝑡) =
1

𝑡+1
∫ [

𝑡−𝑡+(𝑡−𝑡0)

𝑡

𝑡

𝑡0
] 𝑑𝜃. Also, 

1

𝑡(𝑡+1)
∫ [𝑡 − 𝑡 + (𝑡 − 𝑡0)]

𝑡

𝑡0
 𝑑𝜃 =

1

𝑡(𝑡+1)
∫ [𝜃]

𝑡

𝑡0
 𝑑𝜃 =

1

𝑡(𝑡+1)
[

𝜃2

2
]

𝑡0

𝑡

=

1

2𝑡(𝑡+1)
[(𝑡)2 − (𝑡0)2] =

1−0

2(2)
=

1

4
. 𝑅𝑒𝑠𝑢𝑙𝑡 4. 

 

Consequently, the ball is divided into 4 quarters and every face has two 

attached quarters. Therefore, ∑ 𝒫𝐻(𝓅𝑖) =  ∑ 𝒫𝐻(𝓅𝑖)𝜋

2
< 𝑖 ≤𝜋0≤ 𝑖 ≤

𝜋

2
=

1

4
 means 

that ∑ 𝒫𝐻(𝓅𝑖)
𝑡+1
𝑖  is already multiplied by 

1

2
, since 𝓅𝑛 is always equal to 1. 
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Also, if the value of 𝑡 increases infinitely such that 𝜃 ⟶ +∞, then the value 

of probability will also increase to approach the value of 
1

2
. However, it does 

not exceed it. Numerically, this proves that 
1

2
 is a limit of 𝒫𝐻(𝓅𝑖) (Table 2). 

At the same time, as the value of 𝑡 decreases infinitely such that 𝜃 ⟶ −∞, the 

value of probability decreases to approach zero. However, it does not exceed 

it. This further proves another limit of 𝒫𝐻(𝓅𝑖), which is explained in results 

1, 2, and 3. 
Table 2.  Whatever the acceleration of 𝒕 is, the function has less acceleration 

 
 

Actually, this case is not seen as one continuous process. It is rather 

seen as two separate continuous processes on [0, 1], where every process 

repeats the other and they both cease at point 1 where the sum is 
1

4
. Hence, 

they both serve separately to give a discrete quantity, where repeating is an 

aspect of the discrete processes, 𝑅𝑒𝑠𝑢𝑙𝑡 4′. Therefore, 𝒫𝐻(𝓅𝑖) is continuous 

at 0 to the right, while 1 is a discontinuity point. 

Also, in continuous processes, the conditional concept could be 

considered. So, for every 𝑛 events (interval) ; 𝓅𝑖+1↑ occurring if 𝓅𝑖↑ occurs is 

given. Additionally, it is sufficient that every point in 𝓅𝑖↑ is also in 𝓅𝑖+1↑ 

which is satisfying that the points are in 𝓅𝑖↑𝓅𝑖+1↑.  

For a probability space (𝔉, 𝔅, 𝒫(⋅)), if 𝔉 “is uncountable”, then 𝔅 

“cannot in general be the set of all subsets.” But “once one has one probability 

defined over” (𝔉, 𝔅), “then one can define other probabilities that are called 

conditional probabilities” (Tucker, 1967). 

In the present case, if 𝒫𝑗=1,..,𝑚(𝓅0) = 0 (impossible: nothing 

happened: no condition: zero), it is excluded, and this is also the case for 𝔉 ∈
𝔅 and all 𝓅𝑖 ∈ 𝔅. Nevertheless, the nature of 𝔉 allows it to contain 

probabilistic values (𝓅0 = 𝑃(∅), 𝓅𝑛 = 𝑃(𝑆)). Thus, even if 𝔉 is considered a 

fundamental set, 𝔉 could be considered a set of subsets of {(𝑃(𝐻), 𝑃( 𝑇)}. In 

a sure event, 𝑆 means the probability of 1, which takes the connective (𝑜𝑟) 

(1 𝑜𝑟 1). It also means the occurrence of all events of 𝑆, which also takes the 

connective (𝑜𝑟) for its elements’ occurrence. So, in definition VI in the discrete 

case (Jughaiman, 2023), it is necessary to take into account that it would have 

been better if “all 𝓅𝑖 ∈ 𝔉” was extended to “all 𝓅𝑖 ∈ 𝔅”. Also, the mutually 

disjoint sets in 𝔅, as well in the present case should be put into consideration.  
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Also, 𝓅𝑖 should be considered to represent, implicitly, any event such that 

[𝓅𝑗(𝑖),𝑗(𝑖), … , 𝓅𝑗(𝑖),𝑗+1(𝑖), … , 𝓅𝑗+1(𝑖),𝑗+1(𝑖), … , 𝓅𝑗+1(𝑖),𝑗(𝑖)]. 

