Peer-reviewed

Examining Performance Determinants of Commercial Banks: Evidence from the Tanzanian Banking Sector

Kessellie Traore Mulbah Sinbad Kurbonov Bobur Nasriddinov SILC Business School, Shanghai University, China

Doi:10.19044/esj.2024.v20n13p19

Submitted: 12 April 2024 Accepted: 16 May 2024 Published: 31 May 2024 Copyright 2024 Author(s) Under Creative Commons CC-BY 4.0 OPEN ACCESS

Cite As:

Mulbah, K. T., Kurbonov, S., & Nasriddinov, B. (2024). *Examining Performance Determinants of Commercial Banks: Evidence from the Tanzanian Banking Sector*. European Scientific Journal, ESJ, 20 (13), 19. <u>https://doi.org/10.19044/esj.2024.v20n13p19</u>

Abstract

While the current body of literature offers valuable insights into the factors influencing bank financial performance, there remains a significant paucity of empirical research focusing on least developed nations. In this paper, we present new evidence of the effect of bank size, capital adequacy ratio (CAR), and net interest margin (NIM) on commercial banks' performance (return on assets (ROA)) from the perspective of Tanzania – a least-developed country. We employed the Random Effect, and the Generalized Least Squares (GLS) regression models utilizing a panel dataset spanning the period 2000 to 2022 of ten (10) Tanzanian commercial banks to examine the specific effect of the foregoing variables on commercial banks' profitability. These banks have a combined share of approximately 85 percent of the total assets (TZS 46 trillion) of the Tanzanian banking sector. We found that capital adequacy and bank size have positive significant effects on the financial performance of commercial banks in Tanzania. Whereas the random effect model shows a marginally significant positive effect on ROA, the GLS regression shows a significant negative effect, indicating that the effect of NIM could be either positive or negative depending on the context. Thus, we intimate that regulators prioritize measures aimed at promoting healthy levels of capital adequacy and encouraging the growth of larger banks while ensuring adequate oversight to mitigate potential risks associated with market dominance, and regulatory frameworks should be designed to foster

competition and efficiency in the banking sector, facilitating a conducive environment for banks of all sizes to thrive.

Keywords: Commercial banks, bank size, return on assets, net interest margin, capital adequacy ratio

Introduction

In the purview of global finance, commercial banks serve as pivotal institutions driving economic growth and stability, particularly in emerging markets. Understanding the factors that affect or to some extent determine the performance of commercial banks is crucial for policymakers, investors, and stakeholders. A robust and secure banking system is considered essential for sustainable economic development (Kapaya, 2021). Thus the financial stability of a bank holds paramount importance, not solely for its depositors but also for its shareholders, employees, and the economy as a whole.

While existing literature provides valuable insights into the determinants of bank financial performance, there remains a notable gap concerning empirical evidence from underdeveloped countries. Most studies in this domain have focused on developed economies, with limited attention given to the unique characteristics and challenges faced by banks in emerging markets. This dearth in literature is what this paper intends to fill. More particularly, the motivation behind this research stems from the imperative need to comprehensively understand the factors that underpin the financial performance of Tanzanian commercial banks with a particular emphasis on the effect of bank size, capital adequacy ratio (CAR), and net interest margin (NIM) on the return on assets (ROA) of Tanzanian commercial banks. We do this by utilizing data garnered from 10 commercial banks in Tanzania. The inclusion of net interest margin alongside traditional determinants such as bank size and capital adequacy ratio offers a comprehensive analysis that accounts for the multifaceted nature of banks' financial performance. We delineate and implement a sequential econometric methodology that firstly determines whether the variables of interest are stationary, secondly identifies the optimal model via the Hausman test, thirdly run a full sample regression of the random effect model and generalized least square regression to examine the impact of the variables of interest, and that finally ran diagnostics test to see if any of the assumptions are violated. We found that both capital adequacy ratio and bank size exhibit a positive significant effect on banks' return on assets, whereas the result of the effect of NIM was context-dependent.

The Tanzanian banking sector has witnessed massive change in recent years, characterized by increased competition, regulatory reforms, and shifts in market dynamics. Commercial banks in Tanzania have undergone significant regulatory and technological changes in the last decade. The entry of major international banks into the retail banking industry, along with regulatory requirements, financial and technological advancements, and the challenges of recent financial crises has resulted in increased competition and costs for Tanzanian banks. These reforms have had a vital effect on the financial performance of commercial banks in the sector.

As Tanzania continues on its trajectory towards economic development and financial inclusion, findings from this research will inform regulatory authorities in formulating policies aimed at enhancing the resilience and stability of commercial banks, ultimately fostering a more robust financial system in Tanzania. By understanding the drivers of financial performance, Tanzania commercial banks can optimize their strategies to mitigate risks, enhance operational efficiency, and maximize shareholder value. The subsequent sections of this paper are organized as follows: First, we present a succinct overview of the banking sector of Tanzania. Second, we delve into the existing literature related to the topic. Third, we present the description of the data and variables. Fourth, we explain the econometric model and methodology employed. Lastly, we discuss the findings and present our conclusion, policy recommendations, and the limitations of the paper.

Tanzania Banking Sector

The banking industry in Tanzania plays a pivotal role within the nation's financial sector, assuming a fundamental role in fostering economic expansion, facilitating capital investment, and fostering financial inclusivity. Supervision and regulation of this sector are entrusted to the Bank of Tanzania (BoT), serving as the nation's central banking authority. The BoT assumes responsibility for crafting and executing monetary policies, overseeing financial entities, and safeguarding the stability and integrity of the banking system. As reported by BoT, the sector comprises various types of financial institutions, including commercial banks, community banks, development finance institutions, and microfinance institutions. Commercial banks hold a predominant position within the sector, providing a wide range of banking services catering to individuals, enterprises, and governmental bodies. While domestic banks dominate the market in terms of branch network and customer base, foreign-owned banks play a significant role, particularly in international banking and corporate finance (BoT, 2022). The vast majority of these banks provide a comprehensive range of financial services, including deposit-taking, lending, trade finance, foreign exchange, treasury services, and electronic banking. Others also offer specialized services such as wealth management, investment banking, and Islamic banking. The banking sector accounts for 70 percent of the assets of the financial sector and remains well-capitalized, profitable, and with sufficient liquidity levels (BoT, 2022). The sector continued to grow in terms of deposits and assets, supported by regulatory and

supervisory measures, and a favorable macroeconomic environment. The number of institutions under the Bank's purview increased to 64, of which 44 were banks, while the remaining 20 were non-bank financial institutions (BoT, 2022).

