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Abstract 
Sinai’s famous geometric explanation of equilibrium 

thermodynamics is extended towards non-equilibrium thermodynamics and 
cryodynamics.  Specifically, “breathing smooth Sinai trees” are introduced.  
And so are “breathing Sinai funnels.”  The example demonstrates that 
deterministic chaos lies at the root of two fundamental physical disciplines:  
statistical thermodynamics and statistical cryodynamics.  Quantum 
mechanics, computer simulation, energy technology and cosmology profit 
from the new consistency.    
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Introduction 

Fourty-three years ago, Yakov G. Sinai (1970) reduced equilibrium 
statistical thermodynamics to deterministic-chaos theory in modern parlance.  
The method was unique in its geometric parsimony.  First, he reduced the 
repulsive interactions of Hamiltonian billiard balls in 3D, down to two 
frictionless hard disks interacting in 2 D.  Second, he without loss of 
generality nailed the one disk onto the middle of the quadratic billiard table.  
Third, he doubled this disk’s diameter while shrinking the moving disk to a 
point without change of trajectory.  Fourth, he identified opposite sides of the 
table.  The result was the “tennis ball in an orchard” game, as Harry Thomas 
would call it (personal communication 1976):  The ball follows a straight 
path in the orchard – except for a locally symmetric reflection whenever 
hitting a tree stem.  As a consequence, almost all paths diverge from their 
infinitesimally close neighbors.  Exponential divergence of initial conditions 
would later be named “chaos” following work on dissipative dynamical 
systems by T.Y. Li and J.A. Yorke (1975).        

Equilibrium thermodynamics got based on deterministic-chaos theory 
by Sinai.  The traditional probability-theoretic approaches thus got 
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effectively replaced by causal deduction more than 4 decades ago.  In the 
following, Sinai’s result will be generalized further towards covering non-
equilibrium thermodynamics and more. 
The New Paradigm 

We simplify the motion on Sinai’s billiard table by focusing on a 
single unstable trajectory.  The latter grazes the quadratic table on one side.  
To represent it uniquely, we for convenience take two neighboring Sinai 
cells and make them our new unit cell.  The path of interest then is the 
symmetric middle path between the two repulsive Sinai disks contained, the 
one lying to the left, the other to the right.  The double cell is automatically 
repeated in a strip-like tessellation space.  We call the resulting picture the 
“Plane-tree Alley Problem” because our unstable path follows the middle-
line of an infinitely long alley of trees as it were (reminiscent of the “Plane-
Alley” in the town of Tubingen).     

In recompense for this strong simplification, we introduce two 
complicating ingredients into our Sinai world:  

(1) Smooth rather than hard potentials:  The repulsive trees in our 
alley are to possess, instead of a step-function on either side (box-shaped 
potential), a soft hyperbolic exterior governed by a 90-degree hyperbola.  For 
example, take the repulsive part of a 12th-order Lennard-Jones potential, or 
else use long-range Newtonian repulsion (it makes no qualitative difference).   

(2) Time-dependence:  The trees are assumed to be “breathing.”  That 
is, they expand and shrink slowly in a periodic fashion.  (Equivalently, 
symmetric motions of the trees, equidistributed across all directions can be 
assumed, but the breathing case is more intuitive.)       

This is the “Rolling Ball in Breathing Alley Problem.”  The rest is 
implications.  What is it that is going to happen to our frictionless point-
shaped light-weight ball as it rolls along the middle of the Plane Alley? 
A First Result 

Consider first the non-breathing subcase – point (1) above:  Then the 
central path in the alley is no longer traversed at an everywhere constant 
speed as in the original hard-tree case.  Rather the ball has to climb up to 
negotiate a potential maximum in the form of a smooth mountain col 
whenever it is passing in between the middle of two trees.  The ball hence 
periodically loses speed, while going up to that saddle point, in order to 
thereafter re-gain its old speed on sliding down on the other side again on the 
way toward the boundary of the next double Sinai cell, and so on.  That is all 
which occurs – a time-periodic straight motion since we do not consider 
deviations at first.       