Moreover, the difference in the discrete case is that the events are 

independent in every throwing, where in the present case every event is 

supposed to be dependent on the previous event. “Among Markov’s own 

significant contributions to probability theory were his pioneering 

investigations of limit theorems for sum of dependent random variables and 

the creation of a new branch of probability theory, the theory of dependent 

random variables, that form what we now call a Markov chain”, (Shiryaev, 

2016). 

Corollary II (From Multiplication Rule): For every 𝑛 events 𝓅1, … , 𝓅𝑛 

for which 𝒫𝑗=1,..,𝑚(𝓅1 … 𝓅𝑛−1) > 0. Then, 𝒫𝑗=1,..,𝑚(𝓅1 … 𝓅𝑛) = 

𝒫𝑗=1,..,𝑚(𝓅1)𝒫𝑗=1,..,𝑚(𝓅2|𝓅1) ⋯ 𝒫𝑗=1,..,𝑚(𝓅𝑛|𝓅1 … 𝓅𝑛−1).  

For the theorem and proof, see Tucker (1967). 

Corollary III (From Theorem of Total Probabilities): If 

𝒫(⋃ ⋃ 𝓅𝑗𝑖
𝑛
𝑖=1

𝑚
𝑗=1 ) = 1, where {𝓅𝑗=1,…,𝑚.𝑖=1,…,𝑛} is a finite or denumerable 

sequence of disjoint events, if 𝒫𝑗=1,..,𝑚(𝓅𝑖=1,…,𝑛) > 0 for every 𝑖, and if 𝐴 ∈

𝔅. Then, 𝒫𝑗=1,..,𝑚(𝐴) = ∑ ∑ 𝒫(𝐴|𝓅𝑗𝑖)𝑛
𝑖=1 𝒫(𝓅𝑗𝑖)𝑚

𝑗=1 . For the theorem and 

proof, see Tucker (1967). Moreover, for the expectation, if it exists and “as 

soon as the given 𝜎-fields are not generated by countable partitions, the 

descriptive approach remains possible, thanks to the Radon-Nikodym 

theorem” (Loève, 1978). 

3. If the ball moves in one direction but it diffuses in all directions at a 

velocity that is higher than the velocity of its motion, then the points turn away. 

Also, at every instant, there would be unknown points (uncountable) (Figure 

7). 

 
Figure 7. As point is undefined, it is also unknown (uncountable) 

For example, the predominant circumstance in the process of tossing a 

true coin is the one-direction circumstance, where resistance is a bit like a flat 

surface. Also, if every face of a coin loses weight randomly in a continuous 

process, then by the integration ∑ ∑ 𝒫𝐽(𝓅𝑖)
𝑛
𝑖

𝑚
𝑗 ≥ 0.  

 

Circumstance 2: Different Directions 

Every sub-interval of time will be corresponding to fractions’ interval 

𝑖 in a motion of different rotation. So, for an infinite number of sub-intervals 
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of time, sample space will be all points on the ball. If one considers that all 

events are equally likely, then it will also bring Result 3 or 4 (Figure 8). 
 

 

 

 

 

Figure 8. The infinite curves that the ball can move on, where every curve represents a single 

direction. That means the infinite motion in different directions brings the same result of one 

direction infinite motion 

 

Definition I: “Let Ω be a measurable subset of 𝑛-dimensional 

Euclidean space with positive, finite Lebesgue measure. Furthermore, let 𝒜 

be the set of all measurable subsets of Ω and 𝜇(𝐴) the 𝑛-dimensional Lebesgue 

measure of the measurable set 𝐴. Let 𝑃(𝐴) be defined by 
𝜇(𝐴) 

𝜇(Ω) 
,”and “[Ω, 𝒜, 𝑃] 

is a Kolmogorov probability space. In this probability space, probabilities may 

be obtained by geometric determination of measures” (Rényi, 1970). 