		Ownership structure		Stock exchange listin	
Type of bank	Number	Domestic	Foreign	Listed	Not listed
Commercial banks	34	11	23	6	28
Microfinance banks	3	0	3	0	3
Community banks	5	5	0	0	5
Development finance banks	2	2	0	0	2
Total	44	18	26	6	38

Figure 1: Licensed Banks in Tanzania; Source: Bank of Tanzania

Literature Review

The exploration of factors influencing the financial performance of banks has garnered considerable attention within the realm of finance in recent decades. Existing empirical research on the topic has provided valuable insights into the impact of diverse variables, encompassing bank size, capital adequacy ratio (CAR), net interest margin (NIM), and non-performing loans (NPLs), on the return on assets (ROA). We examine current literature under the subheading as follows:

Bank Size and ROA:

Bank size is one of the vital determinants of a bank's financial performance and it can be measured in terms of the value of total assets, customer deposits, and number of employees (Akinola, 2022). Examining how the treasury single account (TSA) policy impacted the Tanzanian banking sector's performance in relation to ownership concentration, bank size, and macroeconomic variables, Mkaro et al. (2023) found that while foreign and state-owned banks were more resilient, private and domestic banks' performance deteriorated after TSA adoption. Small banks survived the negative TSA shock while the performance of the larger ones was negatively affected.

Gržeta et al. (2023) conducted an investigation into bank profitability and efficiency within the framework of Basel III regulations. They discovered a positive correlation between bank size and profitability. However, Athanasoglou et al. (2008) observed that the performance of Greek banks remained unaffected by their size. Conversely, Dietrich and Wanzenried (2014) observed that larger banks tended to be more profitable, albeit primarily in low-income countries. Moreover, Teimet et al. (2019) in Kenya and Lotto and Papavassiliou (2019) in Tanzania identified positive efficiency impacts associated with bank size. But contrastingly, Aladwan (2015) found that in Jordanian banks larger institutions were associated with decreased cost efficiency. Similarly, Mwangi (2018) in Kenya, Isayas (2022) in Ethiopia, and Yuan et al. (2022) in South Asia reported positive effects of bank size on performance. This positive relationship has been attributed to economies of scale (González et al., 2019) and market power (Yuanita, 2019). Essentially, as banks expand, their average operational costs diminish due to economies of scale, a concept elucidated by cost theory. Hence, banks with greater market power can levy higher lending interest rates at their discretion.

Asongu and Odhiambo (2019), nonetheless, discovered in their examination of the African banking sector that neither market power nor economies of scale significantly influenced the effect of bank size on its returns on assets. Grubisic et al. (2022) determined that market power had no bearing on bank profitability in Montenegro; however, they found an adverse in Serbia. These findings align with the inconclusive results of Fotova et al. (2023) regarding the impact of bank size on performance. Other existing literature examining the topic has also highlighted the drawbacks of bank size in terms of increased management and monitoring costs, which counteract the potential economic efficiency gains (Avramidis et al., 2018). But notably, in the United States, more supervisory resources are allocated to larger banks (Eisenbach et al., 2016).

Another study conducted revealed that the influence of size on banks' market-to-book value was mitigated by monitoring and delegation costs (Avramidis et al., 2018). Additionally, information asymmetry and market imperfections in underdeveloped African markets contribute to the cost inefficiency of bank size, as posited by Allen et al. (2011), which was further buttressed by the findings of Ozili and Ndah (2021), who observed that Nigeria's financial sector development augments banks' non-financial income.

Alexiou and Sofoklis (2009) examining commercial banks in Europe found mixed results regarding the relationship between bank size and return on assets. They found that larger banks exhibited economies of scale leading to higher profitability, whereas some large banks experienced diseconomies of scale due to organizational complexities and inefficiencies. They concluded that the effect of bank size on its return on assets may vary across different banking contexts. Similarly, Khediri and Khedhiri (2009) investigated the determinants of bank profitability across 22 countries and found that bank size had a positive impact on its financial performance, indicating economies of scale and scope in larger banks.

Based on the findings of existing literature on the relationship between bank size and returns on assets, we formulated hypothesis one as follows:

H1: There exists a statistically significant positive correlation between bank size and the return on assets of Tanzanian commercial banks.

Capital Adequacy Ratio and ROA:

Capital adequacy ratio (CAR) is another significant indicator of a bank's financial soundness and ability to absorb potential losses. According to Bikker and Metzemakers (2005), a higher CAR reflects a bank's capacity to withstand adverse shocks and maintain stability, which can positively impact its returns on assets. Research by Berger and DeYoung (1997) suggested that an increase in capital adequacy positively impacts the profitability of commercial banks. Elsas and Krahnen (1998) also conducted a study on German banks and found that a higher CAR positively affects ROA.

Fidanoski et al. (2018) conducted an investigation into the bankspecific determinants influencing the profitability of Croatian banks using a dynamic estimation method. Analyzing data spanning from 2007 to 2014, they identified size, loan portfolio, and capital adequacy as factors positively associated with profitability. Similarly, Ohman and Yazdanfar (2018) examined the organizational-level factors affecting the profitability of Swedish banks. Utilizing panel regression and banking data covering the period from 2005 to 2014, they discovered that revenue growth, lagged profitability, and capital adequacy were positively correlated with banking profitability. Ferrouhi (2014) observed that banks' profitability is positively affected by their size, capital adequacy, foreign direct investments, and recognition of financial pressures, while it is negatively influenced by external liabilities and unemployment rates.

Bourke (1989) reported a positive relationship between capital adequacy ratio and profitability, positing that well-capitalized banks may benefit from access to cheaper and less risky sources of funds and higherquality asset markets. In a cross-sectional and dynamic panel analysis of European banks, Goddard et al. (2004) found a positive correlation between capital adequacy and performance. Sayilgan and Yildirim (2009) suggested that capital adequacy and improvements in budget balance positively influence profitability while growing off-balance sheet activities and inflation have a negative impact. Further, Mirzaei and Mirzaei (2011) also identified liquidity, capital, and efficiency as determinants of profitability.

Given existing findings, we formulated the second hypothesis regarding the effect of capital adequacy ratio on banks' return on assets as follows:

H2: There is a positive statistically significant relationship between capital adequacy and the return on assets of Tanzanian commercial banks.

Net Interest Margin and ROA:

Net interest margin (NIM) serves as an indicator of market risk stemming from fluctuations in market conditions, which may pose potential risks to banks' financial stability. Moreover, NIM serves as a metric to evaluate a bank's managerial proficiency in generating interest income, taking into consideration its performance in loan disbursement activities, given that the operational revenue of banks heavily relies on the interest rate differentials and credit disbursed (Ferrouhi, 2004).

Khrawish (2011) conducted a study on the determinants of commercial bank profitability in Jordan. His paper encompassed an examination of numerous bank-specific metrics, including overhead costs ratio, short-term customer funding, equity, loans, loan loss provision, and other revenue-tototal assets ratio, alongside macroeconomic indicators such as GDP growth rate, inflation rate, financial sector depth, and institutional quality. His findings indicated that the profitability of foreign banks is significantly influenced by a combination of bank-specific factors, macroeconomic conditions, and additional metrics pertinent to multinational banks. Angbazo (1997) demonstrates that the net interest margins of commercial banks encapsulate both default and interest-rate risk premiums, whereas other bank categories exhibit a higher sensitivity to one of these risks rather than the other. Additionally, Delis and Kouretas (2011) provide evidence indicating that low interest rates lead to a significant increase in bank risk-taking behavior.

A study by Saona (2011) found that higher Net Interest Margin was positively associated with ROA in a sample of commercial banks in the United States. Another research by Ho and Saunders (1981) suggests that a wider NIM is associated with improved profitability, supporting the positive relationship between NIM and ROA. On the other hand, Demirgüç-Kunt and Huizinga (1999) and Zahra et al., 2017) found that the relationship between NIM and ROA could be nonlinear and context-dependent. They noted that in some cases, an increase in NIM may lead to higher ROA, while in others, it may not have a significant effect or could even be detrimental to banks' profitability.

