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Abstract 

Climate model simulations are frequently affected by biases, which 

makes it difficult to incorporate them directly into analyses of the impact of 

climate change. It is therefore essential to use bias correction methods to 

minimize discrepancies between real data and that generated by Regional 

Climate Models (RCMs). This study aims to analyze the results of three bias 

correction methods (LS, MQE, and MQG) applied to the processing of mean 

rainfall and temperature data from CORDEX-Africa's Regional Climate 

Models (RCMs), specifically in the north-eastern region of Lake Chad. Four 

statistical measures (bias, RMSE, r2, and MEA) were used to assess the 

effectiveness of each bias correction method. In addition, adjusted Mann-
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Kendall analysis and the Sen slope estimation method were applied to study 

trends and their magnitude over the recent (1975-2020) and future (2021-

2050) periods, using a 5% significance level. The results highlight the 

existence of significant biases between the uncorrected RCM outputs and the 

observed data. After applying the bias correction, significant reductions in bias 

and comparable performance between the different bias correction methods 

were observed, with the LS method performing slightly better in correcting 

biases in monthly mean precipitation and temperature. Consequently, the LS 

method was selectively applied to correct the biases in the RCM monthly mean 

precipitation and temperature projections for the 2021-2050 period under the 

RCP4.5 and RCP8.5 scenarios using the 1975-2004 reference period. The 

results of multi-model averaging of RCMs under the RCP4.5 and RCP8.5 

scenarios indicate a significant increase in mean annual temperatures over the 

period 2021-2050. As far as annual precipitation is concerned, only an 

increase is forecast under the RCP4.5 scenario. Under the RCP8.5 scenario, 

the absence of a precipitation trend is predominant, with the exception of the 

south of the zone, where an increasing trend has been observed. In light of 

these results, it is clear that the impact of climate change will intensify in the 

study area in the future. It is imperative to develop strategies to adapt and 

reduce the impacts in order to manage the availability of water resources 

efficiently. 

 
Keywords: Bias correction, MCR, climate change projections, bias correction 

methods, and Northeastern Lake Chad 

 

1.  Introduction  

The management of water resources in the context of climate change 

represents a major challenge for the scientific community over the coming 

decades. By analyzing the effects of climate change on the issue of global 

water scarcity, Gosling & Arnell (2016), noted that climate change is likely to 

lead to significant changes in the global hydrological cycle due to variations 

in climatic parameters. In sub-Saharan Africa, particularly in the Sahel region, 

the effects of climate change are already being felt. These impacts are affecting 

key areas such as water availability, agriculture, and energy. These impacts 

have repercussions on key sectors such as water supply, agriculture, and 

energy (N’Tcha M’Po et al., 2016). In its fourth report, the IPCC (2007), 

indicated that climate change has begun to have an impact on the frequency, 

intensity and duration of extreme events, such as high temperatures and large 

fluctuations in precipitation. General circulation models (GCMs) are the most 

powerful tools for predicting climate change linked to future greenhouse gas 

concentration scenarios, thus enabling a strategy to be implemented (Siam et 

al., 2013). However, Rummukainen (2016), believes that GCMs generally 
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have a spatial resolution greater than 100 km × 100 km, which restricts their 

ability to simulate climate at local or regional scales. Previous studies have 

also shown that GCM simulations and forecasts of the hydrological cycle are 

sometimes very uncertain and that the processes governing local precipitation 

are difficult to resolve (Siam et al., 2013; Lafon et al., 2013; N’Tcha M’Po et 

al., 2016; Rummukainen, 2016; Pastén-Zapata et al., 2020). It therefore 

appears necessary to reduce the scale in order to obtain a simulation on 

hydrologically relevant spatial and temporal scales. Downscaling is an 

increasingly common technique in hydrology for assessing the effects of 

climate change. According to Fowler et al. (2007), it aims to reduce the 

difference between low spatial resolution hydrological models and regional, 

catchment, or point-scale hydrological models. Regional climate models 

(RCMs) are used. RCMs offer a physically more realistic approach to 

downscaling GCMs than statistical downscaling, as they allow explicit 

representation of the mesoscale atmospheric processes that drive heavy 

precipitation (Lafon et al., 2013). These models focus on specific sub-regional 

areas and more accurately incorporate regional features such as topography, 

coastlines, and islands (Pastén-Zapata et al., 2020). Today, they have a 

resolution ranging from 50 km to around 1 to 5 km (Rummukainen, 2016). 

