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Abstract 

Hydrological models are developed to simulate river flows over a 

watershed for many practical applications in the field of water resource 

management. However, the rainfall-runoff models mostly used in the Mono 

river basin struggle to better simulate high river flows, especially after the 

installation of the Nangbéto dam. This paper presents a modeling approach 

based on Artificial Neural Networks (ANN) under different input 

meteorological parameters in the Mono River basin to better take into 

account the non-linearity of the relationship between rainfall and runoff. To 

this end, precipitation, potential evapotranspiration, and previously observed 

flow have been used for the daily flow simulation. The Levenberg-
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Marquardt algorithm is used to train the ANN rainfall-runoff models over the 

other optimization training algorithms mostly implemented in the study area. 

The analysis of the rainfall-runoff variability allowed us to show the strong 

correlation between rainfall and runoff and the impact of the Nangbéto dam 

on the flows at Athiémé. The results obtained after the training, validation, 

and testing of the ANN models are very good (e.g., the coefficient of 

correlation varies between 0.93 and 0.99). The most efficient model has been 

identified and implemented in the Mono river basin at Nangbéto. The 

satisfactory results obtained show that ANN models can be considered good 

alternatives for traditional rainfall-runoff modeling approaches. 

 
Keywords: Mono river basin, variability, modeling, artificial neural 

networks, Levenberg-Marquardt algorithm, non-linearity 

 

Introduction 

Rainfall is generally the greatest contribution to the water balance of 

a river basin. The transformation of rainfall into flow is a phenomenon of 

great importance which, for several years, has been the subject of numerous 

studies. Indeed, the rainfall-runoff relationship is one of the most complex 

hydrologic phenomena to comprehend due to the tremendous spatial and 

temporal variability of the river basin characteristics and precipitation 

patterns, as well as the number of variables involved in modeling of physical 

processes (Joshi and Patel, 2011). 

Several studies used artificial neural networks (ANN) for modelling 

complex hydrological processes, such as rainfall-runoff (Hsu and Gupta, 

1995; Lorrai and Sechi, 1995; Minns and Hall, 1996; Dawson and Wilby, 

1998; Tokar and Johnson, 1999; Rajurkar et al., 2002; Wilby et al., 2003; 

Giustolisi and Laucelli, 2005; Jain and Srinivasulu, 2006). Researches also 

showed that ANN are one of the most promising tools in hydrology (ASCE 

Task Committee, 2000a; 2000b; Maier and  Dandy, 2000; Dawson and 

Wilby, 2001). ANN can map the underlying relationship between input and 

output data without a prior understanding of the process under investigation 

(Kalteh, 2008). However, according to Kalteh (2008), ANN have been 

mostly criticized for their black-box nature due to the fact that the primary 

application of an ANN is the nonlinear modeling of input-output 

observations in order to obtain accurate modeling of the system’s response. 

Nevertheless, several authors such as (Chergui, 2019; Lek et al., 1996; 

Kharroubi et al., 2016; Yao et al., 2014) showed that these models, inspired 

by the functioning of biological neurons, are very efficient for simulating and 

predicting river flows in catchment areas. Zohou et al. (2023) used two ANN 

models such as the Long Short-Term Memory (LSTM) and Recurrent Gate 

Networks (GRU) in the Oueme River basin at Savè outlet in Bénin. They 
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found a strong similarity between the observed and simulated flows. Their 

results demonstrate the effectiveness of artificial intelligence-based models 

in hydrological modeling. Mohseni and Muskula (2023) examined the 

rainfall-runoff based model development using ANN models in the Yerli 

sub-catchment of the Upper Tapi basin in India. These authors used the 

Levenberg-Marquardt, Bayesian Regularization and Conjugate Gradient 

Scaled algorithms to train the ANN rainfall-runoff models. Their results 

show that Levenberg-Marquardt creates the most accurate model. 