“The selections of measurable sets and the concepts of limit in range-

spaces are rooted in the properties of the Euclidean line: Real line 

𝑅 =(−∞, +∞) with euclidean distance |𝑥 − 𝑦| of points (numbers, reals) 𝑥, 𝑦. 

Species of spaces vary according to the preserved amount of these properties, 

an amount which increases as we pass from separated spaces to metric spaces, 

then to Banach spaces and to Hilbert spaces” (Loève, 1977). 

Theoretically, if one bends the portion of the real line of the closed 

interval [0,1] as shown in Figure 9, this will represent the infinite uncountable 

fractions (circles). 
 

 

 

 

 

 

 

Figure 9. The portion of the real line that bends over every quarter of the ball 

 

“It is well known that we can establish a one-to-one correspondence 

between all real numbers and all points on the line. Also, a similar 

correspondence may be established between all pairs of real numbers (𝑥1, 𝑥2) 

and all points in a plane, or between all triplets of real numbers (𝑥1, 𝑥2, 𝑥3) 

and all points in a three-dimensional space.” Moreover, “the length of a finite 

interval (𝑎, 𝑏) in 𝑅1is the non-negative quantity 𝑏 − 𝑎.” Consequently, “for a 

degenerate interval, the length is zero. The length of an infinite interval can be 

defined as +∞. Thus with every interval 𝑖 = (𝑎, 𝑏), we associate a definite 

non-negative length, which may be finite or infinite. Also, we may express 
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this by saying that the length 𝐿(𝑖) is a non-negative function of the interval 𝑖, 
and writing 𝐿(𝑖) = 𝑏 − 𝑎, or 𝐿(𝑖) = +∞, as the interval 𝑖 is finite or infinite” 

(Cramér, 1946). For example, in the present case, interval 𝓅𝑖=[0,0] is a 

degenerate interval. Intuitively, if area (or length) is used instead of numbering 

(frequency), then the probability of head will be the area of head / the area of 

the coin for the process of tossing a true coin. Also, in this present case for 

each face, if the two intervals [0, 1] and (0, 1) are considered separately, then, 

for some successive sub-intervals without common points, the sum of sub-

intervals will take a length of less than or equal to 1. So, it is possible in 

principle to represent the function 𝐿(𝑖) by 𝒫𝑗(𝓅𝑖). 

“Ensembles de mesure nulle.- Soit un ensemble 𝐸 constitué par les 

points de plusieurs intervalles extérieurs les uns aux autres ; on appelle mesure 

de cet ensemble la somme des longueurs des intervalles qui le constituent. La 

mesure 𝑙 ainsi définie est liée à la probabilité ; si l’ensemble 𝐸 est tout entier 

situé dans un intervalle de longueur égale à l’unité, et que l’on considère un 

point choisi au hasard dans cet intervalle suivant une loi de probabilité telle 

que deux intervalles égaux soient également probables, la mesure de 

l’ensemble 𝐸 représente la probabilité que le point choisi soit dans cet 

intervalle” (Lévy, 2006). Also, if the end points of any interval will be from 

an infinite uncountable sample space, then the intervals are infinite and 

uncountable intervals. 

Geometrically, “for random directions in the space 𝑅3, the unit sphere 

serves as sample space; each domain has a probability equal to its area divided 

by 4𝜋. Choosing a random direction in 𝑅3 is equivalent to choosing at random 

a point on this unit sphere.” “A random vector in 𝑅3 refers to a vector drawn 

in a random direction with a length 𝐿, which is a random variable independent 

of its direction. The probabilistic properties of a random vector are completely 

determined by those of its projection on the 𝑥-axis. Thus, by using the latter, 

it is frequently possible to avoid analysis in three dimensions” (Feller, 1966). 

As the ball moves in different directions, with various velocities, it would 

result to both vectors and scalars. Every vector has initial point 𝑣0, terminal 

point 𝑣1 and length as a magnitude, which will be the time interval length. 

This is also dependent on the velocity. Simply, every point 𝑎 has a probability 

value equal to 
𝑎

𝑡
.  

