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Abstract 

Hydrological models are developed to simulate river flows over a 

watershed for many practical applications in the field of water resource 

management. However, the rainfall-runoff models mostly used in the Mono 

river basin struggle to better simulate high river flows. This paper presents a 

modeling approach based on Artificial Neural Networks (ANN) under 

different input meteorological parameters in the Mono River basin to better 

take into account the non-linearity of the relationship between rainfall and 

runoff. To this end, precipitation, potential evapotranspiration, and previously 

observed flow have been used for the daily flow simulation. The Levenberg-
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Marquardt algorithm is used to train the ANN rainfall-runoff models over the 

other optimization training algorithms mostly implemented in the study area. 

The analysis of the rainfall-runoff variability allowed us to show the strong 

correlation between rainfall and runoff and the impact of the Nangbéto dam 

on the flows at Athiémé. The results obtained after the training, validation, and 

testing of the ANN models are satisfactory (e.g., the coefficient of correlation 

varies between 0.93 and 0.99). The most efficient model has been identified 

and implemented in the Mono river basin at Nangbéto. The satisfactory results 

obtained show that ANN models can be considered good alternatives for 

traditional rainfall-runoff modeling approaches. 

 
Keywords: Mono river basin, variability, modeling, artificial neural networks, 

Levenberg-Marquardt algorithm, non-linearity 

 

Introduction  

Rainfall is generally the greatest contribution to the water balance of a 

river basin. The transformation of rainfall into flow is a phenomenon of great 

importance which, for several years, has been the subject of numerous studies. 

Indeed, the rainfall-runoff relationship is one of the most complex hydrologic 

phenomena to comprehend due to the tremendous spatial and temporal 

variability of the river basin characteristics and precipitation patterns, as well 

as the number of variables involved in modeling of physical processes (Joshi 

and Patel, 2011). 

Several studies used artificial neural networks (ANN) for modelling 

complex hydrological processes, such as rainfall-runoff (Hsu and Gupta, 

1995; Lorrai and Sechi, 1995; Minns and Hall, 1996; Dawson and Wilby, 

1998; Tokar and Johnson, 1999; Rajurkar et al., 2002; Wilby et al., 2003; 

Giustolisi and Laucelli, 2005; Jain and Srinivasulu, 2006). Relatively few 

studies have tested the practicability of using ANN with various input 

configurations to model the rainfall-runoff relationship. For example, the river 

flow does not only depend on total rainfall, but also on other meteorological 

parameters. Thus, a simple adjustment to ANN input data can be made to 

ameliorate their performance in flow simulation. Researches also showed that 

ANN are one of the most promising tools in hydrology (ASCE Task 

Committee, 2000a; 2000b; Maier and  Dandy, 2000; Dawson and Wilby, 

2001). ANN can map the underlying relationship between input and output 

data without a prior understanding of the process under investigation (Kalteh, 

2008). However, according to Kalteh (2008), ANN have been mostly 

criticized for their black-box nature due to the fact that the primary application 

of an ANN is the nonlinear modeling of input-output observations in order to 

obtain accurate modeling of the system’s response. Nevertheless, several 

authors such as (Chergui, 2019; Lek et al., 1996; Kharroubi et al., 2016; Yao 
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et al., 2014) showed that these models, inspired by the functioning of 

biological neurons, are very efficient for simulating and predicting river flows 

in catchment areas. Zohou et al. (2023) used two ANN models such as the 

Long Short-Term Memory (LSTM) and Recurrent Gate Networks (GRU) in 

the Oueme River basin at Savè outlet in Bénin. They found a strong similarity 

between the observed and simulated flows. Their results demonstrate the 

effectiveness of artificial intelligence-based models in hydrological modeling. 

Mohseni and Muskula (2023) examined the rainfall-runoff-based model 

development using ANN models in the Yerli sub-catchment of the Upper Tapi 

basin in India. These authors used the Levenberg-Marquardt, Bayesian 

Regularization and Conjugate Gradient Scaled algorithms to train the ANN 

rainfall-runoff models. Their results show that Levenberg-Marquardt creates 

the most accurate model. 