However, RCMs do not always accurately reproduce precipitation and 

temperature at all times of day. Many previous studies have highlighted the 

fact that the data simulated by RCMs cannot be used directly as input data 

without being protected against systematic errors (Christensen et al., 2007; 

Piani et al., 2010; Hagemann et al., 2011; Gudmundsson et al., 2012; Kaboré 

et al., 2015). These errors are generally caused by sources such as errors 

transferred from GCMs to RCMs (Ibrahim, 2012). A number of methods have 

been developed to minimize these errors. These are known as bias correction 

methods. These methods help to reduce biases in the mean, variance, or overall 

distribution of the simulated climate variables (Teutschbein & Seibert, 2012; 

Lafon et al., 2013; Maraun, 2013). In addition, given that climate change can 

have an impact on water resources (IPCC, 2014), in order to manage water 

resources in a region it is essential to carry out an in-depth study that examines 

long-term climate trends in order to improve the results of these actions. For 

the present study, the most frequently used bias correction methods, such as 

the linear scaling method, the empirical quantile methods (EQM) and finally 

the quantile methods based on the gamma distribution (QGM), were selected 

in order to correct the biases in the RCM simulations. The primary objective 

of this work is to evaluate the performance of three (03) bias correction 

methods for monthly mean precipitation and temperature. The second 

objective of this work is to analyze trends in precipitation and temperature 

based on observed (1975-2020) and bias-corrected data for the period 2021-

2050. 
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2- Materials and Methods 

2.1- Description of the study area 

The study area, the north-east of Lake Chad, is located in the 

sedimentary basin of Lake Chad in the Lake Chad Province of Chad. 

Geographically, it lies between 12 and 14 degrees North latitude and 13 and 

16 degrees East longitude (Fig. 1). It covers an area of 1,2187 km2. The 

climate in this area is semi-arid, with two distinct seasons: the dry season 

lasting around 7 months, from October to April, and the rainy season covering 

5 months, from May to September. Annual rainfall can reach up to 450 mm. 

July and August are characterized by heavier rainfall, with average 

temperatures ranging from 28°C to 36°C. 

 
Figure 1: Location of the study area 

 

2.2-  Data 

2.2.1-  MCR data 

In this study, daily precipitation and temperature simulated from four 

(04) regional climate models were used. The RCMs used are HIRHAM5, 

RACMO2.2T, RCA4, and CCCma-CanESM2 (Table 1). These models are 

available as part of the Coordinated Regional Climate Scale 

Experiment (CORDEX) over Africa, based on CMIP5 (Taylor et al., 2012). 

The set of simulations was performed with a resolution of 0.44 for the period 

1950 to 2100, in the same CORDEX-Africa domain. Several previous studies 

have made extensive use of these methods in Central Africa, particularly in 

the Lake Chad basin, and the results have demonstrated reasonable 

performance (Akinsanola et al., 2015; Fotso‐Nguemo et al., 2018; Nkiaka et 
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al., 2018a; Adeyeri et al., 2020; Mbienda et al., 2022). The RCM forecast 

scenarios used for this work are those of RCP8.5 and RCP4.5, which are 

available for the period 2006-2100. 
Table 1: Summary of regional climate models 

MCRs Institutions/ Reference MCGs 

HIRHAM5 Darmarks Meteorologiske Instut (DMI)(Christensen et 

al., 2007) 

ICHEC-EC-

EARTH 

RACMO22T Koninklijk Nederlands Meteorologisch Instituut 

(KNMI), Netherlands (Meijgaard et al., 2008) 

 

ICHEC-EC-

EARTH 

RCA4 Swedish Meteorological and Hydrological Institute, 

Sweden (Samuelsson et al., 2011) 

MIROC-

MIROC5 

CanESM2 Canadian Centre for Climate Modelling and Analysis 

(Caya et al., 1995)  

CCCma 

 

2.2.2-  Observed data 

In this study, observed data from two observation stations (Ngouri and 

Bol), as supplied by the Chad National Meteorological Agency (ANAM), and 

from the Climatic Research Unit (CRU) are used to develop bias correction 

methods and compare them with the RCM results. Due to the lack of 

meteorological data, it was necessary to collect and analyse observation data 

from satellites. These data were obtained from the Climatic Research Unit 

(CRU), and more specifically from the latest version of CRU TS4.7 (Climatic 

Research Unit gridded time series) developed by Harris et al. (2020). These 

data, with a grid resolution of 0.05° (~5 km), have been used as a reference for 

observing precipitation and temperature. Various previous studies have used 

these data to assess the effectiveness of CMIP5 models ( Rowell, 2013; GIZ, 

2015; Nkiaka et al., 2018b; Mahmood et al., 2019; Taguela et al., 2020; WB, 

2020; World Bank Group, 2022).  