On the other hand, in the case where the ball is still without movement, 

every point at a random position on the ball could sketch a ball. Thus, as the 

points are uncountable, there will be uncountable balls. Also, when the ball 

moves, every point takes the position of the other one. So, if there are 

uncountable balls, then the probability to pull one of them will be such as the 

experiment of drawing ball randomly in a continuous process. However, since 

http://www.eujournal.org/


European Scientific Journal, ESJ                                ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

March 2024 edition Vol.20, No.9 

www.eujournal.org    14 

there are random velocities and random directions, value will behave as 

follow: 

1. The points on the peak remain around their position; if the ball move 

around its axle, the value remains within a bounded range. 

2. The points on the peak remain around their orbit; if the ball move 

around this orbit, the value remains within some great circles. 

3. The point moves in random directions, which is changing the value 

randomly. 

 

From these, if one supposes that every point is moving on random 

orbits, then through the use of these orbits instead of points, there are infinite 

and uncountable orbits. Thus, the argument will be: What is the probability 

value of every orbit the moving ball may take? And, how long is the interval 

for the ball to remain moving at a specific half (head or tail)? Therefore, there 

would be some kinds of behaviors which include: 

1. The behavior at a specific time interval. 

It will be subjected to the conditions of the existing case. This means 

that events occurrence will not be equally likely (limited-time 

interval). 

2. The behavior at an infinite time interval. 

It will reflect the value behavior which depend on the ball movement 

behavior. This means that events occurrence will be equally likely. 

 

Approach 

To approach the ball motion problem to the stochastic processes’ 

problems, the following examples are considered: “In the Bohr model of the 

hydrogen atom, the electron may be found in one of certain admissible orbits.” 

This is “a Markov chain with an infinite number of states (although in principle 

only)” (Gnedenko, 1963). Also, for example: One “starts at the origin and 

takes a step in any direction of length ∆.” The one “then stops, selects a new 

arbitrary direction, and proceeds to take another step of length ∆ in this new 

direction.” Thus, he “continues his walk for 𝑛 steps. The angles through 

which” the one “proceeds on the 𝑛 steps are chosen independently and at 

random and thus may be taken as independent random variables. Therefore, 

let 𝑎𝑘 be a random variable whose value determines the angle made with the 

𝑥 axis in the 𝑘𝑡ℎ step and assume that it is uniformly distributed from 0 to 2𝜋 

(that is, the frequency function is 
1

2𝜋
 for 0 ≤ 𝑎𝑘 ≤ 2𝜋 and zero elsewhere).” 

Another example is that “of a stationary and ergodic random process, we 

consider the motion of a perfectly elastic billiard ball on a frictionless circular 

table with perfectly elastic boundaries. Also, we assume the diameter of the 

ball to be zero and its speed to be a constant 𝑣.” Thus, “it is clear that upon 
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each impact with the boundary of the table, the direction of motion of the ball 

changes by the fixed amount 𝛼. From elementary geometry, it was found that 

all paths are tangent to an inner circle of radius 𝑟0 = 𝑅 cos  (
𝛼

2
) and that each 

chord length is 2𝑅 sin (
𝛼

2
)” (Laning et al., 1956). 

 

Discussion 

As soon as an alternative design is considered (Figure 10 to the right), 

then there would be discontinuity points. Figure 10 (second from the right) 

consider finite sample space for the structure of single-member event, which 

“is an event that contains exactly one description” (Parzen, 1960). In this case, 

the exact description will be a positive finite interval or a negative finite 

interval.  

 
Figure 10. To the left, where every face has two appearances (paths). A possible visualization 

for the sum in Result 4, each quarter has either height or width sum (
𝟏

𝟒
 +

𝟏

𝟒
) (Second from the 

left). To the last right, it cannot remain a continuous process to flip the coin from face to face 

directly, or without zero fraction, ∅. 

 

Furthermore, it is possible to record negative values (probabilistic 

values) on any quarter of every half, where the quarters of every half are 

equally likely, no matter what the directions are. At the same time, the 

probability of probability will be positive. 