In the Mono River basin, the non-linearity of the rainfall-runoff 

relationship accentuated by the presence of the Nangbéto dam, limits 

hydrological modeling by conventional methods. To date, relatively few 

studies have used ANN rainfall-runoff models in the study area and a clear 

picture of its performance is lacking. In order to fill this gap, the present 

study examines the rainfall-runoff modeling development by using ANN 

models under different input meteorological parameters in the Mono River 

basin at Athiémé.  The Levenberg-Marquardt algorithm is used to train the 

ANN rainfall-runoff models over the other optimization training algorithms 

mostly implemented in the study region. The performance of the most 

efficient model is then tested at Nangbéto outlet of the investigated river 

basin. 

 

Materials and methods 

Study area and data used      

The Mono River basin at Athiémé occupies an area of 21,500 km² 

shared between two West-African countries, Togo and Benin. Specifically, it 

is located between the latitudes 06o16’N and 09o20’N, and the longitudes 

0o42’E and 2o25’E (Figure 1). It hosts the Nangbéto hydropower dam, 

which was built in 1987 and utilized by the two countries. The river serves as 

a natural border between the two countries in the southern part. The climate 

is tropical (two rainy seasons and two dry seasons) downstream and 

subequatorial (one rainy season and one dry season) upstream (Lawin et al., 

2019). This river basin is patterned in the south by floodplains and plateaus, 

and higher landforms in the north and north-west, e.g., the Atakora 

Mountains with a height of 800 m and their southern extensions that are the 

Togo mountains (Amoussou et al., 2020). Its water storage capacity is 1,715 

Mm3 (Amoussou, 2010). 

http://www.eujournal.org/
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Figure 1: Study area 

 

Observed meteorological data (daily rainfall data, potential 

evapotranspiration data estimated by the Penman-Monteith formula) and 

daily river discharge data were provided respectively, by the Benin and Togo 

Meteorological Department and the National Directorate of Water (DG-Eau) 

of Benin. The observed data are considered for the period 1961–2010 (good 

compromise, taking into account the length of the available data in the 

different stations). Average rainfall over the basin is obtained by the ordinary 

kriging method applied to 17 rainfall stations. 

 

Methods 
Rainfall-runoff interannual variability 

The rainfall and runoff anomaly indices are calculated using Eq (1) 

for the analysis of the interannual variability of these variables. 
 

𝜀𝒊 =  
𝑿𝒊 − 𝑿

𝝈𝑿
                                                        (𝟏) 

where 

𝑿𝒊 is the annual value of rainfall/runoff in year 𝒊 ; 𝑿 is the average value of 

𝑿𝒊 over the period 1961–2010 and 𝝈𝑿 its standard deviation.  

 

Data preprocessing 

Before loading the data into the ANN rainfall-runoff models, a few 

transformations were applied, such as data normalization and transforming 

time series into supervised learning series. Normalization and 
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standardization are common techniques not limited to time series. Especially 

when working with algorithms that are sensitive to the range of input values 

(e.g. neural networks), this preprocessing step plays an important role. 

 

Normalization 

Precipitation and evapotranspiration data will be normalized in [0, 1] 

according to the relationship: 

𝑦 =  
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
                                                  (2) 

 

where 𝑥 and 𝑦 stand respectively for the initial and normalized data vectors. 

𝑥𝑚𝑎𝑥  𝑎𝑛𝑑  𝑥𝑚𝑖𝑛 are respectively the maximum and minimum values of the 

initial data. For the flow data, a logarithmic transformation is applied. 
 

Split the Dataset 

Our hydrometeorological data is divided into three main parts to 

ensure the training, validation, and testing of the ANN models (Table 1). It 

has been noticed a lot of missing data in the observed data. Thus, 

consecutive years without gaps have been identified and the period 1971-

1977 is used for supervised learning.  

o A first data set is used to train the models. This set covers 60% of the 

dataset (01-01-1971 to 11-03-1975). This data set allows learning the 

different weights of the neurons constituting our network.  

o A second data set is used to validate the model parameters (validation 

set). This set represents 20% of the dataset (12-03-1975 to 05-08-

1976). This data sample provides an unbiased evaluation of the 

model fit on the training data set while adjusting the models 

hyperparameters. 

o A third data set is used to test the real performance of the models. 