In the Mono River basin, the non-linearity of the rainfall-runoff 

relationship accentuated by the presence of the Nangbéto dam, limits 

hydrological modeling by conventional methods. To date, relatively few 

studies have used ANN rainfall-runoff models in the study area and a clear 

picture of its performance is lacking. In order to fill this gap, the present study 

examines the rainfall-runoff modeling development by using ANN models 

under different input meteorological parameters in the Mono River basin at 

Athiémé.  The Levenberg-Marquardt algorithm is used to train the ANN 

rainfall-runoff models over the other optimization training algorithms mostly 

implemented in the study region. The performance of the most efficient model 

is then tested at Nangbéto outlet of the investigated river basin. 

 

Materials and methods 

Study area and data used      

The Mono River basin at Athiémé occupies an area of 21,500 km² 

shared between two West-African countries, Togo and Benin. Specifically, it 

is located between the latitudes 06o16’N and 09o20’N, and the longitudes 

0o42’E and 2o25’E (Figure 1). It hosts the Nangbéto hydropower dam, which 

was built in 1987 and utilized by the two countries. The river serves as a 

natural border between the two countries in the southern part. The climate is 

tropical (two rainy seasons and two dry seasons) downstream and 

subequatorial (one rainy season and one dry season) upstream (Lawin et al., 

2019). This river basin is patterned in the south by floodplains and plateaus, 

and higher landforms in the north and north-west, e.g., the Atakora Mountains 

with a height of 800 m and their southern extensions are the Togo mountains 

(Amoussou et al., 2020). Its water storage capacity is 1,715 Mm3 (Amoussou, 

2010). 
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Figure 1: Study area 

 

Observed meteorological data (daily rainfall data, potential 

evapotranspiration data estimated by the Penman-Monteith formula) and daily 

river discharge data were provided respectively, by the Benin and Togo 

Meteorological Department and the National Directorate of Water (DG-Eau) 

of Benin. The observed data are considered for the period 1961–2010 (good 

compromise, taking into account the length of the available data in the 

different stations). Average rainfall over the basin is obtained by the ordinary 

kriging method applied to 17 rainfall stations. 
 

Methods 

Rainfall-runoff interannual variability 

The rainfall and runoff anomaly indices are calculated using Eq (1) for the 

analysis of the interannual variability of these variables. 

 

𝜀𝒊 =  
𝑿𝒊 − 𝑿

𝝈𝑿
   

(𝟏) 

where 𝑿𝒊 is the annual value of rainfall/runoff in year 𝒊 ; 𝑿 is the average value 

of 𝑿𝒊 over the period 1961–2010 and 𝝈𝑿 its standard deviation.  

 

Data preprocessing 

Before loading the data into the ANN rainfall-runoff models, a few 

transformations were applied, such as data normalization and transforming 

time series into supervised learning series. Normalization and standardization 
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are common techniques not limited to time series. Especially when working 

with algorithms that are sensitive to the range of input values (e.g. neural 

networks), this preprocessing step plays an important role. The simplest way 

to transform a time series forecast into a supervised learning problem is by 

creating lag features. The first approach is to predict the value of time 𝒕  given 

the value at the previous time 𝒕 − 𝟏. A key function to help transform time 

series data into a supervised learning problem is the Pandas shift() function. 

Given a DataFrame, the shift() function can be used to create copies of 

columns that are pushed forward (rows of NaN values added to the front) or 

pulled back (rows of NaN values added to the end). This is the behavior 

required to create columns of lag observations, as well as columns of forecast 

observations for a time series dataset in a supervised learning format. 

 

Normalization 

Precipitation and evapotranspiration data will be normalized in [0, 1] 

according to the relationship: 

𝑦 =  
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
    

(2) 

where 𝑥 and 𝑦 stand respectively for the initial and normalized data vectors. 

𝑥𝑚𝑎𝑥  𝑎𝑛𝑑  𝑥𝑚𝑖𝑛 are respectively the maximum and minimum values of the 

initial data. For the flow data, a logarithmic transformation is applied. 
 

Split the Dataset 

Our hydrometeorological data is divided into three main parts to ensure the 

training, validation, and testing of the ANN models (Table 1). It has been 

noticed a lot of missing data in the observed data. Thus, consecutive years 

without gaps have been identified and the period 1971-1977 is used for 

supervised learning.  

• A first data set is used to train the models. This set covers 60% of the 

dataset (01-01-1971 to 11-03-1975). This data set allows learning the 

different weights of the neurons constituting our network.  