Now the full case – points (1) and (2) taken together:  At first sight, 
one is prepared to bet that the ball on average once more re-gains just as 
much speed as it loses, now that the col in the potential ridge between two 
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trees no longer has a fixed height but rather is “breathing” upwards or 
downwards while the ball is rolling on.  This breathing is the only change 
introduced.  On closer inspection it turns out that the loss and the gain are not 
equal to each other but rather differ lawfully in their amplitude.  The reason 
lies in the fact that the oscillation-in-height between minimum and 
maximum, at the location of the col, has a non-sinusoidal shape:  the upward 
swings are larger than the downward swings.   This is owed to the two 
hyperbolic tree flanks as they approach and recede symmetrically.  They do 
come closer together by as much as they recede from the middle position, in 
the next half-phase:  however, this generates an unequal height difference in 
the two cases:  The lift-up exceeds the let-down.  In other words, the 
potential of the col rises up higher when the trees are approaching than it 
decreases when they are receding.          

This observation finishes our differential-topological game.  We have 
found a direction-of-time invariant, on average linear, increase in the kinetic 
energy of our frictionless ball as it recurrently negotiates two symmetrically 
breathing trees in an infinite alley of synchronously expanding and shrinking 
hyperbolic tree stems.  Q.e.d.  

The result is robust.  It can be generalized towards non-periodic 
recurrent breathing motions of the trees, and  towards recurrently 
approaching and receding symmetric motions of the trees in all directions, 
and towards asymmetric placements of the breathing or moving trees, 
whereby the path ceases to be straight (which fact makes no difference as far 
as the ball’s gaining energy on average is concerned).  
Implications 

We have encountered energy dissipation in a time-reversible 
deterministic setting since we implicitly invoked conservation of the total 
kinetic energy.  Note that the slow heavy tree stems dissipate while breathing 
(or equivalently moving) part of their energy of motion into that of the 
passing-by low-mass fast point particle while the overall energy is 
conserved.  This behavior occurs in both directions of time since we did not 
specify the direction of time beforehand.    

This result can be seen as representing the essence of non-equilibrium 
thermodynamics – energy dissipation derived from deterministic first 
principles under far-from-equilibrium conditions (since the trees have much 
more energy than the ball).  However, the observed energy dissipation in 
both time directions stands not alone.  This is because the result is valid only 
for “uncommitted” initial conditions.  Hence there do also exist “committed” 
initial conditions – namely, all those that have already been running for a 
short non-zero (or even arbitrarily long) stretch of time either in the one or 
the other direction of time.  In case the direction of motion is continued, the 
initial condition in question is indistinguishable from an uncommitted initial 
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condition in the direction of time in question.  But in the other direction of 
time the same initial condition reveals a radically different behavior:  it 
shows “anti-dissipation” up to the uncommitted original initial condition in 
order to from that moment on show dissipation just like any other 
uncommitted initial condition in the new direction of time. 

We now turn to an uncommitted initial condition obtained by a 
random pick.  These initial conditions illustrate (and prove) L. Boltzmann’s 
(1895) “hypothesis of molecular chaos” under deterministic conditions.  One 
sees that the hypothesis is not direction-of-time specific (as was generally 
believe up until now).  This “Boltzmann phenomenon” was encountered here 
(and hence proved in a deterministic setting for the first time).  Quantitative 
and numerical illustrations are easily possible.       

Thus the famous “time’s arrow” of statistical physics was 
successfully reproduced in both directions of time in a deterministic Sinai-
type setting.  The main difference to the original case was that two particle 
classes with differing energies were introduced.  This corresponds to a far-
from-equilibrium  initial condition.   

The result may appear trivial despite the fact that it is valid in both 
directions of time.  Note that a constantly shaken box with a frictionless ball 
in it likewise heats the latter up in its kinetic energy in both directions of 
time.  What then is the conceptual gain obtained here?  The mysterious 
difference between “uncommitted” and “committed” initial conditions (cf. H. 
Price 1997) was made palpable to the eye under deterministic conditions.  If 
this appears trivial, there exists an at least equally mysterious corollary.   
The Dual Result 

Inverting the potentials from “repulsive” towards “attractive” was not 
an option in the original hard-spheres case of 1970.  However, it is an option 
in the present case of smooth potentials.  The inversion of all potentials 
yields a “dual case” to the bidirectional energy dissipation demonstrated 
above.  The special case of a repulsive potential – of the trees being “anti-
Newtonian” – considered above for convenience – is especially natural to 
focus on here.  For potential inversion leads directly to the familiar 
Newtonian attraction.  Hence this case ought to be well-known even though 
it is not as it turns out.  The original potential mounds (trees) are now 
pointing downwards rather than upwards.  Downwards-pointing mirror-
symmetric Newtonian potential troughs (funnels) do now correspond to the 
former potential mounds (trees).   