This dataset also represents 20% of the dataset (06-08-1976 to 31-12-

1977). This is the test sample and it is used only after the model is 

fully trained (using the training and validation sets). This step allows 

to provide an unbiased assessment of the fit of the final model on the 

training dataset. 
Table 1: Dataset split 

Phase Percentage Period 

Training set  60%  

1971 - 1977 Validation set 20% 

Test set 20% 

 

Artificial Neural Networks model 

The model of neural networks used in this study is the multi-layer 

perceptron (MLP). An MLP consists of at least three layers of nodes: an 
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input layer, a hidden layer and an output layer (Figure 2). Except for the 

input nodes, each node is a neuron that uses a nonlinear activation function. 

MLP utilizes a chain rule based supervised learning technique called 

backpropagation or reverse mode of automatic differentiation for training.  

 
Figure 2: Multi-layer Perceptron 

 

When the signals 𝑋𝑖, are presented to the input of the neuron, the information 

processing module performs their weighted addition, denoted by 𝑣𝑘, such as: 

𝑣𝑘 = ∑ ⬚

𝑛

𝑗=1

𝑤𝑘𝑗𝑋𝑗                                                   (3) 

where  𝑤𝑘𝑗 stands for the weight from neuron j to neuron k. 

Then a transfer function 𝜙 is applied to the resulting signals, while adding 

to its an external quantity called the activation threshold 𝑏𝑘 .  A value 

representative of all the signals (𝑦𝑘) is then obtained at the output of the 

neuron such that  

𝑦𝑘 =  𝜙(𝑣𝑘 +  𝑏𝑘)                                               (4) 
The transfer function 𝜙 can be linear or non-linear. In the present study, the 

transfer function 𝜙 used for the hidden layer is the hyperbolic tangent 

function (due to its main properties such as: non-linearity, smoothness, 

output range between -1 and 1, etc..) given by Eq (5) 

𝜙(𝑣) = 𝑡𝑎𝑛ℎ (𝑣) = 1

1−𝑒−2𝑣 − 1                                   (5) 

                                                                                              

whereas the one used for the output layer is the identity function (purelin) 
𝜙(𝑣) = 𝑣                                                                                                                               
(6) 
 

Levenberg-Marquardt algorithm 

The principle of this algorithm is based on an iterative method of 

adjusting the free parameters of a Multilayer Perceptron network 

(Marquard, 1963). It uses the principle of minimizing an error cost 

http://www.eujournal.org/
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function. The free parameters of the network are adjusted at each iteration 

according to the value of the error taken at the output of the network.  

Assuming that �̂� is the output of the network: 

   �̂� = 𝛼0 + ∑ ⬚𝑝
𝑘=1 𝛼𝑘𝑡𝑎𝑛ℎ(𝑣𝑘 +  𝑏𝑘)                        (7)                    

where 𝑝 is the number of neurons of the hidden layer; 𝛼𝑘 is the weight 

linking the neuron k of the hidden layer to the neuron of the output layer.  
The associated error is given at each iteration by 𝑒 = 𝑦 − �̂�  (Eq. 8) 

𝑒 = 𝑦 − [𝛼0 + ∑ ⬚𝑝
𝑘=1 𝛼𝑘𝑡𝑎𝑛ℎ(𝑣𝑘 +  𝑏𝑘)]                     (8)                                

The cost function that the Levenberg-Marquardt algorithm seeks to 

minimize while adjusting the network parameters is the squared error 

related to Eq (8). This algorithm uses the Gauss-Newton method to 

determine the optimal parameters of the network. 
 

River flow simulation 

We used the neural network fitting and neural network time series 

modules in MATLAB. For the simulation of the river flow, three types of 

models of neural network are investigated. The first ANN model considers a 

combination of precipitation, potential evapotranspiration on day 𝑡 and 

observed flow values on day 𝑡 − 1 as input variables for the flow simulation 

on day 𝑡. These variables are mostly the inputs of hydrological models. 