 

2.3-  Bias correction methods 

As part of this study, three (03) bias correction methods (LS, EQM and 

GQM) for precipitation and temperature were chosen to correct the biases 

from the RCMs. Using these methods, it is possible to correct the biases in the 

raw outputs of the RCMs selected for this project. These techniques were 

selected on the basis of previous research ( Lenderink et al., 2007; Maraun, 

2013; Hawkins et al., 2013; Ramirez-Villegas et al., 2013; Fang et al., 2015; 

Holthuijzen et al., 2022) which demonstrated that each of these methods can 

significantly reduce the biases contained in the RCM outputs. 

 

2.3.1- Scaling method(LS) 

This approach makes it possible to establish a precise correlation 

between the monthly mean of the corrected values and the observed values 
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(Lenderink et al., 2007). It works with monthly correction values that are based 

on the differences between observed data and raw data simulated by climate 

models (Fang et al., 2015). There are several formulations for this linear 

scaling method ( Lenderink et al., 2007; Fang et al., 2015). The formulation 

used in this work is by Fang et al., (2015). According to these authors, 

precipitation is generally corrected with a multiplier factor and temperature 

with an additive term on a monthly basis: 

 
(1) 

 

The variables Pcor, m, d and Tcor,m, d refer respectively to the 

corrected precipitation and temperature for the dth day of the same month, 

while Praw, m, d and Traw, m, d refer to the raw precipitation and temperature 

for the same day of the same month. The expectation operator, denoted μ(.), 

is used to represent the average rainfall observed in a given month m, for 

example μ (Pobs, m). 

 

2.3.2- Empirical quantile methods (EQM) 

One of the commonly used tools for bias correction of RCM 

simulations is empirical quantile mapping (EQM), which maps simulated to 

observed cumulative distribution functions (CDFs), which are empirically 

constructed based on data from a historical period (Byun & Hamlet, 2019). 

According to Déqué et al.(2007), the quantile-quantile bias correction method 

involves comparing the observed quantiles with the simulated quantiles during 

the reference period in order to establish equality. It uses the empirical 

distributions of the data series (precipitation and temperature) observed and 

simulated by the RCMs to correct the biases of these projections, hence the 

name of the procedure (N’tcha M’Po et al.,2016). MQE is one of the most 

frequently used and effective methods for bias correction(Holthuijzen et al., 

2022). Several researchers (Boé et al., 2007 ; Gudmundsson et al., 2012 ; 

N’Tcha M'po et al.,2016; Byun & Hamlet, 2019 ; Song et al., 2021; 

Holthuijzen et al., 2022) have used this method to apply bias corrections to the 

different variables simulated by RCMs. The classical formulation is given by 

the following equation: 

 

 

 

(2) 
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Where x and y denote respectively the value to be corrected and the 

corrected value, while Fobs and Fmod represent respectively the distributions of 

the values observed and simulated by the climate model 

 

2.3.3- Gamma distribution quantile method (GQM) 

This method is only applicable to precipitation (Piani et al., 2010). In 

general, the non-parametric bias correction method is used for all possible 

precipitation distributions, without making any assumptions about the actual 

precipitation distribution (Fang et al., 2015). It is known that this method can 

improve the bias correction simulated by RCMs. The theoretical distribution 

is used rather than the empirical distribution. The two-parameter gamma 

distribution is used to describe daily precipitation (Vlček & Huth, 2009). The 

theoretical distribution is used rather than the empirical distribution. It also has 

the ability to remove some extreme values caused by errors, while preserving 

the limiting value. The equation that gives its probability density function f(x) 

is as follows:  

 
(3) 

 

Where α and β are shape and scale parameters, respectively, and Γ(γ) 

is the Gamma function. Several authors (Vlček & Huth, 2009; Piani et al., 

2010a; Wilcke et al., 2013) have had to revisit this approach in their work. 

 
(4) 

 

Where α and β are shape and scale parameters, respectively, and Γ(γ) 

is the Gamma function. Several authors (Vlček & Huth, 2009; Piani et al., 

2010a; Wilcke et al., 2013) have had to revisit this approach in their work.  