Considering the findings of the examined literature on the relationship between net interest margin and returns on assets, we devised the third hypothesis as follows:

H3: There exists a positive statistically significant relationship between net interest margin and Tanzanian commercial banks' return on assets.

Data

The dataset utilized in this study encompasses 10 Tanzania Commercial banks from the period 2000-2022. The dataset includes both cross-sectional and time series information, allowing for the examination of individual variability and dynamic adjustments over time; the data were obtained from published financial statements and annual reports of banks spanning the years 2000 to 2022, sourced directly from the banks. Additionally, the study utilized the Bank of Tanzania annual reports covering the study period. We aggregated the data across multiple dimensions, including banks, years, and specific variables of interest. We also implemented rigorous data cleaning procedures and applied exclusion criteria to address anomalies and inconsistencies in the dataset, which resulted in a smaller number of observations than intuitively expected considering the sample period.

The descriptive statistics of the variables are presented in Table 3. The highest and lowest levels for return on asset for the sampled commercial banks are achieved at 10.87 percent and -15.1 percent, respectively. This indicates that there is a wide range between the maximum and minimum values of ROA. The skewness for ROA is -2.193, which also indicates that ROA is long left-tailed with a kurtosis of 27.16. This is a positive leptokurtic kurtosis as 27.16 is greater than 3, which further implies that there were more observations with higher values above the average of the sample. The mean value of net interest margin, capital adequacy ratio, and bank size are 6.216, 16.12, and 10.931, respectively.

	Table 1. Sampled Dalks							
No.	Banks	Code						
1.	Cooperative and Rural Development Bank	CRDB						
2.	National Bank of Commerce	NBC						
3.	Bank of Africa	BOA						
4.	Absa Bank	ABSA						
5.	Dar es salaam Commercial Bank	DASU						
6.	Ecobank Transnational Inc	ECO						
7.	Azania Bank Ltd	AZAN						
8.	Akiba Commercial Bank	AKCO						
9.	Access Bank	AC						
10.	Standard Chartered Bank	SCB						

Table 1: Sampled Banks	Table 1:	Sampled Banks
------------------------	----------	---------------

Symbols	Variables Proxy		Expected results					
	F	REGRESSAND						
ROA	Return on assets	Net Profit /Average Total Assets						
	REGRESSORS							
NIM	Net Interest Margin	Net Interest Income/Total Assets	Positive					
CAR	Capital Adequacy Ratio	Capital / Risk Weighted Assets	Positive					
BNII	Bank Non-Interest Income	Other income/Total Asset	Positive					
NPL	Non-Performing Loans	Non-Performing Loans/Gross	Negative					
		Loans						
BankSize	Log of Total	-	Positive					
	Asset							
INF	Inflation	-	Negative					
LDR	Loan Deposit Ratio	Loans/ Customer deposits	Positive					

Tuble 5. Descriptive Statistics										
Variables	Obs	Mean	Std Dev	Min	Max	Skew	Kurt			
ROA	180	2.409	2.153	-15.1	10.87	-2.193	27.169			
CAR	120	16.121	4.252	1.75	26.97	.044	3.877			
NIM	180	6.216	3.276	1.253	16.807	.548	2.554			
LDR	143	7.130	4.034	.45	22.83	1.457	5.596			
NPL	75	9.888	5.817	2.84	37.25	1.655	7.93			
BNII	180	38.253	10.688	14.41	64.11	.014	2.657			
BankSize	215	10.931	4.579	3.040	25.110	2.023	9.781			
INF	190	8.054	6.213	7	32.9	1.268	4.796			

Table 3: Descriptive Statistics

Source: Authors' computations

Econometric Model and Methodology

Measurement Model

To test the effect of capital adequacy ratio, net interest margin, and bank size on banks' financial performance - measured by return on asset – from an empirical standpoint, we employed the following multivariate model:

$$ROA_{it} = a_0 + \beta_1 CAR_{it} + B_2 NIM_{it} + B_3 BankSize_{it} + B_4 NPL_{it} + B_5 LDR_{it} + B_6 BNII_{it} + B_7 INF_{it} + \varepsilon_{it}$$
(1)

Where:

 α_0 = the intercept term ROA_{it} = Return on Assets for bank *i* in year *t* NIM_{it} = Net Interest Margin for bank *i* in year *t* LDR_{it} = Loan Deposit Ratio for bank *i* in year *t* CAR_{it} = Capital Adequacy Ratio for bank *i* in year *t* $BNII_{it}$ = Bank Non-Interest Income to total Asset for bank *i* in year *t* NPL_{it} = Non-Performing Loans for bank *i* in year *t* $Bank Size_{it}$ = Bank Size for bank *i* in year *t* INF_{it} = Inflation for bank *i* in year *t* B1- B7 = coefficients of the regressors ε_{it} = the normal error terms

Choice of variables

In this paper, we chose return on assets (ROA) as the primary indicator of banks' performance, rather than return on equity (ROE), based on several reasons substantiated by existing literature. Firstly, ROA is deemed a more encompassing measure of a bank's performance as it considers the efficiency of asset utilization in generating profits, irrespective of the capital structure.

This aspect is particularly pertinent when comparing banks with varying leverage ratios or when assessing the impact of asset quality and operational efficiency on overall performance. In contrast, ROE may be influenced by the level of leverage employed by a bank, potentially undermining its suitability for cross-bank and cross-country comparisons. Moreover, ROA is mostly used in empirical studies for its lower susceptibility to accounting manipulations and its ability to offer a more accurate reflection of a bank's genuine performance. Teimet et al. (2019), Lotto and Papavassiliou (2019), and Olalekan & Adeyinka (2013) advocate for the use of ROA in measuring bank profitability, highlighting its efficacy in demonstrating a bank's asset management efficiency in profit generation, along with its reliability unaffected by high equity multipliers. Similarly, Isayas (2022) and Berger and Bouwman (2009) ascertain ROA's superiority over ROE in assessing bank performance and predicting bank failure, attributing its strength to its consideration of the entire asset base, thereby capturing a bank's capacity to generate profits from its core business operations.

Likewise, our selection of capital adequacy ratio (CAR) over alternative metrics, specifically, common equity tier 1 (CET1) stems from the capital adequacy ratio's comprehensive nature, which encompasses all forms of capital (including equity and debt) relative to risk-weighted assets. This broader scope offers a more holistic evaluation of a bank's capital adequacy and resilience to adverse shocks, rendering it the preferred metric for assessing overall financial performance and stability. Conversely, CET1 focuses specifically on the highest quality capital (common equity), primarily serving to gauge a bank's ability to withstand financial stress and absorb losses. While CET1 provides valuable insights into a bank's core equity position, it may not fully capture the breadth of capital adequacy and risk management. This rationale is reinforced by Hewaidy and Alyousef (2018) and Batten and Vo (2019), who underscore CAR's significance as a key determinant in analyzing bank performance and risk-taking behavior. Hence, in this study, we opted for CAR as it offers a more comprehensive evaluation of capital adequacy and risk management.