● Model 1 

𝑄(𝑡) = 𝑓1(𝑃(𝑡), 𝐸𝑇𝑃(𝑡), 𝑄(𝑡 − 1))                        (9)                             
where  

𝑓1 = 𝛼0 + ∑ ⬚𝑝
𝑗=1 𝛼𝑘𝑡𝑎𝑛ℎ(𝑣𝑘 +  𝑏𝑘)  and  𝑣𝑘 =   𝑤𝑘1𝑃(𝑡)  +

  𝑤𝑘2𝐸𝑇𝑃(𝑡)  +   𝑤𝑘3𝑄(𝑡 −  1)  

In Eq (9), 𝑃(𝑡), 𝐸𝑇𝑃(𝑡) 𝑎𝑛𝑑  𝑄(𝑡 − 1) stand respectively for precipitation, 

potential evapotranspiration on day 𝑡, and the river flow on day 𝑡 − 1.  

The second ANN model considers only previously observed precipitations as 

input variables for the daily flow simulation. 

● Model 2 
𝑄(𝑡) = 𝑓2(𝑃(𝑡 − 1), 𝑃(𝑡 − 2), … ,   𝑃(𝑡 − 𝑟))                     (10)               

By taking into account the expression of 𝑓2, Eq (10) can be written in the 

form 

𝑄(𝑡 ) = 𝛼0 + ∑ ⬚

𝑝

𝑘=1

𝛼𝑘𝑡𝑎𝑛ℎ( 𝑤𝑘0 +  𝑤𝑘1𝑃(𝑡 − 1) + ⋯ +  𝑤𝑘𝑟𝑃(𝑡 −  𝑟))           (11) 

 

The third ANN model considers a combination of previously observed 

precipitation, potential evapotranspiration and flow values as input variables 

for the daily flow simulation. 
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● Model 3 
𝑄(𝑡) = 𝑓3(𝑃(𝑡 − 1),   𝐸𝑇𝑃(𝑡 − 1),   𝑄(𝑡 − 1))                           (12) 

which can be written in the form 

𝑄(𝑡 ) = 𝛼0 + ∑ ⬚

𝑝

𝑘=1

𝛼𝑘𝑡𝑎𝑛ℎ( 𝑤𝑘0 +  𝑤𝑘1𝑃(𝑡 − 1) +   𝑤𝑘2𝐸𝑇𝑃(𝑡 − 1)

+   𝑤𝑘3𝑄(𝑡 − 1))                                                                                              (13) 

Table 2 shows the different parameters used to configure the networks. 
Table 2: Parameters of ANN models used 

Parameters Choice 

Type of network Feed-forward back propagation 

Structure of the developed network  Multi-layers Perceptron (Feed-Forward) 

Input Parameters of the function 𝑓 according 

to the model (P, ETP, previous river 

flow Q) 

Output River flow (Q) 

Learning algorithm Levenberg-Marquardt  

Performance functions Mean Squared Error (MSE), coefficient 

of correlation (R) and Nash coefficiency 

Number of layers 2 

First layer activation function (hidden layer) Tangential sigmoid  

Second layer activation function (output 

layer) 

Linear (PURELIN) 

 

Then, the most efficient models are tested in the Mono River basin at 

Nangbéto outlet in order to judge their capability to provide a good 

simulation in another river sub-basin of the study area. 

 

 

Results and Discussion 

Distribution of daily river flow  

The study period is divided into two part: 1961 – 1987 (period before 

the establishment of the Nangbéto dam) and 1988 – 2010 (period after the 

establishment of the dam in 1987). This subdivision was done to consider the 

effect of the dam's operation on the flow at Athiémé outlet. Figure 3 shows 

that the distribution of daily flows presents a high variability from 1988-

2010 compared to the period preceding the impoundment of the dam. There 

is an increase of about 37% in the average annual flow afler the dam's 

impoundment compared to the previous one. Indeed, Nangbéto dam has a 

strong influence on the flows at Athiémé outlet, and this confirms the 

artificial nature of the Mono's hydrological regime since the establishment of 

the Nangbéto dam. These results align with the works of Amoussou (2010) 

and Biao et al. (2021). 
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Figure 3: Distribution of daily river flows at Athiémé outlet. 