Also, besides the importance of 𝑟𝑒𝑠𝑢𝑙𝑡 4′, and to give more meaning 

to 𝑟𝑒𝑠𝑢𝑙𝑡 4, this paper, based on a mere purpose of giving the frequency, 

recorded any velocity less or more than 𝑡𝑖 = 1. This shows that it is enough in 

considering both functions as one function in rotation of 𝜋 and multiplied it 

by 𝑣−1 as shown below: 

𝒫𝐻(𝑡0, 𝑡𝑖+𝑟) =
𝑣−1

𝑡𝑖 + 1
∫

𝑡𝑖 − 𝑡𝑖 + (𝑡𝑖+𝑟 − 𝑡0)

𝑡𝑖

𝑡𝑖+𝑟

𝑡0

 𝑑𝜃 

 

Hence, this is because the both quarters of every half are symmetric. 

For instance, if 𝑣 =
3

2
, 𝒫𝐻(0,

3

2
 )  =

3

8
. But for 𝑣 =

1

2
, 𝒫𝐻(0,

1

2
 ) =

1

8
. In this case 

0 ≤
𝜃

∆𝑡
≤ 𝑡 + 1, while 0 ≤

𝜃

∆𝑡
≤ 𝑡 in the results of 1, 2, and 3. Regarding the 

displacement in general, see  (Kane et al., 1988). Also, “suppose that it is in 

principle possible to continue the trials indefinitely and that the probabilities 
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𝑃𝑟{(𝐸𝑗1
, … , 𝐸𝑗𝑛

)} of the outcomes of the first 𝑛 trials are defined consistently 

for all 𝑛, we shall investigate classes of events defined by certain repetitive 

patterns” (Feller, 1950).  

 Regarding the displacement in general, see (Kane et al., 1988) and for 

some different ideas around the mechanics of a tossed coin (Keller, 1986). 

On the other hand, for unequal fractions intervals, there would be 

unequal areas. “Indeed, one cannot assign an event to every subset of the area 

since the area, as it is well known, cannot be defined for every subset such that 

it is completely additive and that the areas of congruent figures are equal. In 

general, the distribution of probability is said to be uniform, if the probability 

that an object situated at random lies in a subset can be obtained according to 

the definition (I) from a geometric measure 𝜇 invariant under displacement” 

(Rényi, 1970). Also, in the continuous process, the transition from H to 𝑇 

cannot be the discontinuity point. They are considered as one phenomenon, 

which is often considered as a homogenous physical body. “Sometimes, the 

basic set is not even countable. For example, consider the random 

phenomenon of spinning a pointer on a dial and, when it comes to rest, 

measuring-in radians, say-the angle 𝜃, it makes with some reference 

direction.” Therefore, it would be natural to take the basic set in our 

mathematical model to be 𝐸 = {𝜃: 0 ≤ 𝜃 < 2𝜋} = [0, 2𝜋). Here, by thinking 

of the case of a fair pointer, it is natural to begin by assigning to each interval 

𝐼 in this set a probability proportional to its length:  

𝑃(𝐼) =
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐼

2𝜋
. 

Then 𝑃(𝐸) =
2𝜋

2𝜋
= 1 (Botts, 1969). 

 

Also, for more cases in geometric probabilities problems, see Mcginty 

(2004). On the other hand, “a random probability measure construction is a 

technique for specifying a probability measure (prior) on the space of 

probability measures. The most familiar priors of this type are those defined 

on some parametric family of probability distributions” (Monticino, 2002). 

To accommodate and admit the negativity, in 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 1, 2 and 3, we 

will consider the following: First of all, probability theory has precisely treated 

the non-decreasing and non-increasing functions to find the density functions. 

In this case, “the function 𝑔(∙) is differentiable at every real number 𝑥 and, 

furthermore, either 𝑔′(𝑥) > 0 for all 𝑥 or 𝑔′(𝑥) < 0 for all 𝑥” (Parzen, 1960). 

Here, function is characterized by an inverse function (Velleman, 1997). So, 

“if 𝑦 is a decreasing function of 𝑥, 𝑥 is a decreasing function of 𝑦 and hence 
𝑑𝑥

𝑑𝑦
< 0. Thus, by using the absolute-value sign around 

𝑑𝑥

𝑑𝑦
, we may combine 

the result of the increasing function and the result of the decreasing function 

and obtain the final form of the theorem” (Meyer, 1970). For details and 
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theorem, see the latter. Also, the negative probabilities have been suggested in 

many texts, such as the problem of half of a coin (Szekely, 2005). 