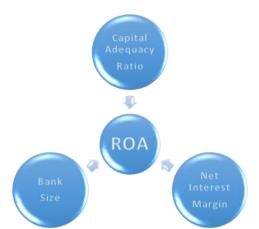


Figure 2: Schematic diagram of the variables of interest

Methodology

The study's methodology is broken down into five steps. Firstly, to ascertain the robustness of our findings, we employed a panel unit-root test to examine the stationarity of the variables across time and individual banks. This ensures the reliability of the subsequent analysis by confirming the suitability of employing panel data techniques. Secondly, the Hausman specification test was employed to ascertain the suitability of either the random effect model or the fixed effect model for the analysis. This evaluates whether the individualspecific effects are correlated with the explanatory variables, thus guiding the selection of the appropriate model. Thirdly, after determining the appropriate model specification, a full sample random effect estimation was conducted which accounts for both time-invariant heterogeneity across commercial banks and time-varying factors influencing ROA. Fourthly, given the potential presence of endogeneity issues in our model, we address this concern by employing the generalized least squares (GLS) regression technique to mitigate bias arising from endogeneity. After the model estimation, we run several diagnostic tests to assess the validity of the regression assumptions. Specifically, we conducted the heteroskedasticity, autocorrelation, and Ramsey RESET tests to detect potential violations of the underlying assumptions of the random effect and the GLS regression, such as nonconstant variance, serial correlation in the error terms, and misspecification of functional form. Addressing these issues is crucial in ensuring the reliability and robustness of our findings.

Empirical Findings & Discussions

Correlation Matrix

Table 4 presents the correlation matrix of the regressand and regressors. It can be seen that ROA has positive correlations with CAR

(0.464), NIM (0.362), and bank size (0.312), indicating that higher values of CAR, NIM, and bank size tend to be associated with higher ROA, i.e., an increase in the indicative paired explanatory variables will increase banks' return on assets. Moreover, ROA is negatively correlated with NPL, BNII, and INF, which also indicates that an increase in any of the three variables will cause a decrease in ROA.

	ROA	CAR	NIM	LDR	NPL	BNII	Bank Size	INF
ROA	1.000							
CAR	0.464	1.000						
NIM	0.362	0.183	1.000					
LDR	0.293	-0.035	0.478	1.000				
NPL	- 0.479	-0.310	-0.031	0.231	1.000			
BNII	- 0.072	-0.046	-0.260	-0.307	-0.015	1.000		
BankSize	0.312	0.291	0.261	0.140	-0.181	0.251	1.000	
INF	- 0.018	-0.161	0.313	0.274	0.143	0.034	-0.095	1.000

Table 4: Correlation Matrix

Source: Authors' computations

Unit Root Test

To avoid spurious regression and to ensure the robustness of our findings, we employed the Dickey-Fuller unit root test to determine whether the panel is stationary or exhibits a unit root. The test was conducted at one lag based on the assumption that the panel is non-stationary and has a unit root.

The test statistic for the Dickey-Fuller test is defined as:

$$\Delta y_t = \rho y_{t-1} + \alpha + \beta t + \epsilon_t \tag{2}$$

Where Δy_t is the differenced time series variable at time t; y_{t-1} is the lagged value of the time series variable at time *t*-1; ρ is the coefficient of the lagged variable, which is the parameter being tested for stationarity; α and β are parameters representing the intercept and trend, respectively; *t* is the time trend; and ϵ_t is the error term.

Table 6 presents the result of the unit root test. The test result indicates that BankSize, NIM, LDR, NPL, and INF are statistically significant and stationary at I (0). Return on assets (ROA), capital adequacy ratio (CAR), and bank net interest income (BNII) are non-stationary at the original level but became stationary after first differencing. For ROA, CAR, BNII, and Bank

Size, the value of the chi-square statistic presented in parentheses indicates the presence of heteroskedasticity in the data.

Table 0. Onit Root Test									
Variables	Chi ² statistics	P-value	Level	1 st difference					
ROA	28.9663 (89.9056)	0.0884 $(0.0000)^{***}$	Non-stationary	Stationary					
CAR	25.6002 (103.1040)	0.1093 (0.0000)	Non-stationary	Stationary					
NIM	42.7064	0.0022 ***	Stationary	-					
LDR	34.1512	0.0121**	Stationary	-					
NPL	28.6103	0.0118 **	Stationary	-					
BNII	24.3296 (95.8396)	0.2283 (0.0000)	Non-stationary	Stationary					
BankSize	40.4502 (110.1746)	0.0044***	Stationary	-					
INF	45.8292	0.0009 ***	Stationary	-					

Table 6: Unit Root Test

*Note: ***, **, * represent 1%, 5%, 10% significance levels respectively. Source: Authors' computations*

Random Effect Model

The random effect model assumed individual-specific effects to be random variables with mean zero and constant variance. The model allows for the inclusion of entity-specific random effects, capturing unobserved heterogeneity among entities. The random effect model is represented as:

$$y_{it} = \alpha + \lambda_i + \beta_1 x_{1it} + \beta_2 x_{2it} + \dots + \beta_k x_{kit} + \epsilon_{it}$$
(3)

Where: α is the intercept; X_{it} is a vector of explanatory variables; λ_i represents the individual-specific random effect for entity *i*; x_{1it} , x_{2it} , ..., x_{kit} are the explanatory variables for entity *i* at time; $\beta_1, \beta_2, ..., \beta_k$ are vectors of coefficients; ε_{it} is the error term.

Fixed Effects Model

The entity-specific fixed effects are included in the fixed-effect regression equation to capture time-invariant heterogeneity among entities. The model estimates separate intercepts for each entity, allowing for the control of unobserved individual-specific effects. Mathematically, the fixed effect model can be represented as:

$$y_{it} = \alpha_i + \beta_1 x_{1it} + \beta_2 x_{2it} + \dots + \beta_k x_{kit} + u_{it}$$
(4)

Where y_{it} is the dependent variable for entity *i* at time *t*; α_i represents the entity-specific fixed effect. x_{1it} , x_{2it} ,..., x_{kit} are the explanatory variables for entity *i* at time *t*. β_1 , β_2 ,..., β_k are the coefficients associated with the explanatory variables and u_{it} is the error term.

Variables	Ra	andom Effect		Fixed Effect
dROA	Coef	P-value	Coef	P-value
dCAR	0.146	0.041 **	0.177	0.012 **
NIM	0.115	0.069*	-0.354	0.219
LDR	0.010	0.960	0.114	0.479
NPL	-0.204	0.188	-0.258	0.000 ***
dBNII	0.045	0.622	0.044	0.556
BankSize	0.202	0.002***	0.051	0.050
INF	0.022	0.866	-0.054	0.992
Constant	2.842	0.002	6.972	0.001

Table 7: Random and Fixed Effect Regression

*Note: ***, **, * represents 1%, 5%, 10% significance level respectively. Source: Authors' computations*

Hausman Specification Test

To determine which model is appropriate for the study, we employed the Hausman specification test based on the regression estimates in Table 7. The test results are shown in Table 8. The test statistic adheres to a Chi-square distribution, with the degrees of freedom corresponding to the number of coefficients being estimated (Hausman, 1978). Judging from the p-value, it is observed that the test statistic does not achieve statistical significance at the 5% level. Therefore, the null hypothesis, positing the consistency of the random effect, cannot be refuted, implying a preference for the random effects model. Hence the random effect model is chosen for this study.