This scenario “below the glass ceiling” represents a second explicit 
smooth Sinai ballpark.  It is even more perplexing.  It yields the opposite 
result to the previous one in a nontrivial “duality.”  Since the potentials are 
mirror-inverted below the upper-world alley now, the ball that is moving 
down there now systematically loses rather than gains in kinetic energy when 
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it is again started out from a non-selected initial condition.  For the down-
wards-pointing inverted breathing trees (funnels) now descend more deeply 
with their potential in the middle of the col during the mutually approaching 
phase than they are rising up with their potential during the mutually 
receding phase.  Thus while the geometry is mirrored, the speed effects are 
the opposite of what held true upstairs.  The fruit of this “second smooth 
Sinai paradigm” as it can be called is a causal explanation, not of energy 
dissipation in thermodynamics but of “energy anti-dissipation in 
cryodynamics.”  Cryodynamics was recently proposed as “sister discipline” 
to thermodynamics (O.E. Rossler 2011).    
Discussion 

Sinai’s geometric paradigm successfully explained equilibrium 
thermodynamics from first deterministic principles  (Y. Sinai 1970).  This 
famous geometric paradigm was extended above towards covering non-
equilibrium thermodynamics.  The trick consisted in using, (1) soft 
potentials, and (2) a periodic perturbation – the two oldest ingredients of 
Poincaréan chaos theory.  The obtained new ballpark rehabilitated 
Boltzmann’s “hypothesis of molecular chaos.”  Even more surprising, it 
possesses a natural “dual” which lets it explain also non-equilibrium 
Cryodynamics, a recently discovered dual theory to thermodynamics (O.E. 
Rossler 1011).  Results presented previously – of a qualitative (O.E. Rossler 
et al. 2003;  Rossler and Movassagh 2005), numerical (K. Sonnleitner 2010;  
R. Movassagh 2013) and analytical (R. Mocassagh 2013) kind – hence got 
confirmed and extended by a geometrico-topological proof.  A numerico-
didactic illustration of the above presented proof is herewith solicited.            

The new Sinai-derived paradigm of the “breathing alley” confirmed 
with its downward-reflected dual the existence of cryodynamics as a sister 
discipline to thermodynamics in fundamental physics.  The new joint status 
of both disciplines – one being more than 150 years old, the other new – now 
entails some general consequences:   

Firstly, the combined deterministic classical discipline needs to be 
reconciled with quantum mechanics in a new way.  This is because 
cryodynamics with its anti-entropic character is much more sensitive to 
minor perturbations than thermodynamics.  In a system that is governed by 
both thermodynamics and cryodynamics, like nature at large, the anti-
entropic character of cryodynamics, with its strong correlations to the past, 
severely constrains quantum mechanics.  The currently accepted die-tossing 
Copenhagen interpretation contains too much leeway formally so that 
Everett’s theory may represent the only choice left.      

Secondly, cryodynamics generates novel numerical problems.  The 
fact that it escaped detection in thousands of many-particle computer 
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simulations performed over decades reveals a deep shortcoming in the 
latters’ numerical accuracy.  This is a highly unexpected state of affairs.   

Thirdly, technological applications – like a proposal to improve the 
Tokamak reactor of hot nuclear fusion by the addition of a cooling 
mechanism based on even hotter electrons (O.E. Rossler et al. 2013) – can be 
mentioned.   

Fourthly, cosmology is severely constrained by cryodynamics (O.E. 
Rossler 2011). 

To conclude, a venerable paradigm in fundamental physics due to 
Yakov Sinai was taken up and extended towards covering two different mass 
classes of particles.  A deterministic geometric derivation of non-equilibrium 
thermodynamics could be offered as an implication of the slightly extended 
Sinai ballpark.  That ballpark turned out to possess a “natural dual” under 
potential inversion.  The dual enabled a deterministic geometrico-topological 
derivation of cryodynamics.  Numerical illustrations promise to become a 
bonanza.  The overarching new chaos-based discipline of “deterministic 
statistical mechanics” – with its two sub-disciplines of “deterministic 
thermodynamics” and “deterministic cryodynamics” – has predictable 
implications for quantum mechanics, numerical simulation, energy 
technology and for cosmology. 
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