 

2.4- Evaluation of the performance of bias correction methods 

For this study, four criteria were used to evaluate the performance of 

the bias correction methods (Fig. 2). The mean absolute error (MAE), the root 

mean square error (RMSE), the correlation coefficient (r2), and the percentage 

bias (Pbiais). The criteria for evaluating bias correction techniques and climate 

models are selected based on various studies ( Moriasi et al., 2007; Fang et al., 

2015; Hamed et al., 2021; Hanchane et al., 2023) ,that have demonstrated the 

importance of these statistical criteria for evaluating model performance. 

http://www.eujournal.org/


European Scientific Journal, ESJ                                ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

October 2024 edition Vol.20, No.30 

www.eujournal.org   211 

 

 
(5) 

 
(6) 

 
(7) 

 
Figure 2: Framework for correcting biases in climate model data 

 

2.5-  Modified Mann-Kendall and Mann-Kendall test 

2.5.1-  Modified Mann-Kendall and Mann-Kendall test 

The Mann-Kendall test is a rank-based statistical test frequently used 

to analyse trends in climate data (Mavromatis & Stathis, 2011). The aim of 

this test is to statistically evaluate whether or not there is a monotonic trend 

towards an increase or decrease in the variable studied over 

time.  (Souleymane et al., 2019). Not only does it have the advantage of being 

less sensitive to outliers and missing values, but it also does not require a 

normally distributed data set, which is common in hydroclimatic data (Ahmad 

et al., 2015; Yazid & Humphries, 2015). Many studies have used this test in 

different regions of the globe to quantify the significance of trends in 

hydrometeorological time series (Bayazit & Önöz, 2007; Gocic & Trajkovic, 

2013 ; Nkiaka et al., 2017) and have shown that the non-parametric Mann-

Kendall test is more powerful than some parametric tests, especially when 

dealing with asymmetric data. The Mann-Kendal test is based on two 

assumptions. The assumption (H0) is that there is no trend in the data, while 
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the alternative assumption (H1) suggests that there has been a monotonically 

increasing or decreasing (rising or falling) trend over time (Agbo et al., 2021). 

The Mann-Kendall S statistic is calculated from the following equation: 

𝑆 =  ∑

𝑛−1

𝑖=1

∑

𝑛

𝑗=𝑖+1

𝑆𝑔𝑛(𝑋𝑗 − 𝑋𝑖) 

(8) 

 

Where the function Sgn is defined by Sgn (X) = 1 for X > 0; Sgn (X) 

= 0 for X = 0 and Sgn (X) = -1 for X < 0. Xj and Xk are sequential data values 

for the time series data of length n.  

The Z statistic is calculated as follows: 

 
(9) 

 

According to Neha (2012), time series analysis first requires trends to 

be tested by taking into account autocorrelation or serial correlation, which is 

the correlation of a variable with itself over successive time intervals. 

According to the same author, autocorrelation increases the chances of 

detecting significant trends, even if they are neglected, and vice versa. It is 

from this point of view that Hamed & Rao (1998) proposed a modified Mann-

Kendall test that calculates the autocorrelation between ranks after removing 

the apparent trend. Unlike the original Mann-Kendall test, the modified Mann-

Kendall test offers the advantage of reducing the impact of correlation between 

series by taking into account the dependence between series by including a 

covariance term in the calculation of the variance of the MK test. The adjusted 

variance is determined by the following equation: 

𝑉[𝑆] =  
1

18
[𝑁(𝑁 − 1)(2𝑁 + 5)]

1𝑁

𝑁𝑆 ∗
 

(10) 

 

Where  
1𝑁

𝑁𝑆∗
= 1 +

2

𝑁(𝑁−1)(𝑁−2)
∑𝜌

𝑖=1 (𝑁 − 𝑖)(𝑁 − 𝑖 − 1)(𝑁 − 𝑖 − 2)𝜌𝑠(𝑖)  

With N representing the observation size of the sample, NS* represents the 

effective number of observations to take into account the autocorrelation in 

the data, ρs (i) represents the autocorrelation between the ranks of the 

observations for lag i, and ρ represents the maximum lag considered (Sinha & 

Cherkauer (2008)). For the present work, the "mkmodified" package 

developed in the R language was downloaded free of charge and used to 
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determine trends in precipitation and temperature (minimum and maximum) 

at annual and seasonal time steps for the recent (1975-2020) and future (2021-

2099) periods. 

 

3- Results and Discussion 

3.1- Results 

3.1.1- Evaluation of bias correction methods 

3.1.1.1-Bias correction for average monthly rainfall simulated by RCMs 

The results of the mean monthly precipitation simulated by these 

RCMs in the raw state and corrected state in comparison with observed data 

are shown in Figures 3-6. The comparison reveals both an underestimation 

and an overestimation of the raw monthly mean precipitation for various 

months across the entire study area. Nevertheless, once the three bias 

correction methods have been applied to adequately reduce the discrepancies 

between the observed and simulated raw data, the results reveal overall close 

agreement between the corrected and observed data, as highlighted in the 

graphs. Furthermore, the level of agreement between observed and corrected 

precipitation data varies from one locality to another, from one bias correction 

method to another, and also from one model to another. It is clear that these 

methods can be used to correct biases in future precipitation. 