Subsequently, before then, the study was treated by Feynman (1987) and Blass 

et al. (2015). On the other hand, Corollary I is understood to be compatible 

with probability axioms. Nonetheless, in principle, it is important to note that 

all fractions are positive. As a particular trial, when probability values are in 

non-increasing sequence, this sequence should be a sub-sequence that follows 

a non-decreasing sub-sequence that in turn expresses a value that is satisfying 

the probability axioms which is 𝓅𝑛. From here, if the probability’s value is 

admitted to take a negative sign, it takes it to reflect the continuous process in 

some directions. Thus, this could be explained by Values from 0 to < 1 being 

in the success intervals, which is considered for the occurrence that precedes 

or tends to the sure event. At the same time, values from 1 (0) to > 0 (-1) are 

in the failure intervals, especially for the occurrence that precedes or tends to 

the impossible event. Consequently, “there are at least two directions from 

which the fundamental axioms of probability theory may be approached: 

probability theory concepts may be built up, mechanically, from the concept 

of the event and its probability, or they may be derived as special applications 

of the theory of measurable spaces” (Allen, 1976). 

For infinite time sub-intervals, there would be infinite fractions sub-

intervals which are necessary with common points. Moreover, for random 

velocities, these sub-intervals have random lengths, which are considered as 

random variables. In addition, the endpoints of intervals could be considered 

as random variables, which are not necessarily independents. For more 

discussion, see Justicz et al. (1990). 

Supposition: In the discrete case, if the arguments were ∑
1

𝑛
[1 −𝑛=1

𝑖=1

(𝑛−𝑖)

𝑛
 ], then 𝒫𝐻(𝓅𝑖=𝑛) = 1. However, this is also contrary to the probability 

axioms. So, 𝓅0 = 0 is necessary as 𝜑 is necessary, but only for 𝐻 or only for 

𝑇 (Mutually Exclusive Condition) as shown in Figure 11. This means the 

unoccurrence probability of 𝐻. Thus, 𝒫𝐻(𝓅0) + 𝒫𝐻(𝓅𝑛) =
1

2
, where 𝒫𝐻(𝓅0) 

is the image of 𝒫𝑇(𝓅𝑛) =
1

2
, and the reverse is true. So, by supposing that 

𝒫𝐻(𝓅0) is a limit value, where in general 𝑃(𝜑) = 0, and 𝓅0 should be 

included in 𝑡. Hence, 𝑛 + 1 (discrete) and 𝑡, 𝑡 + 1 (continuous) are always 

true. Also, if 𝓅𝑛 = 1 and 𝓅𝑛 = 𝜑 = 0 = 𝓅0, then 𝓅0, 𝓅𝑛 ∈ 𝔉, which implies 

that 𝔉 is a set of subsets.  

 
Figure 11. Mutually Exclusive Conditions 
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Conclusion 

This paper begins with an introduction that distinguishes the concept 

of randomness within levels of uncertainty. It also briefly presents the concept 

of continuity and its relationship to the probabilistic nature. This paper uses a 

method that relies on carefully designed experiment to reflect the physical 

nature and to ensure consistency with the mathematical logic of probability. 

This is done so that it contains the possible greatest number of applicable 

concepts, and to help in proffering answers to many questions related to 

probability theory. As for the results, they explained the method in more detail. 

Consequently, most of the paper's results were based on a typical circumstance 

which is based on a structure composed of elements that are subject to the 

axioms of probability. Here, this circumstance can be transformed into a 

probabilistic circumstance by adding more elements gradually. The outcomes 

flowed through mathematical techniques, starting with geometric probability 

as a logical conception of the nature of the experiment. Also, each 

circumstance helps to reflect some aspects of the experiment and to deduce 

some logical imperatives as results. The paper also contained many carefully 

explained illustrations that make them an important complement to the content 

of the paper. Also, this paper added more techniques in the form of 

discussions, examples, and suppositions as part of the experiment and the 

results. 