 

Rainfall-runoff interannual variability 

Figure 4 shows a drop in rainfall over the last two decades of the 

study period compared to the 1960s. However, this drop is less pronounced 

than that of the period 1970-1975. It is almost the same pattern for runoff. 

This justifies the correlation between rainfall and runoff. The two extremes 

(i.e. wet year in 1963 and dry year in 1983) coincide for both rainfall and 

flow. 
 

 
Figure 4: Rainfall-runoff interannual variability 

 

Supervised learning 

Supervised learning is performed over the period 1971-1977 because 

it represents the longest series of consecutive years without gaps.  
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Neural network fitting 

Figure 5 shows the network configured for Model 1. One can see that 

the input of the network is three (3), which represents the three (3) input 

parameters of the model (i.e. 𝑃(𝑡), 𝐸𝑇𝑃(𝑡), 𝑄(𝑡 − 1)) and at the output we 

have the flow at day t. In the hidden layer we notice 10 neurons, whereas in 

the output layer only one neuron is seen because we have one output (i.e. 

flow). The vector of weights W and that of the biases b, as well as the 

transfer functions are indicated on the network. 

 
Figure 5: Network configured for Model 1 

Results of supervised learning, after 12 iterations, are summarized in 

Figure 6: 

 
Figure 6: Supervised learning results using Model 1 

 

Neural network time series 

Figure 7 shows the network configured for Model 2. Once the data is 

entered, the network is created with 10 neurons with the specificity of the 

delay number r (r = 100) as shown in Figure 7. At the input we have 

precipitations and at the output, the flow. 

 
Figure 7: Network configured for Model 2 
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Results of the supervised learning, after 23 iterations, are given in Figure 8: 

 
Figure 8: Supervised learning results using Model 2 

 

Figure 9 shows the network configured for Model 3. We can see that 

the input of the network is three (3), which represents the three (3) input 

parameters of the model (𝑃(𝑡 − 1),   𝐸𝑇𝑃(𝑡 − 1),   𝑄(𝑡 − 1)) and at the 

output we have the flow. x(t) at the input is composed of the first two (2) 

parameters, while the y(t) is the third model parameter. The number of 

delays r is 1. In the hidden layer we have 10 neurons and one neuron at the 

output layer. The vector of weights W and that of the biases b as well as the 

transfer functions are indicated on the network. 

 
Figure 9: Network configured for Model 3 

 

Results of the supervised learning, after 27 iterations, are summarized 

in Figure 10: 
 

 
Figure 10: Supervised learning results using Model 3 
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Table 3 summarized the performance of the three models. 
Table 3 : Performance of the models 

 

Models 

Training Validation Testing 

R MSE R MSE R MSE 

Model 1 0.99 0.037 0.99 0.034 0.99 0.064 

Model 2 0.93 0.688 0.90 0.962 0.91 0.970 

Model 3 0.97 0.039 0.95 0.045 0.96 0.037 

 

The results of Table 3 allow us to conclude that the three investigated 

models performed well in training, validation and testing, which are justified 

by the values of R close to 1 and those of the MSE very low.  However, 

Models 1 and 3 performed better than Model 2. This can be justified by 

adding a second meteorological parameter (i.e. evapotranspiration) as input 

to the ANN model. These findings have also been highlighted by Aoulmi et 

al. (2020) who tested the practicability of ANN models with different input 

configuration in Seybouse basin (Northeast Algeria). They found that as 

much input variables are numerous, as more the model of ANN is efficient. 

 

Simulation of Mono river flow at Athiémé  

Precipitation and potential evapotranspiration data for the time-period 

1961-1964, which have not been taken into account for supervised learning, 

were now used to simulate the river flow.  Figures 11, 12 and 13 show the 

flows simulation respectively from Models 1, 2 and 3. It can be seen from 

these figures that Model 1 better reproduce the observed hydrograph 

compared to Models 2 and 3. The values of the performance criteria MSE, R 

and Nash used in this study are given in Table 4. The values of the criteria 

MSE, R and Nash confirm the excellent quality of model 1 over Models 2 

and 3. 