 
Figure 3: Comparison of average monthly precipitation observed, simulated by the 

CanESM2 model and corrected by the bias correction methods 
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Figure 4: Comparison of average monthly precipitation observed, simulated by the 

HIRHAM5 model and corrected by the bias correction methods 

 
Figure 5: Comparison of average monthly precipitation observed, simulated by the 

RACMO2.2T model and corrected by the bias correction methods 

 
Figure 6: Comparison of average monthly precipitation observed, simulated by the RCA4 

model and corrected by the bias correction methods 
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3.1.1.2- Correcting for bias in mean monthly temperatures simulated by  

RCMs 

Figures 7-10 summarize the observed, simulated, and simulated 

temperatures corrected by the LS method and the RMSE. Comparing the 

observed temperature data with the raw simulated temperature data, there is a 

shift in the curves, which shows an overall overestimation of temperatures. 

This shift is explained by an underestimation and overestimation of the 

temperature outputs simulated by the RCMs. This requires the biases in the 

temperatures simulated by the RCMs to be corrected using bias correction 

methods. After bias correction, the graphs showing the observed and simulated 

monthly mean temperature curves corrected by the bias correction methods 

are in agreement. The two methods used to correct the biases significantly 

reduced the differences between the observed and simulated data for all four 

RCMs used in this study. The graphs show good agreement between the curves 

of the two methods and the observed data. 

 
Figure 7:  Comparison of average monthly temperatures observed, simulated by the 

CanESM2 model and corrected by bias correction methods 

 
Figure 8:  Comparison of average monthly temperatures observed, simulated by the 

HIRHAM5 model and corrected by bias correction methods. 
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Figure 9:  Comparison of average monthly temperatures observed, simulated by the 

RACMO2.2T model and corrected by bias correction methods 

 
Figure 10:  Comparison of average monthly temperatures observed, simulated by the RCA4 

model and corrected by bias correction methods 

 

3.1.2  Evaluation of the performance of bias correction methods. 

After evaluating the performance of the three bias correction methods 

used to correct the biases in the RCM outputs, four statistical measures (MEA, 

RMSE, r2, and Pbiais) were implemented to assess their performance. A 

significant difference was found between the raw simulated results and the 

results corrected for precipitation and temperature throughout the study area. 

The overestimation and underestimation of precipitation and temperature 

simulated by the RCMs were significantly well adjusted by the three bias 

correction methods used. All the bias correction methods applied improved 

the raw precipitation and temperatures simulated by the RCMs, although 

disparities remained in their corrected statistics. For precipitation, the values 

of the statistical parameters corresponding to each method and model are 
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shown in the table. The results of the study indicate that all three bias 

correction methods are effective in correcting the monthly mean precipitation 

simulated by RCMs. When comparing the values of the statistical rainfall 

measurements corrected by the different bias correction methods, the LS 

method performs better than the GQM and EQM methods. The values of the 

RMSE error, the MEA, and the precipitation Pbias corrected by the LS method 

are lower than those obtained by the GQM and EQM methods, thus 

demonstrating the effectiveness of this approach. In addition, the correlation 

coefficient values obtained from the LS method are relatively higher (greater 

than 0.5) than those obtained from the GQM and EQM methods. This shows 

a good correlation between precipitation corrected by the LS method and 

observed precipitation. At most of the observation sites, the LS method was 

found to be more effective at correcting biases than the other two methods, as 

shown in figures 3-10. It should be noted that the LS method was found to be 

more effective at correcting biases in RCM-simulated precipitation than the 

other two methods. Given that RMSE and MEA are two performance 

indicators for evaluating bias-sensitive bias correction methods (N'Tcha M'Po 

et al., 2016), this indicates that the linear scaling method corrects precipitation 

biases better than the EQM and GQM methods. Overall, the bias correction 

methods show acceptable performance (LS method), with the correlation 

coefficient (r2) and mean absolute error (MAE) showing satisfactory values 

(Table II). The linear scaling and empirical quantile methods show very good 

correlation agreement with the observed data. However, the linear scaling 

method is more effective in correcting for biases in monthly mean 

temperatures, providing very low values for metrics such as the Pbiais, which 

is between 0.987 and 1%. RMSE values range from 0.987 to 1 mm and r² 

values from 0.645 to 0.746. Taking into account the calculations of Pbiais, r2, 

MEA, and RMSE, it is clear that the linear scaling method offers better results 

for correcting biases than the empirical method, both for precipitation and 

corrected mean temperatures. 
Table 2: Comparison of different methods for correcting bias in statistical measures of 

performance 
 MEA RMSE Pbiais r² 

 Monthly precipitation  

 

RCA4 

 