• A second data set is used to validate the model parameters (validation 

set). This set represents 20% of the dataset (12-03-1975 to 05-08-

1976). This data sample provides an unbiased evaluation of the model 

fit on the training data set while adjusting the models hyperparameters. 

• A third data set is used to test the real performance of the models. This 

dataset also represents 20% of the dataset (06-08-1976 to 31-12-1977). 

This is the test sample and it is used only after the model is fully trained 

(using the training and validation sets). This step allows to provide an 

unbiased assessment of the fit of the final model on the training dataset. 
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Table 1: Dataset split 

Phase Percentage Period 

Training set  60%  

1971 - 1977 Validation set 20% 

Test set 20% 

 

Artificial Neural Networks model 

The model of neural networks used in this study is the multi-layer perceptron 

(MLP). An MLP consists of at least three layers of nodes: an input layer, a 

hidden layer and an output layer (Figure 2). Except for the input nodes, each 

node is a neuron that uses a nonlinear activation function. MLP utilizes a chain 

rule based supervised learning technique called backpropagation or reverse 

mode of automatic differentiation for training.  

 
Figure 2: Multi-layer Perceptron 

 

When the signals 𝑋𝑖, are presented to the input of the neuron, the information 

processing module performs their weighted addition, denoted by 𝑣𝑘, such as: 

𝑣𝑘 = ∑ ⬚

𝑛

𝑗=1

𝑤𝑘𝑗𝑋𝑗      

(3) 

where  𝑤𝑘𝑗 stands for the weight from neuron j to neuron k. 

Then a transfer function 𝜙 is applied to the resulting signals, while adding to 

its an external quantity called the activation threshold 𝑏𝑘 .  A value 

representative of all the signals (𝑦𝑘) is then obtained at the output of the 

neuron such that  

𝑦𝑘 =  𝜙(𝑣𝑘 +  𝑏𝑘) 

(4) 

The transfer function 𝜙 can be linear or non-linear. In the present study, the 

transfer function 𝜙 used for the hidden layer is the hyperbolic tangent 

function (due to its main properties such as: non-linearity, smoothness, 

output range between -1 and 1, etc..) given by Eq (5) 
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𝜙(𝑣) = 𝑡𝑎𝑛ℎ (𝑣) =
1

1 − 𝑒−2𝑣
− 1  

(5) 

                                                                                              

whereas the one used for the output layer is the identity function (purelin) 
𝜙(𝑣) = 𝑣 

(6) 

Levenberg-Marquardt algorithm 

The principle of this algorithm is based on an iterative method of adjusting 

the free parameters of a Multilayer Perceptron network (Marquard, 1963). It 

uses the principle of minimizing an error cost function. The free parameters 

of the network are adjusted at each iteration according to the value of the 

error taken at the output of the network.  

Assuming that �̂� is the output of the network: 

   �̂� = 𝛼0 + ∑ ⬚

𝑝

𝑘=1

𝛼𝑘𝑡𝑎𝑛ℎ(𝑣𝑘 +  𝑏𝑘)  

(7) 

where 𝑝 is the number of neurons of the hidden layer; 𝛼𝑘 is the weight linking 

the neuron k of the hidden layer to the neuron of the output layer.  
The associated error is given at each iteration by 𝑒 = 𝑦 − �̂�  (Eq. 8) 

𝑒 = 𝑦 − [𝛼0 + ∑ ⬚

𝑝

𝑘=1

𝛼𝑘𝑡𝑎𝑛ℎ(𝑣𝑘 +  𝑏𝑘)]  

(8) 

The cost function that the Levenberg-Marquardt algorithm seeks to minimize 

while adjusting the network parameters is the squared error related to Eq (8). 

This algorithm uses the Gauss-Newton method to determine the optimal 

parameters of the network. 
 

River flow simulation 

We used the neural network fitting and neural network time series modules in 

MATLAB. For the simulation of the river flow, three types of models of neural 

network are investigated. The first ANN model considers a combination of 

precipitation, potential evapotranspiration on day 𝑡 and observed flow values 

on day 𝑡 − 1 as input variables for the flow simulation on day 𝑡. These 

variables are mostly the inputs of hydrological models. 