 Table 8: Hausman (1978) Specification Test

Test Statistics				
Chi-square test value.	0.49			
P-value	0.9995			

Source: Authors' computations

Random Effect Model Full Sample Estimation

Table 9 reports the result of the full sample random effect model estimation. The result indicates that capital adequacy ratio (dCAR) exhibits a positive effect on banks' return on assets (ROA), and this effect is statistically significant at the 5% level. This suggests that maintaining adequate capital levels is significant for banks in Tanzania to ensure the safety of depositors' funds and reduce the risk of bankruptcy while generating higher profits. These findings are consistent with prior studies by Elsas & Krahnen (1998), Bikker & Metzemakers (2005), and Berger & DeYoung (1997), all of whom showed a positive statistically significant association between capital adequacy ratio and bank financial performance.

The coefficient estimate for NIM is positive (0.115), and statistically robust at the 10% level (p-value=0.069). This suggests that an increase in net interest margin tends to be associated with a positive change in return on Assets. An increase of 1% in NIM corresponds to a 0.115% increase in ROA. A higher net interest margin indicates greater profitability for banks, however, it may also result in riskier lending practices and potential loan loss provisions. This finding aligns with Saona (2011) and Ho and Saunders (1981), who found a positive significant relationship between NIM and ROA. In the context of Tanzania, this result is also in line with the findings of Demirgüç-Kunt and Huizinga (1999).

Bank Size has a positive and statistically significant coefficient estimate (0.202, p-value=0.002). This indicates that larger Commercial banks tend to perform better than smaller ones, as they may benefit from economies of scale, enhanced market power, and greater diversification, which in return, contribute to an increase in financial performance. This finding corroborates prior research by Khediri & Khedhiri (2009) who examined the determinants of bank profitability across 22 countries and found that the size of a bank has a positive significant effect on its profitability. However, this result conflicts with the findings of Alexiou & Sofoklis (2009) who also investigated the relationship between bank size and ROA of commercial banks in Europe and found that while larger banks exhibited economies of scale leading to higher profitability, some large banks experienced diseconomies of scale as a result of their organizational complexities and inefficiencies.

Table 9 shows that non-performing loans (NPL) is negative and not statistically significant (p-value=0.188). This is consistent with the fact that potential investors want to invest in businesses that have strong financial records. As such, a higher level of non-performing loans recorded by a bank reduces its attractiveness to prospective investors. Other variables such as Loan-to-Deposit Ratio (LDR), Inflation (INF), and Bank Net Interest Income (dBNII) do not exhibit statistically significant effects on the return on assets of Tanzania commercial banks, as indicated by their non-significant coefficient estimates. It can also be seen that the constant term is not statistically significant (p-value=0.762), suggesting that it does not contribute significantly to explaining the variation in ROA.

				-	-		
dROA	Coef.	St.Err.	t-	p-	[95%	Interval]	Sig
			value	value	Conf		
NIM	0.115	0.350	2.72	0.069	1.093	0.435	*
NPL	-0.204	0.153	-1.32	0.188	-0.502	0.099	
LDR	0.010	0.204	0.05	0.960	-0.389	0.410	
dCAR	0.146	1.193	4.76	0.041	3.232	0.525	**
INF	0.022	0.165	0.12	0.703	-0.904	0.343	
dBNII	0.045	0.233	-0.28	0.622	0.921	0.391	
BankSize	0.202	0.223	6.24	0.002	1.385	0.490	***
Constant	3.180	3.895	1.30	0.762	5.814	6.454	
Mean depende	ent var	2.232	SD depe	ndent var		2.	781
Overall r-squa	red	0.210	Number	Number of obs		82	2.000
Chi-square		8.491	Prob > chi2				091
R-squared wit	hin	0.229	R-square	ed between		0.	060
*** n<0.01	** n<0.05	*					

Table 9: Random Effect Full Sample Panel Regression

*** p<0.01, ** p<0.05, *

p<0.1

Source:

Authors' computations

Endogeneity Issue

The random effect model assumed that the error terms have constant variance and are uncorrelated. If these assumptions are violated, i.e., if heteroscedasticity and autocorrelation are present, this can potentially result in spurious and biased parameter estimates. To avoid this, we employed the generalized least squares (GLS) regression to account for the correlated errors and unequal variances. The GLS approach allows for the specification of a variance-covariance matrix for the errors, which account for the heteroscedasticity and autocorrelation present in the data.

The GLS estimator is given by:

$$Y = X\beta + \varepsilon \tag{5}$$

$$\hat{\beta}_{GLS} = (X'V^{-1}X)^{-1}X'V^{-1}y \tag{6}$$

Here, V represents the variance-covariance matrix of the errors, ε , and V^{-1} denotes the inverse of the variance-covariance matrix.

The GLS regression estimates are presented in Table 10. In both regressions, the coefficient estimates for the variables are similar in magnitude. In Table 9 (random effects regression), the coefficient estimate for dCAR is 0.146 with a p-value of 0.048, suggesting a positive statistically significant relationship with return on assets at the 5% level of significance. Similarly, in Table 10 (GLS regression), the coefficient estimate for dCAR remains 0.146, with a p-value of 0.056, statistically significant at the 5% level. The consistency in the significant coefficient estimate across both regressions

suggests a robust and significant positive relationship between capital adequacy and returns on assets. This implies that an increase in capital adequacy ratio tends to result in an increase in ROA for Tanzanian commercial banks.

In the random effects regression, bank size has a coefficient estimate of 0.202 with a p-value of 0.002, which indicates a positive and statistically significant relationship with ROA at the 1% level. Similarly, in Table 10 (GLS regression), Bank Size has a coefficient estimate of 0.053 with a p-value of 0.014, suggesting a positive and statistically significant relationship with ROA at the 1% level of significance. It can be seen that the significance level of the bank size effect on banks' return on assets does not differ between the two regressions which implies that the interpretation of the results remains largely consistent between the two regressions, thus larger commercial banks are likely to have higher returns on assets.

The coefficient for NIM in Table 9 is positive (0.115), and statistically significant at the 10% level (p-value=0.069). In the GLS regression, NIM is negative (-0.251) and statistically significant at the 5% significance level (pvalue=0.046). While the random effects regression suggests a positive but insignificant relationship with ROA, the GLS regression indicates a significant negative relationship. This disparity is in line with the research of Demirgüç-Kunt and Huizinga (1999), who discovered that the relationship between NIM and ROA depends on the context and could potentially be either positive or negative. This negative coefficient can be attributed to factors such as the interest rate environment, loan quality, and the dynamics of the market. For instance, in an environment of declining interest rates, banks may experience compression in their net interest margins. As interest rates decrease, the spread between the interest earned on assets (loans and investments) and the interest paid on liabilities (deposits and borrowings) may narrow, leading to a lower NIM. This compression, however, may not necessarily correspond to a proportional increase in the return on assets due to other factors such as increased competition, credit risk, or operating expenses. Similarly, a recessionary environment may lead to higher credit losses and reduced loan demand, affecting banks' profitability. Thus NIM may, in certain circumstances, result in a greater ROA; yet, in other circumstances, it could not have much of an impact or exhibit a negative impact on banks' financial performance.