Brute 

LS 

GQM 

EQM 

18,60 36,87 -2,72 0,57 

17,98 33,11 15,23 0,61 

18,39 34,99 -1,42 0,58 

17,95 36,38 -16,63 0,57 

 

HIRHAM5 

Brute 

LS 

GQM 

EQM 

20,36 38,95 -28,91 0,57 

19,53 36,99 10,41 0,71 

20,79 35,31 10,31 0,55 

21,88 37,29 -3,52 0,56 

 

RACMO2.2T 

 

Brute 

LS 

GQM 

24,04 44,32 193,86 0,50 

20,64 37,11 12,14 0,63 

23,14 40,66 24,13 0,52 
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EQM 23,01 40,64 23,62 0,51 

 

CanCM4 

 

 

Brute 

LS 

GQM 

EQM 

32,46 59,50 111,23 0,39 

23,30 38,09 13 ,42 0,67 

27.32 41,40 22,08 0,40 

28,70 46,74 23,72 0,43 

 Average monthly temperature 

RCA4 

 

Brute 2,18 2,67 -6,25   0,86 

LS 1,72 2,11 0,82 0,86 

EQM 1,71 2,37 1,13 0,83 

 

HIRHAM5 

Brute 2,26 2,72 6.68 0,86 

   LS 1,55 1,93 0.58 0,86 

EQM 1,72 1,935 1,12 0,82 

 

RACMO2.2T 

 

Brute 4,83 5,36 -16.85 0,76 

LS 1,97 2,47 0.72 0,76 

EQM 2,15 2,85 1,11 0,70 

 

CanESM2 

 

Brute 1,97 2,41 -3,85 0,82 

LS 1,76 2,19 0,78 0,82 

EQM 1,87 2,53 0,70 0,80 

 

3.2- Analysis of observed and simulated precipitation and temperature  

trends 

3.2.1- Analysis of precipitation trends  

The modified Mann-Kendall test and the Sen slope estimator were 

applied to detect trends at the annual time step in the precipitation series of the 

observations and CRU data over the recent period 1975-2020 and of a multi-

model ensemble of 4 RCMs of the RCP4.5 and RCP8.5 scenarios for the future 

period 2021-2050. The results of all the analyses carried out at the 95% 

confidence level (α = 0.05) are shown in Table 3. The results of the analyses 

revealed statistically significant upward trends in annual precipitation 

observed at the level of the CRU grids (G1, G2, G3, G4, and G6). However, 

no trend was detected at the stations (St1 and St2) in the G5 grid. The 

magnitude (Sen slope) varies from 0.423 to 5.540. For simulated mean annual 

precipitation corrected by the linear scaling method, the multi-model mean 

analysis of the RCP4.5 scenario predicts a statistically significant upward 

trend in simulated annual precipitation over the entire study area. The 

magnitudes of Sen's predicted slope estimator are in the range 1.472 to 2.252. 

Under the pessimistic RCP8.5 scenarios, the absence of a trend is observed in 

almost the entire study area except at grid6 level (to the south), where a 

statistically significant upward trend in annual precipitation is observed with 

a magnitude ranging from 0.164 to 1.184. 
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Table 3: Results of modified Mann-Kendall trend tests and Sen slope for observed and bias-

corrected annual precipitation time series from RCMs at the 5% significance level 

Grille /station     Z-original P-valu New-P-valu Z-corrected  Pente 

Sen 

G1 

G2 

G3 

G4 

CRU               G5 

St1 

G6 

St2 

3,484 

3,294 

3,427 

2,859 

2,745 

0,662 

3,313 

0,795 

0,000 

0,000 

0,000 

0,001 

0,062 

0,507 

0,000 

0,426 

0,001 

0,002 

0,000 

0,001 

0,050 

0,444 

0,000 

0,426 

2,694 

5,540 

1,194 

2,941 

0,423 

0,742 

2 ,941 

0,781 

3,484 

3,294 

3,427 

2,859 

2,745 

0,662 

3,313 

0,795 

G1 

G2 

G3 

RCP4.5 G4 

G5 

St1 

G6 

St2 

2,854 

2,176 

1,998 

1,926 

1,748 

2,105 

1,926 

2,176 

0,004 

0,029 

0,045 

0,054 

0,004 

0,003 

0,054 

0,029 

0,004 

0,029 

0,045 

0,054 

0,004 

0,035 

0,000 

               0.000 

2,854 

2,176 

1,998 

2,872 

2,105 

4,507 

3,905 

1,759 

2,252 

1,535 

1,712 

1,736 

1,624 

1,472 

1,725 

1,759 

G1 

G2 

G3 

RCP8.5 G4 

G5 

St1 

G6 

St2 

0,214 

0,499 

0,249 

0,606 

0,142 

0,677 

0,285 

0,249 

0,830 

0,483 

0,802 

0,544 

0,886 

0,497 

0,775 

0,802 

0,214 

0,483 

0,249 

0,606 

0,142 

0,677 

0,285 

0,279 

0,830 

0,628 

0,802 

0,544 

0,886 

0,497 

0,775 

0,779 

0,758 

0,293 

0,164 

0,322 

0,448 

1,184 

0,453 

0,930 

 

