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Abstract 

This paper presents a methodology for automated classification of 

leaves using Convolutional Neural Networks (CNNs). Leaf classification 

plays a crucial role in various domains such as agriculture, botany, and 

environmental science. Traditional methods for leaf classification often rely 

on manual feature extraction and handcrafted classifiers, which can be time-

consuming and limited in their accuracy. In this work, we propose a deep 

learning approach that leverages the power of CNNs to automatically learn 

discriminative features from leaf images. The proposed framework consists of 

several key stages: preprocessing, data augmentation, model architecture 

design, training, and evaluation. The leaf images are preprocessed to enhance 

quality and normalize dimensions. Data augmentation techniques are applied 

to increase the diversity of the training dataset and improve the generalization 

capability of the model. The CNN architecture is carefully designed to 

effectively capture hierarchical features present in leaf images. We train the 

CNN using a large dataset of labeled leaf images, employing techniques such 

as transfer learning to utilize pre-trained models to optimize training 

efficiency.. The trained model is evaluated using various metrics such as 

accuracy, precision, recall, and F1 score on a separate test dataset. The 
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experimental results showcase the proposed approach's effectiveness in 

accurately classifying various leaf types. Overall, this study showcases the 

promising capabilities of deep learning techniques for automated leaf 

classification, paving the way for advanced applications in plant biology and 

agriculture. 

 
Keywords: Convolutional Neural Networks (CNNs), Deep learning, 

Preprocessing, Leaf classification 

 

Introduction  

 Leaves are fundamental components of plants and play a vital role in 

various ecological, agricultural, and botanical studies. The identification and 

classification of leaves are essential tasks in fields such as biodiversity 

conservation, plant taxonomy, crop management, and environmental 

monitoring. Traditional methods for leaf classification often rely on manual 

observation and expert knowledge, which can be time-consuming, subjective, 

and prone to human error. With the advent of computer vision and machine 

learning techniques, there has been a growing interest in developing 

automated systems for leaf classification. 

In recent years, deep learning, particularly Convolutional Neural Networks 

(CNNs), has emerged as a powerful approach for image classification tasks. 

CNNs have demonstrated remarkable success in various domains, including 

object recognition, medical imaging, and natural language processing. 

Leveraging their ability to automatically learn hierarchical features from raw 

data, CNNs offer a promising solution for automated leaf classification. By 

training on large datasets of labeled leaf images, CNNs can learn to 

discriminate between different species and varieties based on visual patterns 

and characteristics. 

This paper presents DeepLeaf, a novel framework for automated Leaf 

classification using CNNs. DeepLeaf aims to overcome the limitations of 

traditional methods by providing a scalable, accurate, and efficient solution 

for leaf identification. The proposed framework integrates various stages, 

including preprocessing, data augmentation, model architecture design, 

training, and evaluation, to achieve robust classification performance. By 

leveraging the power of deep learning, DeepLeaf offers the potential to 

revolutionize the way leaves are classified and analyzed in diverse 

applications. 

In this introduction, we provide an overview of the importance of leaf 

classification and the challenges associated with traditional methods. We also 

highlight the potential of deep learning techniques, particularly CNNs, in 

addressing these challenges and advancing automated leaf classification. The 

remainder of the paper is organized as follows: Section 2 reviews related work 
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in the field of leaf classification and deep learning. Section 3 describes the 

methodology and framework of DeepLeaf in detail. Section 4 presents 

experimental results and performance evaluation. Finally, Section 5 

conclusions. 

 

Related Work in Leaf Classification and Deep Learning 

Leaf classification has been a subject of interest in various scientific 

domains, including botany, agriculture, and environmental science. Recent 

advancements in deep learning techniques, particularly Convolutional Neural 

Networks (CNNs), have revolutionized the field by offering powerful tools for 

automated leaf classification. Several studies have explored the intersection of 

leaf classification and deep learning, contributing to advancements in both 

methodologies. 

Smith and Jones (2020) proposed DeepLeaf, a pioneering framework 

utilizing deep learning for automated plant leaf segmentation and 

classification. Their work addressed the critical need for efficient leaf analysis 

by employing convolutional neural networks (CNNs) to accurately segment 

and classify plant leaves, laying a solid foundation for further advancements 

in automated plant phenotyping. 

Ghosal et al. (2018) proposed an explainable deep machine vision 

framework for plant stress phenotyping, contributing to the understanding of 

plant stress responses through advanced imaging techniques. Their work 

emphasized the importance of interpretable AI in elucidating complex 

biological processes, paving the way for enhanced plant stress management 

strategies. 

Patel and Jain (2019) conducted a thorough review focusing on leaf 

disease detection using deep learning techniques. Their comprehensive 

analysis highlighted the significance of deep learning in addressing the 

challenges of plant disease management, providing insights into the latest 

methodologies and advancements in this critical area of agricultural research. 

Kumar, Jatav, and Singh (2021) presented a comprehensive review 

discussing deep learning-based automatic plant disease detection. By 

synthesizing existing literature, they elucidated the evolution of deep learning 

techniques in plant pathology, offering valuable insights for researchers and 

practitioners engaged in combating plant diseases through technological 

interventions. 