In conclusion, the experiment of tossing a true coin can be represented 

geometrically, especially where the continuous process can explain clearly the 

theoretical concept for the probability values of 0 and 1. It also concluded that 

the sum of probability values in a motion of rotation of 180° can represent the 

smallest picture of the continuous infinite rotation towards ±∞. Also, this 

paper concluded that the randomness in continuous process is explained by 

the sample space and the rarity of recurrence (repeating) of event. In the 

discrete process, the randomness is explained by the extent of the difference 

of probability values that the event takes, while the continuity could be 

considered as the nature of all events. Moreover, the present experiment can 

interpret the continuity by the small difference of fractions, compared to the 

large difference of fractions in the discrete case. In addition, this paper 

proposes the counting principle in the experiments design, which is supported 

by the experiment and the results. 

Subsequently, negative probability values do not appear in the discrete 

processes but they appear in the continuous processes. Therefore, the random 

processes could be described in more details in the continuous processes. It 

also concluded that negative values are considered as part of particular trial, 

and they cannot be discontinuity points from the continuous case as negative 

values, but as positive discrete values. Also, it is clear that the probability of 

non-decreasing sequence is equal to the probability of non-increasing 
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sequence, of which they are cancelling each other. On the other hand, for a 

given purpose, it is possible to assume that non-increasing values take the 

meaning of failure for the event under study. This, thereafter, is followed by 

the meaning of success for the complement event. Also, the adoption of 

negative probability value is dependent on the extent of the explanation of the 

non-increasing sequence, and on the extent of the need to negative value. By 

some amendments of the experiment design, the distribution and composite 

probability functions, negative probability values can be calculated by the 

composite probability function 𝒫𝑗(𝓅𝑖) to give positive values with 

𝒫𝐻(𝓅𝑖=0,1,..𝑛) + 𝒫𝑇(𝓅𝑖=0,1,..𝑛) = 1. Therefore, the probability of probability 

has a mathematical necessity. In addition, this paper concluded that there are 

maxima and minima limits for 𝒫𝑗(𝓅𝑖). These limits are proven numerically to 

reflect probability value behavior and to demonstrate the nature of 𝒫𝑗(𝓅𝑖). 

Also, this paper consider that 𝒫𝑗(𝓅𝑖) can be used in the conditional 

probability, if 𝔉 is uncountable. On the other hand, it is possible in principle 

to represent the non-negative function of the interval 𝑖 by 𝒫𝑗(𝓅𝑖). Also, this 

paper concluded that mutually exclusive condition cannot be achieved, except 

by the existence of 𝓅0 (zero limit value) or 𝜑 in general. 

 

Funding Statement:The authors did not obtain any funding for this research. 

 

Data Availibility: All the data are included in the content of the paper. 

 

Conflict of Interest: The authors reported no conflict of interest. 

 

References: 

1. Allen, E. H. (1976). Negative Probabilities and the Uses of Signed 

Probability Theory. Philosophy of Science, 43(1), 53–70. 

http://www.jstor.org/stable/187335 

2. Blass, A. & Gurevich, Y. (2015). Negative probability. Bull Eur Assoc 

Theor Comput Sci. 115. 

3. Botts, T. (1969). Probability Theory and the Lebesgue Integral. 

Mathematics Magazine, 42(3), 105–111. 

https://doi.org/10.2307/2689118 

4. Cramér, H. (1946). Mathematical Methods of Statistics. First Printing. 

USA: Princeton University Press. 

5. Davenport Wilbur, B. & Root William, L. (1958). An Introduction to 

the Theory of Random Signals and Noise. USA: McGraw Hill Book 

Company. 

http://www.eujournal.org/


European Scientific Journal, ESJ                                ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

March 2024 edition Vol.20, No.9 

www.eujournal.org    20 

6. Eagle, A. (2005). Randomness Is Unpredictability. The British Journal 

for the Philosophy of Science, 56(4), 749–790. 

http://www.jstor.org/stable/3541866 

7. Feller, W. (1950). An Introduction to Probability Theory and Its 

Applications, Volume I. New York, NY: John Wiley & Sons, Inc. 

8. Feller, W. (1966). An Introduction to Probability Theory and Its 

Applications, Vol.2. Digital Library of India Item 2015.134183. 

9. Feynman Richard, P. (1987). Negative probability. In Basil J. Hiley & 

D. Peat (eds.), Quantum Implications: Essays in Honour of David 

Bohm. Methuen. pp. 235--248. 