● Model 1 

𝑄(𝑡) = 𝑓1(𝑃(𝑡), 𝐸𝑇𝑃(𝑡), 𝑄(𝑡 − 1))   

(9)                             
where  
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𝑓1 = 𝛼0 + ∑ ⬚𝑝
𝑗=1 𝛼𝑘𝑡𝑎𝑛ℎ(𝑣𝑘 +  𝑏𝑘)  and  𝑣𝑘 =   𝑤𝑘1𝑃(𝑡)  +

  𝑤𝑘2𝐸𝑇𝑃(𝑡)  +   𝑤𝑘3𝑄(𝑡 −  1) 

 

In Eq (9), 𝑃(𝑡), 𝐸𝑇𝑃(𝑡) 𝑎𝑛𝑑  𝑄(𝑡 − 1) stand respectively for precipitation, 

potential evapotranspiration on day 𝑡, and the river flow on day 𝑡 − 1.  

The second ANN model considers only previously observed precipitations as 

input variables for the daily flow simulation. 

● Model 2 

𝑄(𝑡) = 𝑓2(𝑃(𝑡 − 1), 𝑃(𝑡 − 2), … ,   𝑃(𝑡 − 𝑟))   

(10)  

By taking into account the expression of 𝑓2, Eq (10) can be written in the form 

𝑄(𝑡 ) = 𝛼0 + ∑ ⬚

𝑝

𝑘=1

𝛼𝑘𝑡𝑎𝑛ℎ( 𝑤𝑘0 +  𝑤𝑘1𝑃(𝑡 − 1) + ⋯ +   𝑤𝑘𝑟𝑃(𝑡 −  𝑟))  

(11) 

 

The third ANN model considers a combination of previously observed 

precipitation, potential evapotranspiration and flow values as input variables 

for the daily flow simulation. 

 

● Model 3 

𝑄(𝑡) = 𝑓3(𝑃(𝑡 − 1),   𝐸𝑇𝑃(𝑡 − 1),   𝑄(𝑡 − 1))  

(12) 

which can be written in the form 

𝑄(𝑡 ) = 𝛼0 + ∑ ⬚

𝑝

𝑘=1

𝛼𝑘𝑡𝑎𝑛ℎ( 𝑤𝑘0 +  𝑤𝑘1𝑃(𝑡 − 1) +   𝑤𝑘2𝐸𝑇𝑃(𝑡 − 1)

+   𝑤𝑘3𝑄(𝑡 − 1)) 

(13) 

Table 2 shows the different parameters used to configure the networks. 
Table 2: Parameters of ANN models used 

Parameters Choice 

Type of network Feed-forward back propagation 

Structure of the developed network  Multi-layers Perceptron (Feed-Forward) 

Input Parameters of the function 𝑓 according to 

the model (P, ETP, previous river flow Q) 

Output River flow (Q) 

Learning algorithm Levenberg-Marquardt  

Performance functions Mean Squared Error (MSE), coefficient 

of correlation (R) and Nash coefficiency 

Number of layers 2 

First layer activation function (hidden layer) Tangential sigmoid  

Second layer activation function (output layer) Linear (PURELIN) 
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The Nash–Sutcliffe model efficiency coefficient can be given in the form: 

 

𝑁𝑎𝑠ℎ = 1 −
∑ ⬚𝑇

𝑡=1 (𝑄0
𝑡 − 𝑄𝑠

𝑡)2

∑ ⬚𝑇
𝑡=1 (𝑄0

𝑡 − 𝑄0)
2  

(14) 

where 𝑄0 is the mean observed river flow, 𝑄𝑠
𝑡 is the simulated river flow and 

𝑄0
𝑡  is the observed river flow at time t. 

 

Then, the most efficient models are tested in the Mono River basin at 

Nangbéto outlet in order to judge their capability to provide a good simulation 

in another river sub-basin of the study area. 

 

Results and Discussion 

Distribution of daily river flow  

The study period is divided into two part: 1961 – 1987 (period before the 

establishment of the Nangbéto dam) and 1988 – 2010 (period after the 

establishment of the dam in 1987). This subdivision was done to consider the 

effect of the dam's operation on the flow at Athiémé outlet. Figure 3 shows 

that the distribution of daily flows presents a high variability from 1988-2010 

compared to the period preceding the impoundment of the dam. There is an 

increase of about 37% in the average annual flow afler the dam's impoundment 

compared to the previous one. Indeed, Nangbéto dam has a strong influence 

on the flows at Athiémé outlet, and this confirms the artificial nature of the 

Mono's hydrological regime since the establishment of the Nangbéto dam. 