Wang and Li (2021) provided an in-depth review of leaf disease 

detection using deep learning techniques, consolidating recent advancements 

in the field. Their work synthesized knowledge from diverse sources, offering 

a comprehensive overview of the state-of-the-art methodologies and potential 

avenues for future research in this critical domain. 
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Choudhury, Samanta, and Sil (2022) contributed to the understanding 

of deep learning techniques for plant disease detection through an extensive 

review. Their analysis encompassed various deep learning architectures and 

methodologies, shedding light on the challenges and opportunities in 

leveraging these techniques for effective plant disease management. 

Zhang, Li, and Hu (2023) conducted a review focusing on deep 

learning-based leaf disease detection and classification. By analyzing recent 

developments and methodologies, they provided valuable insights into the 

application of deep learning in addressing the challenges of automated disease 

diagnosis in plants, contributing to advancements in agricultural technology. 

Dyrmann et al. (2016) explored plant species classification using deep 

convolutional neural networks (CNNs), showing significant promise for 

species identification in agricultural applications. Their results demonstrated 

CNNs' adaptability and accuracy in identifying plant species. 

Too et al. (2019) conducted a comparative study to fine-tune deep 

learning models for plant disease identification, showcasing how transfer 

learning can improve model performance when working with limited datasets 

for crop disease detection. 

Amara et al. (2017) applied deep learning techniques to classify 

banana leaf diseases, providing a domain-specific case study that 

demonstrated the utility of CNNs in handling complex disease classification 

tasks in agriculture. 

Picon et al. (2019) focused on using deep convolutional neural 

networks for crop disease classification in real-world environments. Their 

study emphasized the effectiveness of mobile capture devices in diagnosing 

plant diseases in situ, broadening the scope of practical agricultural 

applications. 

Sladojevic et al. (2016) presented a deep neural network-based 

approach for recognizing plant diseases by classifying leaf images. Their 

findings provided an early demonstration of the robustness of neural networks 

in distinguishing plant disease symptoms from healthy leaves. 

Ferentinos (2018) provided an evaluation of various deep learning 

models used for plant disease detection and diagnosis, establishing 

benchmarks for performance in real-time agricultural monitoring systems. 

Mohanty, Hughes, and Salathé (2016) applied deep learning for image-

based plant disease detection, underscoring the potential of CNNs to automate 

plant disease diagnosis with high accuracy using large image datasets. 

Nagasubramanian et al. (2019) introduced a novel method using 

explainable 3D deep learning on hyperspectral images to identify plant 

diseases, highlighting the importance of interpretability in AI models for better 

disease management. 
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Barbedo (2016) offered a comprehensive review of the challenges 

faced in automatic plant disease identification using visible range images, 

helping set the direction for future research in this field. 

Ramcharan et al. (2017) applied deep learning for cassava disease 

detection using image-based methods, providing a framework for detecting 

diseases in this critical crop, with implications for food security in developing 

regions. 

Singh and Misra (2017) utilized image segmentation and soft 

computing techniques for plant leaf disease detection, presenting a hybrid 

approach combining machine learning and traditional image processing 

methods for increased accuracy in disease classification. 

Liu et al. (2017) demonstrated the application of CNNs in detecting 

apple leaf diseases, further confirming the effectiveness of deep learning for 

disease identification across different crops. 

 

Methodology and the Structure of the System 

The initial step involved sourcing images of diverse leaf types. We 

utilized a training set curated by Wu et al. (2007), extracting 600 images 

encompassing 20 distinct leaf varieties. Each category comprised 30 images, 

each originally sized at 1200×1600 pixels. To expedite neural network 

training, we converted the images to grayscale and resized them to 50×50 

pixels. To enhance the network's adaptability to varying image qualities, we 

applied two types of noise: "speckle" for images whose sequence numbers 

were multiples of three, and "salt and pepper" for those multiples of four. 

These arbitrary selections ensured exposure to unclear images across different 

leaf types. Following noise addition, we binarized the images for streamlined 

training, opting for binary values instead of floating-point values. for faster 

computation and reduced memory usage. The images were then organized into 

a matrix format, with each column representing an image, labeled, and 

randomized. The resulting matrix comprised 600 columns (for the processed 

images) and 2,500 rows (for the pixels in each image). This matrix served as 

input to the pattern recognition neural network. 

A partition of 70% for training (420 images), 15% for validation (90 

images), and 15% for testing (90 images) was established. Through iterative 

experiments, we determined that a hidden layer consisting of 30 neurons 

yielded optimal results with minimal errors. The output layer comprised 20 

neurons, corresponding to the number of leaf classes trained for recognition. 

http://www.eujournal.org/


European Scientific Journal, ESJ                                ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

October 2024 edition Vol.20, No.30 

www.eujournal.org   27 

Figure 1: Image processing diagram 

Figure 2: Noise types before and after binarization 

Figure 3: Neural Network Agriculture 

 

Experiment Results 

During the image preprocessing stage, we introduced various types of 

noise, including speckle and salt and pepper noise, to a subset of the images. 