10. Gnedenko, B.V. (1963). The Theory of Probability. Second Edition. 

USA: Chelsea Publishing Company. 

11. Gnedenko, B.V. & Kolmogorov, A. N. (1968). Limit Distributions for 

Sums of Independent Random Variables. USA: Addison-Wesley 

Publishing Company. 

12. Jughaiman, A. (2023). The Philosophy of Probability Values 

Behaviour through Fractions and Composite Probability Function for 

Independent Events in the Discrete Case. European Scientific Journal, 

ESJ, 19(18), 1. https://doi.org/10.19044/esj.2023.v19n18p1 

13. Justicz, J., Scheinerman, E. R., & Winkler, P. M. (1990). Random 

Intervals. The American Mathematical Monthly, 97(10), 881–889. 

https://doi.org/10.2307/2324324 

14. Kane Joseph, W. & Sternheim Morton, M. (1988). Physics. Third 

Edition. Singapore: John Wiley & Sons, Inc. 

15. Keller, J. B. (1986). The Probability of Heads. The American 

Mathematical Monthly, 93(3), 191–197. 

https://doi.org/10.2307/2323340 

16. Laning Halcombe Jr. & Battin Richard, H. (1956). Random Processes 

in Automatic Control. New York: McGraw-Hill Book Company, Inc. 

17. Laplace, P.S. (1995). Théorie Analytique Des Probabilités. Quatrième 

& Troisième Édition. Paris: Éditions Jacques Gabay. 

18. Lebesgue Henri (1989). Leçons sur L’intégration et La Recherche des 

Fonctions Primitives. Deuxième Édition. Paris: Éditions Jacques 

Gabay. 

19. Lévy Paul (2006). Calcul Des Probabilités. Paris: Éditions Jacques 

Gabay. 

20. Loève, M. (1977). Probability theory, Volume I. 4th Edition. New 

York: Springer-Verlag. 

21. Loève, M. (1978). Probability theory, Volume II. 4th Edition. New 

York: Springer-Verlag. 

http://www.eujournal.org/


European Scientific Journal, ESJ                                ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

March 2024 edition Vol.20, No.9 

www.eujournal.org   21 

22. Mcginty, M. (2004). Geometric Probability for The Space-Time Plane. 

Pi Mu Epsilon Journal, 12(1), 25–35. 

http://www.jstor.org/stable/24340793 

23. Meyer, P. L. (1970). Introductory Probability and Statistical 

Applications. Second Edition. USA: Addison-Wesley Publishing 

Company, Inc. 

24. Monticino, M. (2001). How to Construct a Random Probability 

Measure. International Statistical Review / Revue Internationale de 

Statistique, 69(1), 153–167. https://doi.org/10.2307/1403534 

25. Parzen, E. (1960). Modern Probability Theory and Its Applications. 

New York, NY: John Wiley & Sons, Inc. 

26. Rényi Alfréd (1970). Probability Theory. Amsterdam: Holden-Day 

and Akadémiai Kiadó. 

27. Shiryaev Albert, N. (2016). Probability-1. Third Edition. New York: 

Springer. 

28. Stoll Manfred (1997). Introduction to Real Analysis. Boston: Addison 

Wesley Longman Inc. 

29. Sveshnikov, A.A. (Ed.).(1968). Problems in Probability Theory, 

Mathematical Statistics and Theory of Random Functions. USA: W. 

B. Saunders Company. 

30. Swokowski Earl, W. (1988). Calculus with Analytic Geometry. 

Second Alternate Edition. USA: PWS-KENT Publishing Company. 

31. Szekely Gabor, J. (2005). Half of a coin: Negative probabilities. 

Wilmott Magazine. 50. 66-68. 

32. Tucker Howard, G. (1967). A Graduate Course in Probability. New 

York: Academic Press, Inc. 

33. Uspensky, J.V. (1937). Introductions to Mathematical Probability. 

First Edition, Second Impression. New York: McGraw-Hill Book 

Company, Inc. 

34. Velleman, D. J. (1997). Characterizing Continuity. The American 

Mathematical Monthly, 104(4), 318–322. 

https://doi.org/10.2307/2974580 

  

 

http://www.eujournal.org/