	14510 101	Generalize	a Deast St	1 auros (OLD) 1005105510		
dROA	Coef.	St.Err.	t-	p-	[95%	Interval]	Sig
			value	value	Conf		
NIM	-0.251	0.358	5.72	0.046	1.327	0.445	**
NPL	-0.202	0.153	-1.32	0.188	-0.502	0.099	
LDR	0.568	0.338	1.68	0.092	0.094	1.230	*
dCAR	0.146	0.193	4.76	0.054	1.232	0.525	**
INF	0.020	0.165	0.12	0.905	0.304	0.343	
dBNII	-0.065	0.233	-0.28	0.779	-0.521	0.391	
BankSize	0.053	0.223	6.24	0.014	1.385	0.490	***
Constant	-1.180	3.895	-0.30	0.762	-8.814	6.454	
Mean depende	ent var	4.032	SD depe	endent var		4.28	1
Overall r-squa	ared	0.210	Number	of obs	82.000)
Chi-square		8.491	Prob > c	hi2	0.291		1
R-squared wit	thin	0.229	R-square	ed between		0.060)
*** .0.01	** .0.05	*					

Table 10: Generalized Least Squares (GLS) Regression

*** p<0.01, ** p<0.05, *

Author's

p<0.1

Source: computations

computation

Granger causality test

We employed the Dumitrescu and Hurlin (2012) Granger noncausality test to examine the causality effects of our explanatory variables accounting for both contemporaneous and lagged effects. Judging by the pvalues of the test results, we reject the null hypothesis that capital adequacy ratio, bank size, and net interest margin do not Granger-cause return on assets (financial performance) in favor of the alternative hypothesis, as the Z-bar statistics are less than the 5% significance level. Hence, we conclude that there is strong evidence to suggest that capital adequacy ratio, bank size, and net interest margin Granger-cause banks' return on assets for at least one panel (id).

Table 11: dCAR and dROA Causality Test

Lag order: 1 W-bar = 3.2862 Z-bar = 11.4310 (p-value = 0.0000) Z-bar tilde = 7.9670 (p-value = 0.0000)

H0: dCAR does not Granger-cause dROA.

H1: dCAR does Granger-cause dROA for at least one panel (id).

Table 12: BankSize and dROA Causality Test

Lag order: 1 W-bar = 2.1627 Z-bar = 5.8134 (p-value = 0.0000) Z-bar tilde = 3.7438 (p-value = 0.0002)

H0: BankSize does not Granger-cause dROA. H1: BankSize does Granger-cause dROA for at least one panel (id).

Table 13: NIM and dROA Causality Test

Lag order: 1 W-bar = 1.4065 Z-bar = 2.0327 (p-value = 0.0421) Z-bar tilde = 0.9016 (p-value = 0.3673)

H0: NIM does not Granger-cause dROA.

H1: NIM does Granger-cause dROA for at least one panel (id).

Heteroskedasticity Test

The parameter estimates of the GLS regression do not differ substantially from the estimation in the random effect model, thus the null hypothesis of the presence of homoskedasticity cannot be rejected (p-value = 0.291 > 0.05). Hence, the error variances and the regressors are serially correlated. In correction of this, we employed the Breusch-Pagan heteroskedasticity test to make independent the explanatory variables and the error variances. The test statistic is distributed n $\chi 2$ with k degrees of freedom equal to the number of regressors in the model. The test results are presented in Table 14. With p-value = 0.0005 < 0.05, the null hypothesis of the presence of homoskedasticity is rejected. Thus, it is ascertained that the error variances and explanatory variables in the panel are serially uncorrelated and independent.

				•			
dROA	Coef.	St.Err.	t-	p-	[95%	Interval]	Sig
			value	value	Conf	_	•
NIM	-	0.075	-0.36	0.719	0.175	0.121	
	0.027						
NPL	-	0.057	-0.24	0.808	-0.126	0.098	
	0.014						
LDR	0.120	0.113	1.06	0.288	0.101	0.342	
dCAR	0.054	0.095	0.57	0.568	0.032	0.241	**
INF	-	0.049	-0.83	0.407	-0.136	0.055	
	0.041						
dBNII	-	0.021	-1.06	0.291	-0.065	0.019	
	0.023						
BankSize	0.085	0.088	0.96	0.034	0.087	0.257	**
Constant	-	1.204	-0.89	0.376	-3.426	1.294	
	1.066						
Mean		-0.032	SD dependent var		4.281		
dependent var							
Number of obs		82.000	Chi-square		26.098		
Prob > chi2		0.0005					

*Note: ***, **, * represents 1%, 5%, 10% significance level respectively. Source: Authors' computations*

Table 15: Autocontention Test							
dROA	Coef.	St.Err.	t-	p-	[95%	Interval]	Sig
			value	value	Conf		-
NIM	-	0.169	-1.13	0.058	-0.521	0.140	*
	0.191						
NPL	0.064	0.079	0.81	0.419	-0.091	0.218	
LDR	0.435	0.177	2.46	0.014	0.088	0.782	**
dCAR	0.389	0.112	3.48	0.000	0.170	0.609	***
INF	-	0.089	-0.53	0.597	-0.221	0.127	
	0.047						
dBNII	0.122	0.176	0.69	0.491	-0.224	0.467	
BankSize	0.110	0.108	1.02	0.006	1.101	0.322	**
Constant	-	1.860	-1.43	0.152	-6.312	0.978	
	2.667						
Mean dependent		4.032	SD dep	endent var		4.281	
var							
Overall r-squared		0.123	Number	of obs		82.000	
Chi-square		27.745	Prob > chi2			0.001	
R-squared within		0.130	R-squar	red		0.572	
*			betweer	1			
NY destade stade of		10/ 50/ 1					

Table 15: Autocorrelation Test

*Note: ***, **, * represents 1%, 5%, 10% significance level respectively. Source: Authors' computations.*

Autocorrelation Test

Table 15 presents the result of the test of the presence of serial correlation within the residuals of the dataset. The chi-square statistic for the autocorrelation test is 27.745, with a p-value of 0.001. This result signifies that the null hypothesis positing the absence of autocorrelation, is rejected at the 1% conventional significance level. The presence of autocorrelation suggests that the error terms in the regression model are correlated with each other, which violates the classical linear regression assumption of no autocorrelation. This autocorrelation is largely ascribed to the fact that the rules and regulations are similar for commercial banks in Tanzania.

Ramsey RESET Test

We employed the Ramsey RESET specification test to test for potential omitted variable biases in the model. The results are presented in Table 16. The null hypothesis that the model is correctly specified and all relevant nonlinearities and interactions are captured cannot be rejected, as evidenced by a p-value of 0.0632, which is greater than the conventional significance level of 0.05. This indicates that there is no evidence of specification error in the model, i.e., the functional form of the model appears to be correctly specified, and there are no significant omitted nonlinearities or interactions among the variables included in the model.