These results align with the works of Amoussou (2010) and Biao et al. (2021). 

 
Figure 3: Distribution of daily river flows at Athiémé outlet 
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Rainfall-runoff interannual variability 

Figure 4 shows a drop in rainfall over the last two decades of the study period 

compared to the 1960s. However, this drop is less pronounced than that of the 

period 1970-1975. It is almost the same pattern for runoff. This justifies the 

correlation between rainfall and runoff. The two extremes (i.e. wet year in 

1963 and dry year in 1983) coincide for both rainfall and flow. 
 

 
Figure 4: Rainfall-runoff interannual variability 

 

Supervised learning 

Supervised learning is performed over the period 1971-1977 because it 

represents the longest series of consecutive years without gaps.  

 

Neural network fitting 

Figure 5 shows the network configured for Model 1. One can see that the input 

of the network is three (3), which represents the three (3) input parameters of 

the model (i.e. 𝑃(𝑡), 𝐸𝑇𝑃(𝑡), 𝑄(𝑡 − 1)) and at the output we have the flow 

at day t. In the hidden layer we notice 10 neurons, whereas in the output layer 

only one neuron is seen because we have one output (i.e. flow). The vector of 

weights W and that of the biases b, as well as the transfer functions are 

indicated on the network. 
 

 
Figure 5: Network configured for Model 1 
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Results of supervised learning, after 12 iterations, are summarized in Figure 

6: 

 
Figure 6: Supervised learning results using Model 1 

 

Neural network time series 

Figure 7 shows the network configured for Model 2. Once the data is entered, 

the network is created with 10 neurons with the specificity of the delay number 

r (r = 100) as shown in Figure 7. At the input we have precipitations and at the 

output, the flow. 

 
Figure 7: Network configured for Model 2 

 

Results of the supervised learning, after 23 iterations, are given in Figure 8: 

 
Figure 8: Supervised learning results using Model 2 

 

Figure 9 shows the network configured for Model 3. We can see that the input 

of the network is three (3), which represents the three (3) input parameters of 

the model (𝑃(𝑡 − 1),   𝐸𝑇𝑃(𝑡 − 1),   𝑄(𝑡 − 1)) and at the output we have the 

flow. x(t) at the input is composed of the first two (2) parameters, while the 

y(t) is the third model parameter. The number of delays r is 1. In the hidden 

layer we have 10 neurons and one neuron at the output layer. The vector of 
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weights W and that of the biases b as well as the transfer functions are 

indicated on the network. 

 
Figure 9: Network configured for Model 3 

 

Results of the supervised learning, after 27 iterations, are summarized in 

Figure 10: 

 
Figure 10: Supervised learning results using Model 3 

Table 3 summarized the performance of the three models. 
Table 3 : Performance of the models 

 

Models 

Training Validation Testing 

R MSE R MSE R MSE 

Model 1 0.99 0.037 0.99 0.034 0.99 0.064 

Model 2 0.93 0.688 0.90 0.962 0.91 0.970 

Model 3 0.97 0.039 0.95 0.045 0.96 0.037 

 

The results of Table 3 allow us to conclude that the three investigated models 

performed well in training, validation and testing, which are justified by the 

values of R close to 1 and those of the MSE is low because the error order is 

between 10-1 and 10-2, especially for Models 1 and 3.  Indeed, Models 1 and 3 

performed better than Model 2. This can be justified by adding a second 

meteorological parameter (i.e. evapotranspiration) as input to the ANN model. 

These findings have also been highlighted by Aoulmi et al. (2020) who tested 

the practicability of ANN models with different input configuration in 

Seybouse basin (Northeast Algeria). They found that as much input variables 

are numerous, as more the model of ANN is efficient. 