Subsequently, the processed set was inputted into the pattern recognition tool 

of the neural network implemented in MATLAB. The training process 

completed within approximately 2 seconds, with all dataset images 
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successfully fed into the neural network. Through extensive experimentation, 

we determined that 30 neurons in the hidden layers represented the optimal 

configuration. Further elaboration on the detailed results is provided alongside 

each corresponding figure below. 

 
Figure 4: Neural network training results 

 

In Figure 4, the %E Percent Error denotes the proportion of 

misclassified images. Specifically, we observed 0% misclassifications within 

the training set., 17% in the validation set, and 11% in the testing set. 

Additionally, CE represents the cross-entropy, a measure of the disparity 

between probability distributions of an event and its target. In our paper the 

cross-entropy for the training set is approximately 2.1, while for the validation 

and testing sets, it is around 6.8. 

 
Figure 5: Confusion matrix plot 

 

In Figure 5, the confusion matrix plot compares the neural network's 

output with the correct classifications. Rows represent the estimated classes 

by the neural network (output class), while columns denote the correct classes 
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(target class) for the training, validation, testing, and combined datasets. 

Diagonal cells signify correctly classified images, whereas off-diagonal cells 

represent misclassifications. Each cell indicates the number of images and 

their percentage. The rightmost column displays the ratio of all predicted 

images for each class, while the bottom row shows the percentage of images 

belonging to each class. Green highlights indicate correct classifications, 

while red denotes incorrect ones. The bottom-right cell showcases the overall 

accuracy. 

The overall accuracy for each set is as follows: training set 100%, 

validation set 82.2%, test set 88.9%, and combined sets 95.7%. 

 
Figure 6: The receiver operating characteristic plot - ROC 

 

In Figure 6, the receiver operating characteristic (ROC) curves depict 

a metric used to assess classifier quality. The neural network outputs are 

subjected to threshold values spanning the range [0,1] for each class. True 

Positive Ratio (TPR) and False Positive Ratio (FPR) are computed for each 

threshold. TPR represents the proportion of correct classification outputs for a 

class relative to the target number of outputs for that class, while FPR 

represents the proportion of misclassification outputs for a class relative to the 

target number of outputs for that class. Generally, a classifier is deemed better 

the further "up and to the left" its ROC curve lies. As most curves 

predominantly occupy the upper left quadrant of the plots, it suggests accurate 

detection for most classes. Notably, the highest FPR values appeared in Class 

No. 16 for the testing set, and in Class No. 17 for the validation set and the 

combined sets. 
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Figure 7: Plot of the cross-entropy versus the epochs 

 

 
Figure 8: Error histogram 

 

Figure 7 portrays the cross-entropy across epochs for the training, 

validation, and testing phases of the neural network (NN). An epoch refers to 

a single cycle sufficient to train the neural network on all available data. Cross-

entropy, as previously defined, quantifies the variation between probability 

distributions of an event and its target. The plot illustrates a decreasing trend 

in cross-entropy as the network undergoes training. Notably, the best 

validation performance is observed at epoch 32. 

In Figure 8, the error histogram visualizes the discrepancies between 

target values and predicted values post-training. The histogram segregates 

error values into bins, with blue bars denoting the training data, green bars 

representing the validation data, and red bars indicating the testing data. This 

histogram serves to highlight outliers—data points exhibiting significantly 

inferior fit compared to the majority. The y-axis displays the number of 

samples falling within each bin, while the x-axis delineates the range of error 
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values. For instance, the bin ranging from 0 to -0.02856 errors encompasses 

close to 8000 instances for the training dataset, approximately 10000 instances 

for the validation dataset, and roughly 12000 instances for the test dataset. 

This suggests that a substantial portion of samples from each dataset exhibits 

a difference between target and predicted values falling within the specified 

range. 

 

Conclusions  

Leaf classification stands as a significant task within the realms of 

biology and chemistry, contributing substantially to scientific advancements. 

Extensive research has been dedicated to this domain, reflecting its critical 

importance. In this study, our objective was to develop a neural network 

program capable of accurately recognizing and classifying 20 distinct types of 

plant leaves. 

Our neural network employed feed-forward algorithms, featuring two 

hidden layers. Through iterative experimentation with varying numbers of 

neurons for the hidden layer, we identified that employing 30 neurons yielded 

the least errors. Consequently, the neural network architecture comprised 2500 

neurons for the input layer, 30 neurons for the hidden layer, and 20 neurons 

for the output layer. 

The performance evaluation revealed notable recognition rates: 100% 

for the training set, 82.2% for the validation set, 88.9% for the test set, and an 

impressive 95.7% for all sets combined. Notably, image preprocessing 

techniques were instrumental in enhancing both the performance and accuracy 

of the neural network while significantly reducing training time. 

Our findings underscore the superiority of Artificial Neural Networks 

in the realm of image classification, signaling a transformative potential for 

technology. By harnessing the power of neural networks, we anticipate 

significant advancements in leaf classification and beyond, propelling 

technological innovation to new heights. 
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