Test statistics		
F (3, 71)	1.93	
P-value	0.0632	
No. of observations	82	

 Table 16: The Ramsey RESET Test

Source: Authors' computations

Tuble 177 Builling of Diagnostic Test						
Test	Test statistics	P-value				
A: Endogeneity	8.491	0.291				
B: Heteroskedasticity	25.616	0.0005 ***				
C: Autocorrelation	112.439	0.001 ***				
D: Ramsey RESET	1.93	0.0632 *				

Table 17: Summary of Diagnostic Test

A: GLS is used to test for endogeneity in the regressors and error terms in the panel B: Breusch-Pagan test is to correct endogeneity in the residuals of the model.

C: *FGLS* is used to test for residual autocorrelation.

D: Ramsey Reset is used to test for omitted variables

Conclusions

The effect of the determinants of bank financial performance has been the subject of extensive research in the field of finance in recent decades. A number of studies have explored the relationship between these determinants and their impact on the financial performance of commercial banks in the context of advanced countries. Through empirical investigation into Tanzania's – a least developed country – banking sector, this study sought to examine the effect of bank size, capital adequacy ratio (CAR), and net interest margin (NIM) on commercial banks' return on assets (ROA). Using a panel data set of 10 Tanzanian commercial banks, we employed the random effect model and generalized least squares regression–result presented in Tables 9 and 10–to examine the effect of the explanatory variables on the regressand.

Effect of Explanatory Variables

Bank Size: The random effect and GLS regressions consistently reveal a statistically significant positive relationship between bank size and return on assets. This result underscores the importance of size and scale in driving profitability within the banking industry. It further indicates that larger banks are better positioned to leverage their resources, capabilities, and market presence to generate higher returns on assets compared to smaller banks. This finding supports the first hypothesis *H1* of the study which posits that there is a positive significant relationship between the size of a bank and its ROA.

Capital Adequacy Ratio (CAR): The results from the random effect and the GLS regressions demonstrate a positive significant relationship between capital adequacy and return on assets, albeit at different levels of significance. This result substantiates the second hypothesis *H2* which asserted that there exists a positive significant relationship between CAR and ROA. This result aligns with the fact that capital adequacy ratios serve to mitigate the risk of bank insolvency, thereby ensuring the integrity and quality of the soundness and reliability of a country's financial sector. Consequently, a bank with a high capital adequacy ratio is generally perceived as secure and competent in fulfilling its financial commitments. Hence, the higher the bank's capital adequacy level, the more secure depositors' funds are. Further, the result shows that improvements in capital adequacy positively impact banks' profitability, as they are better equipped to absorb losses and manage risks.

Net Interest Margin (NIM): The random effect and GLS regressions show an inconsistent result of the effect of net interest margin on return on assets. While the random effect identifies a marginally significant positive relationship between NIM and banks' return on assets, the GLS regression shows a significant negative relationship. This inconsistency supports the findings of Demirgüç-Kunt and Huizinga (1999) who saw that the relationship between NIM is context-dependent; i.e., the relationship could be either positive or negative considering the context. In some cases, an increase in NIM may lead to higher ROA, while in others, it may not have a significant effect or could even be detrimental to profitability.

Implications & Policy Recommendations:

The findings underscore the importance of bank size and capital adequacy in driving commercial banks' financial performance in Tanzania. Policymakers and banking regulators should recognize the role of these factors in fostering a stable and resilient banking sector. While net interest margin remains a crucial determinant of banks' profitability, its precise impact warrants further exploration. Policymakers should prioritize measures aimed at promoting healthy levels of capital and encouraging the growth of larger banks while ensuring adequate oversight to mitigate potential risks associated with market dominance. Moreover, guidance and support should be provided to banks in implementing robust risk management frameworks, including credit risk, market risk, and operational risk management. Furthermore, regulatory frameworks should be designed to also encourage the entry of new banks and financial institutions to promote competition and innovation in the banking sector to foster competition and efficiency, thus facilitating a conducive environment for banks of all sizes to thrive and contribute to economic growth.

Limitations and Future Research:

The study is constrained by the limited scope of data which may not fully capture the dynamics of the entire commercial banking sector of Tanzania. Future research could benefit from a broader sample size encompassing a more comprehensive representation of banks in Tanzania. Additionally, the study's focus on traditional financial metrics may overlook other factors influencing banks' profitability, such as technological innovation, customer segmentation strategies, and regulatory changes. Future studies could explore these aspects to provide a more holistic understanding of the determinants of banks' profitability.

Funding: The authors did not obtain any funding for this research.

Conflicts of Interests: The authors reported no conflict of interest.

Data availability: All of the data are included in the content of the paper.

References:

1. Akinola, A. (2022). The Nexus Between Bank Size and Financial Performance: Does Internal Control Adequacy Matter? *Journal of*

Accounting and Taxation, 14(1), 13–20. https://doi.org/10.5897/jat2021.0501

- 2. Aladwan, M. (2015). The Impact of Bank Size on Profitability: An Empirical Study on Listed Jordanian Commercial Banks. *European Scientific Journal*, ESJ, 11(34),
- 3. Alexiou, C., & Sofoklis V. (2009). Determinants of Bank Profitability: Evidence from the Greek Banking Sector. *Journal of Economic Annals*, 54, 93–118.
- 4. Allen, F., Carletti, E., & Marquez, R. (2011). Credit market Competition and Capital Regulation. *Review of Financial Studies*, 24(4), 983–1018. https://doi.org/10. 1093/rfs/hhp089
- 5. Angbazo, L. (1997). Commercial Bank Net Interest Margins, Default Risk, Interest-rate risk, and Off-balance Sheet Banking. *Journal of Banking & Finance*, 21(1), 55-87.
- 6. Asongu, S., & Odhiambo, N. (2019). Size, Efficiency, Market Power, and Economies of Scale in the African Banking Sector. *Financial Innovation*, 5(1). https://doi.org/10.1186/s40854-019-0120-x
- Athanasoglou, P., Brissimis, S. N., & Delis, M. D. (2008). Bank-Specific, Industry-Specific, and Macroeconomic Determinants of Bank Profitability. *Journal of International Financial Markets, Institutions and Money*, 18(2), 121-136. https://doi.org/10.1016/j.intfin.2007.04.003
- 8. Avramidis, P., Cabolis, C., & Serfes, K. (2018). Bank Size and Market Value: The Role of Direct Monitoring and Delegation Costs. *Journal of Banking and Finance*, 93 (C), 127–138.
- 9. Bank of Tanzania, 2023, Annual Report, https://www.bot.go.tz/Publications/Regular/Annual%20Report/en/2 023123114565911.pdf
- Batten, J., & Vo, X. V. (2019). Determinants of Bank Profitability— Evidence from Vietnam. *Emerging Markets Finance and Trade*, 55(6), 1417–1428. https://doi.org/10.1080/1540496X.2018.1524326
- Berger, A.N., & Bouwman, C.H.S. (2009) Bank Liquidity Creation. *Review of Financial Studies*, 22, 3779 3837. https://doi.org/10.1093/rfs/hhn104
- Berger, A.N., & DeYoung, R. (1997). Problem Loans and Cost Efficiency in Commercial Banks. *Journal of Banking & Finance*, 21, 849-870 https://doi.org/10.1016/S0378-4266(97)00003-4
- 13. Bikker, J.A. & Metzemakers, P.A.J. (2005). Bank Provisioning Behavior and Procyclicality. *Journal of International Financial Markets, Institutions and Money*, Elsevier, 15(2), 141-157. https://doi.org/10.1016/j.intfin.2004.03.004.