 

 

http://www.eujournal.org/


European Scientific Journal, ESJ                                ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

August 2024 edition Vol.20, No.24 

www.eujournal.org    240 

Simulation of Mono river flow at Athiémé  

Precipitation and potential evapotranspiration data for the time-period 1961-

1964, which have not been taken into account for supervised learning, were 

now used to simulate the river flow.  Figures 11, 12 and 13 show the flows 

simulation respectively from Models 1, 2 and 3. It can be seen from these 

figures that Model 1 better reproduce the observed hydrograph compared to 

Models 2 and 3. The values of the performance criteria MSE, R and Nash used 

in this study are given in Table 4. The values of the criteria MSE, R and Nash 

confirm the excellent quality of model 1 over Models 2 and 3. 

 
Figure 11: Observed and simulated flows in Mono River basin at Athiémé for the time-

period 1961-1964 using Model 1 

 

 
Figure 12: Observed and simulated flows in Mono River basin at Athiémé for the time-

period 1961-1964 using Model 2 
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Figure 13: Observed and simulated flows in Mono River basin at Athiémé for the time-

period 1961-1964 using Model 3 

 

Table 4: Models performance (ranged by decreasing performance) 

 

 

 

 

 

The works carried out by Biao et al. (2021) on the hydrological modeling of 

the Mono basin at Athiémé showed that with the use of HBV (Seibert, 2005), 

ModHyPMA (Afouda and Alamou, 2010), GR4J (Perrin et al., 2007), AWBM 

(Boughton, 2004) hydrological models and a combination of these four 

models, the values of the Nash criterion varie between 36% and 81%. In 

addition, the works of Koubodana et al. (2021), which used GR4J and 

IHACRES (Jakeman and Hornberger, 1993) hydrological models, gave values 

of the Nash criterion between 60% and 90%. Thus, one can conclude that the 

performances of the investigated ANN models in this research are better than 

those found in previous works in the study area. The ANN models used in this 

study better simulate high river flows compared to the hydrological models 

mostly used the study area. However, the uncertainties that are still associated 

with the peaks can be explained as a result of increasing soil moisture, rather 

than isolated rain spells in the basin. Based on the power and capacity to 

simulate reasonably correct flows, ANN models can be considered good 

alternatives for traditional rainfall-runoff modeling approaches. 

 

Testing the most efficient models at Nangbéto outlet 

The most efficient model in simulating flow in Mono River basin at Athiémé 

(i.e. Model 1) tested with data from the Mono River basin at Nangbéto outlet 

Models MSE R Nash Quality 

Model1 0.0270 0.99 99.61% Excellent 

Model3 0.0282 0.97 96.61% Excellent 

Model2 0.9885 0.93 86.23% Good 
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responds also well and gives a Nash criterion of 80% (Figure 14). The results 

obtained by Amoussou et al. (2014) in this aforementioned basin using GR4J 

hydrological model gave a value of the Nash criterion of about 78% over the 

period 1996-2003 and 62% over the period 2004-2010.  We can therefore 

realize the generalization capacity of the ANN models. The good capability of 

ANN to model hydrological process has also been highlighted by previous 

studied. For instance, Riad et al. (2004) showed that ANN are useful and 

powerful tools for handling complex problems compared to traditional 

models. Kumar et al. (2016) concluded that the simulated daily runoff using 

ANN model fairly matched with the observed values. The findings of this 

present study clearly show that the artificial neural networks can better model 

rainfall-runoff relationship.    

 
Figure 14: Observed and simulated flows in Mono River basin at Nangbéto for the time-

period 1993-1996 using Model 1 

 

Conclusions 

The main contribution of this paper is to investigate ANN rainfall-

runoff models under different input meteorological parameters for a better 

understanding of the hydrological behavior of the Mono River basin. The 

study of the rainfall-runoff variability showed a strong correlation between 

rainfall and runoff and highlights the main role played by the Nangbéto dam 

in the non-linearity of the rainfall-runoff relationship at the Athiémé outlet. 

Using ANN models under different input meteorological parameters with the 

Levenberg-Marquardt algorithm allowed us to simulate river flow and gave 

good performances (Nash criterion varies between 86% and 99%). The 

investigated models were very efficient and gave simulated flows almost 

identical to the observed flows.  However, as much input variables are 

numerous, as more the model of ANN is efficient. The implementation of the 

most efficient model (i.e. Model 1) in the Mono River basin at Nangbéto outlet 
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yielded also to good results and confirms, therefore, the generalization 

capacity of ANN. The ANN approach is a promising tool to solve problems in 

water resources and management. 
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