3.2.2- Analysis of average annual temperature trends 

The observed data for mean annual temperatures and the multi-model 

mean of the Regional Climate Models (RCMs) under the RCP4.5 and RCP8.5 

scenarios were subjected to an analysis similar to that for precipitation, using 

the modified Mann-Kendall test with a 95% confidence level to identify trends 

and assess Sen's slopes. Examination of the observation data and the Climatic 

Research Unit (CRU) data reveals, at a significance level of 5%, an upward 

trend in mean annual temperatures, as presented in table 4. The magnitudes of 

the significant upward trends range from 0.016°C/year to 0.021°C/year. In 

contrast to the simulated annual precipitation, the RCM averages under the 

RCP4.5 and RCP8.5 scenarios show statistically significant upward trends in 

mean annual temperatures over the entire study area. The amplitudes of the 

trends predicted under the RCP4.5 scenario range from 0.034°C/year to 

0.037°C/year. Under the RCP8.5 scenarios, the amplitude variations range 

from 0.044°C/year to 0.04°C/year. 
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Discussion 

Wilcke et al.(2013), defined bias as the long-term average difference 

between model and observation. This bias is mostly caused by sources such as 

errors transmitted by GCMs to RCMs, internal climate variations, and 

downscaling tools and methods(Fowler et al., 2007; Ibrahim, 2012; Phuong et 

al., 2020). Several bias correction methods have been developed by a number 

of scientists (Piani et al., 2010a; Piani et al., 2010b; Themeßl et al., 2012; Fang 

et al., 2015 ). For this study, three bias correction techniques (LS, EQM, and 

GQM) were used to correct the biases simulated by the RCMs during the 

monthly evaluations. After evaluating the performance of the methods 

mentioned, it was found that the EQM and GQM methods had difficulty in 

correcting the biases more effectively than the linear scaling method. It is 

possible that these problems are linked to the distribution of climatic variables 

(precipitation and temperature) but also to the weather Adeyeri et al.(2020), 

have made similar observations. This observation has been made by certain 

authors (Piani et al., 2010a; Gudmundsson et al., 2012; Maraun, 2013; 

Ezéchiel et al., 2016; N’Tcha M’Po et al., 2016). These authors argue that bias 

correction methods encounter obstacles due to the variability of precipitation, 

the assumption of bias stationarity, or the fact that this assumption is not 

verified in arid to semi-arid zones. Precipitation corrected by the EQM and 

GQM methods shows a large discrepancy with observed precipitation. This 

discrepancy is attributable to the inability of these methods to successfully 

correct for variations in precipitation as a function of monthly time. The LS 

method was more successful in correcting the biases for both precipitation and 

temperature, as the results show. The results of this method indicate that 

certain evaluation criteria are generally weak (RMSE, MEA, and Pbiais) and 

strong (r2), demonstrating good performance of the LS method. By comparing 

seven (07) bias correction techniques in the Mekrou catchment area, it was 

reported that the linear scaling method performed better in reducing biases in 

monthly precipitation, while other methods (such as QGM) rather have a 

negative impact on the quality of monthly precipitation. In short, the linear 

scaling method was able to correct the biases simulated by the RCMs more 

effectively than the other two methods, even though there were some 

overestimates of precipitation, which seems unavoidable since, according to 

the authors, there is a tendency to overestimate precipitation Pastén-Zapata et 

al.(2020), no bias correction method can totally eliminate bias. According to 

Nguyen et al. (2017), the choice of bias correction methods depends on the 

specific needs of each study. Trend analysis using the modified Mann-Kendall 

test for both observational and CRU data showed overall positive upward 

trends in annual mean precipitation and temperature. These upward trends in 

precipitation and temperature are closely correlated with the work of 

Mahmood et al. (2019), in the Lake Chad basin, which revealed a trend 
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towards a gradual increase in rainfall after the 1980s and high temperatures 

since the drought periods (1973 and 1985). The multi-model approach under 

the RCP4.5 scenario predicts a statistically significant increase in annual 

rainfall over the 2021-2050 period in almost the entire study area. The increase 

in precipitation over this period was also predicted by the RCP8.5 scenarios, 

although the absence of a trend dominates. These trends in future annual 

rainfall increase are consistent with the predictions of Adeyeri et al. (2020), 

who predict an increase in rainfall in the Komadugu-Yobe transboundary river 

(Lake Chad basin) over the period 2020-2050. The prevalence of rainfall in 

this study is consistent with research by Hartley et al.(2015), who estimated a 

20-50% increase in rainfall between 2020 and 2049 in this region. 