- 14. Bourke, P. (1989). Concentration and Other Determinants of Bank Profitability in Europe, North America and Australia. *Journal of Banking and Finance*, 13, 65-79.
- 15. Delis, M.D., & Kouretas, G.P. (2011). Interest rates and Bank Risktaking. *Journal of Banking & Finance*, 35, 840-855. https://doi.org/10.1016/j.jbankfin.2010.09.032
- Demirguc-Kunt, A., & Huizinga, H. (1999). Determinants of Commercial Bank Interest Margins and Profitability: Some International Evidence, *The World Bank Economic Review*, 13(2), 379-40
- 17. Dietrich, A., & Wanzenried, G. (2014). The Determinants of Commercial Banking Profitability in Low-, Middle-, and High-income Countries. *The Quarterly Review of Economics and Finance*, 54(3), 337-354.
- Dumitrescu, E.I., & Hurlin, C. (2012). Testing for Granger Non-Causality in Heterogeneous Panels. *Economic Modelling*, 29, 1450-1460. https://doi.org/10.1016/j.econmod.2012.02.014
- Elsas, R., & Krahnen, J.P. (1998). Is Relationship Lending Special? Evidence from Credit-file Data in Germany, *Journal of Banking & Finance*, 22(10), 1283-1316, https://doi.org/10.1016/S0378-4266(98)00063-6.
- 20. Eisenbach, T., Lucca, D., & Townsend, R. (2016). The Economics of Bank Supervision. *NBER Working Paper Series*.
- 21. Ferrouhi, E. M. (2014). Bank Liquidity and Financial Performance: Evidence from Moroccan Banking Industry. Business: Theory and Practice, 15(4), 351.
- Fidanoski, F., Choudhry, M., Davidović, M., & Sergi, B.S. (2018). What Does Affect Profitability of Banks in Croatia? *Competitiveness Review*, Vol. 28 No. 4, pp. 338-367. https://doi.org/10.1108/CR-09-2016-0058
- 23. Fotova, K., Kecek, D., & Lozić, J. (2023). Does Ownership Structure Affect Bank Performance in the COVID-19 Pandemic Period? Evidence from Croatia. *Yugoslav Journal of Operations Research*, 33(2), 277–292. https://doi.org/10.2298/YJOR220615018F
- 24. Goddard, J., Molyneux, P., & S. Wilson, J. O. (2004). The Profitability of European Banks: A Cross-sectional and Dynamic Panel Analysis. *The Manchester School*, 72(3), 363-381.
- 25. González, L. O., Razia, A., Bua, M. V., & Sestayo, R. L. (2019). Market structure, performance, and efficiency: Evidence from the MENA Banking Sector. *International Review of Economics & Finance*. https:// doi.org/10.1016/j.iref.2019.05.013

- 26. Grubisic, Z., Kamenkovic, S., & Kalicanin, T. (2022). Market Power and Bank Profitability: Evidence from Montenegro and Serbia. *Journal of Central Banking Theory and Practice*, 11(1), 5–22. https://doi.org/10. 2478/jcbtp-2022-0001
- 27. Gržeta, I., Žiković, S., & Tomas Žiković, I. (2023). Size Matters: Analyzing Bank Profitability and Efficiency Under the Basel III Framework. *Financial Innovation*, 9(1), 43. https://doi.org/10.1186/s40854-022-00412-y
- 28. Hausman, J.A. (1978). Specification Tests in Econometrics, *Econometrica*, Econometric Society, 46(6), 1251-1271, https://doi.org/10.2307/1913827
- 29. Hewaidy, A. M., & Alyousef, H. Y. (2018). Bank-specific performance indicators, macroeconomic factors, and capital adequacy ratio of deposit money banks in Kuwait. *Journal of Business and Management*, 20(1), 1-16.
- 30. Isayas, Y. N. (2022). Determinants of Banks' Profitability: Empirical evidence from Banks in Ethiopia. *Cogent Economics & Finance*, 10(1). https://doi.org/10.1080/23322039.2022.2031433
- 31. Kapaya, S. M. (2021). A review of the impact of reforms on financial viability and sustainability of Tanzania's rural microfinance institutions. *African Economic Journal*, 8(6), 47-61.
- 32. Khediri, K.B., & Khedhiri, H.B. (2009). Determinants of Islamic Bank Profitability in the MENA Region. *International Journal of Monetary Economics and Finance*, Inderscience Enterprises Ltd, 2(3), 409-426. 10.1504/IJMEF.2009.029072
- 33. Khrawish, H. A. (2011). Determinants of Commercial Banks Performance: Evidence from Jordan. *International Research Journal of Finance and Economics*, 81, 148-159.
- 34. Lotto, J., & Papavassiliou, V. (2019). Evaluation of factors influencing bank operating efficiency in the Tanzanian banking sector. *Cogent Economics & Finance*, 7(1), 1664192. https://doi.org/10.1080/ 23322039.2019.1664192
- 35. Mirzaei, A., & Moore, T. (2014). What Are the Driving Forces of Bank Competition Across Different Income Groups of Countries? *Journal of International Financial Markets, Institutions and Money*, 32(C), 38-71.
- 36. Mkaro, G. H., Lau, L. S., & Choong, C. K. (2023). The Determinants of Banking Sector Performance in Tanzania: A Pre-Post Treasury Single Account Analysis. *Cogent Economics & Finance*, 11(2). https://doi.org/10.1080/23322039.2023.2282812

- Mwangi, M. (2018). The Effect of Size on Financial Performance of Commercial Banks in Kenya. *European Scientific Journal*, ESJ, 14(7), 373. https://doi.org/10. 19044/esj.2018.v14n7p3733
- Öhman, P., & Yazdanfar, D. (2018). Organizational-level profitability determinants in commercial banks: Swedish evidence. *Journal of Economics and Statistics*, 7(2), 113-130.
- 39. Olalekan, A., & Adeyinka, S. (2013). Capital Adequacy And Banks' Profitability Of Deposit Taking: An Empirical From Nigeria. *Far East Journal of Psychology and Business*, 13(4), 32-41.
- 40. Ozili, P. K., & Ndah, H. (2021). Impact of Financial Development on Bank Profitability. *Journal of Economic and Administrative Sciences*. https://doi.org/10.1108/ jeas-07-2021-0140
- 41. Saona, P. H. (2011). Determinants of the Profitability of the US Banking Industry. *International Journal of Business and Social Science*, 2(22), 255 269
- 42. Sayilgan, G., & Yildirim, O. (2009). Determinants of Profitability in Turkish Banking Sector: 2002-2007. *International Research Journal of Finance and Economics*, 28, 207-214.
- 43. Teimet, R., Lishenga J., Iraya, M., & Duncan, E. (2019). The Effect of Bank Size on Profitability of Commercial Banks in Kenya. *International Journal of Economics, Commerce and Management*, United Kingdom, 202–216.