 
Figure 11: Observed and simulated flows in Mono River basin at Athiémé for the time-

period 1961-1964 using Model 1 
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Figure 12: Observed and simulated flows in Mono River basin at Athiémé for the time-

period 1961-1964 using Model 2 

 
Figure 13: Observed and simulated flows in Mono River basin at Athiémé for the time-

period 1961-1964 using Model 3 

Table 4: Models performance (ranged by decreasing performance) 

 

The works carried out by Biao et al. (2021) on the hydrological 

modeling of the Mono basin at Athiémé showed that with the use of HBV 

(Seibert, 2005), ModHyPMA (Afouda and Alamou, 2010), GR4J (Perrin et 

al., 2007), AWBM (Boughton, 2004) hydrological models and a combination 

of these four models, the values of the Nash criterion varie between 36% and 

81%. In addition, the works of Koubodana et al. (2021), which used GR4J 

and IHACRES (Jakeman and Hornberger, 1993) hydrological models, gave 

Models MSE R Nash Quality 

Model1 0.0270 0.99 99.61% Excellent 

Model3 0.0282 0.97 96.61% Excellent 

Model2 0.9885 0.93 86.23% Good 
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values of the Nash criterion between 60% and 90%. Thus, one can conclude 

that the performances of the investigated ANN models in this research are 

better than those found in previous works in the study area. The ANN 

models used in this study better simulate high river flows compared to the 

hydrological models mostly used the study area. However, the uncertainties 

that are still associated with the peaks can be explained as a result of 

increasing soil moisture, rather than isolated rain spells in the basin. Based 

on the power and capacity to simulate reasonably correct flows, ANN 

models can be considered good alternatives for traditional rainfall-runoff 

modeling approaches. 

 

Testing the most efficient models at Nangbéto outlet 

The most efficient model in simulating flow in Mono River basin at 

Athiémé (i.e. Model 1) tested with data from the Mono River basin at 

Nangbéto outlet responds also well and gives a Nash criterion of 80% 

(Figure 14). The results obtained by Amoussou et al. (2014) in this 

aforementioned basin using GR4J hydrological model gave a value of the 

Nash criterion of about 78% over the period 1996-2003 and 62% over the 

period 2004-2010.  We can therefore realize the generalization capacity of 

the ANN models. The good capability of ANN to model hydrological 

process has also been highlighted by previous studied. For instance, Riad et 

al. (2004) showed that ANN are useful and powerful tools for handling 

complex problems compared to traditional models. Kumar et al. (2016) 

concluded that the simulated daily runoff using ANN model fairly matched 

with the observed values. The findings of this present study clearly show that 

the artificial neural networks can better model rainfall-runoff relationship.    

 
Figure 14: Observed and simulated flows in Mono River basin at Nangbéto for the time-

period 1993-1996 using Model 1 
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Conclusions 

The main contribution of this paper was to assess ANN rainfall-

runoff models under different input meteorological parameters for a better 

understanding of the hydrological behavior of the Mono River basin. The 

study of the rainfall-runoff variability showed a strong correlation between 

rainfall and runoff and highlights the main role played by the Nangbéto dam 

in the non-linearity of the rainfall-runoff relationship at the Athiémé outlet. 

Using ANN models under different input meteorological parameters with the 

Levenberg-Marquardt algorithm allowed us to simulate river flow and gave 

good performances (Nash criterion varies between 86% and 99%). The 

investigated models were very efficient and gave simulated flows almost 

identical to the observed flows.  However, as much input variables are 

numerous, as more the model of ANN is efficient. The implementation of the 

most efficient model (i.e. Model 1) in the Mono River basin at Nangbéto 

outlet yielded also to good results and confirms, therefore, the generalization 

capacity of ANN. The ANN approach is a promising tool to solve problems 

in water resources and management and can be considered good alternatives 

for modeling non-linear hydrological applications, such as the rainfall-runoff 

process. 
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