Furthermore, these forecasts are consistent with the IPCC report (2014), which 

predicts significant increases in rainfall over the 21st century in the Sahelian 

zone. As for future mean annual temperatures, the trend analysis showed that 

the RCP4.5 and RCP8.5 scenarios agree in confirming strong statistically 

significant trends over the entire study area. Strong upward trends in future 

temperatures have also been confirmed by several studies carried out in 

Central Africa, particularly in the Lake Chad basin ( Taylor et al., 2012; GIZ, 

2015;  Akinsanola et al., 2015; Fotso-Nguemo et al., 2017, 2018; Nkiaka et 

al., 2018b; Mahmood et al., 2019; Taguela et al., 2020; Centre du climat, 2022; 

Fita et al., 2024). Although it is difficult to make real predictions about rainfall, 

as indicated by the IPCC (2014), the high temperatures and slight increases in 

precipitation predicted are already being felt in the study area through disasters 

such as floods and droughts. These phenomena could lead to poor agricultural 

yields, poor water quality, the disappearance of certain animal species (kouri 

cattle), the increasing advance of the desert, and the disappearance of arable 

land. It is therefore suggested that decision-makers and programs adopt global 

approaches to encourage adaptation to climate change, which is already 

evident in the semi-arid study area. 
Table 4: Results of the modified Mann-Kendall trend tests and Sen's slope for the time 

series of mean annual temperatures observed and corrected for RCM bias at the 5% 

significance level 

                            Average annual temperature(°C) 

 Z-original P-value   Z-corrected    New-P-valu     Pente 

G1 

G2 

G3 

G4 

 G5 

St1 

G6 

St2 

4,450 

3,825 

3,591 

3,739 

2,313 

4,351 

3,270 

4,506 

0,006 

0,001 

0,000 

0,000 

0,002 

0,003 

0,001 

0,000 

3,663 

3,490 

4,275 

3,213 

2,214 

3,611 

4,373 

3,688 

0,003 

0,000 

0,000 

0,001 

0,007 

0,003 

0,000 

0,000 

0,032 

0,026 

0,020 

2,941 

0,018 

0,291 

0,023 

0,028 

G1 

G2 

3,425 

3,354 

0,006 

0,007 

5,861 

3,354 

0,000 

0,007 

0,038 

0,033 

Observed 

(CRU) 

http://www.eujournal.org/


European Scientific Journal, ESJ                                ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

October 2024 edition Vol.20, No.30 

www.eujournal.org    222 

G3 

 G4 

G5 

St1 

G6 

St2 

3,318 

3,389 

3,782 

3,603 

3,568 

3,175 

0,009 

0,006 

0,001 

0,003 

0,003 

0,001 

4,129 

1,629 

4,221 

9,516 

1,867 

3,316 

0,003 

0,000 

0,000 

0,001 

0,000 

0,001 

0,038 

0,033 

0,031 

0,038 

0,035 

0,039 

G1 

G2 

G3 

 G4 

G5 

St1 

G6 

St2 

3,889 

3,461 

3,782 

4,103 

3,889 

3,817 

3,496 

3,568 

0,001 

0,005 

0,001 

0,004 

0,001 

0,001 

0,004 

0,003 

3,889 

3,461 

3,782 

7,808 

3,889 

3,817 

3,926 

3,568 

0,001 

0,005 

0,001 

0,004 

0,001 

0,001 

0,008 

0,003 

0,054 

0,042 

0,052 

0,042 

0,503 

0,049 

0,040 

0,039 

G1, G2,…G6 = grid; St1 and St2 = station 

 

Conclusion 

The aim of this work is to evaluate the performance of three bias 

correction methods in correcting the monthly mean rainfall and temperature 

simulated by RCMs in northeastern Lake Chad. A number of statistical 

measures (Pbiais, RMSE, r2, and MEA) were used to evaluate the 

performance of the bias correction methods. The results showed that the linear 

scaling method outperformed the other bias correction methods. Trend 

analysis using the modified Mann-Kendall test for CRU observation data and 

data simulated by the RCM multi-model approach under the RCP4.5 scenario 

showed overall upward trends in recent and future mean annual precipitation 

and temperature over the entire study area. On the other hand, the RCP8.5 

scenarios are dominated by a lack of trend in recent and future precipitation 

on the one hand and an increase in recent and future annual temperature (2021-

2050) on the other. 
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