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Abstract 

This research introduces a hybrid anomaly detection model that 

integrates the Modified Lion Optimization Algorithm (MLOA) with the 

One-Class Support Vector Machine (OCSVM) to enhance the resilience of 

portal systems against advanced cyber threats, including Man-in-the-Middle 

(MitM) attacks, denial-of-service events, and data breaches. The MLOA-

OCSVM model leverages advanced preprocessing and feature selection 

techniques for high-dimensional datasets, incorporating real-time monitoring 

and alert systems for rapid anomaly detection and mitigation by optimizing 

decision boundaries and fine-tuning threshold parameters. Experimental 
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evaluations revealed that the MLOA-OCSVM significantly outperformed the 

Sub-Space Clustering One-Class Support Vector Machine (SSC-OCSVM) in 

identifying anomalies across various complexity levels, achieving superior 

metrics such as a recall of 0.97, accuracy of 0.98, precision of 0.96, and 

ROC-AUC of 0.97 for simple anomalies, and maintaining strong 

performance for moderate and high-complexity anomalies with recall values 

of 0.92 and 0.90 and ROC-AUC scores of 0.94 and 0.92. These findings 

validate the model’s effectiveness in detecting zero-day attacks and 

contextual anomalies, establishing a scalable, high-performance solution for 

modern portal system security, and showcasing the practical application of 

nature-inspired optimization algorithms in real-world cybersecurity 

environments. 

 
Keywords: Anomaly Detection, Cybersecurity, Modified Lion Optimization 

Algorithm, Nature-Inspired Algorithms, Performance Metrics, Portal 

Systems, SSC-OCSVM, UNSW-NB15 Dataset 

 

Introduction 

In today’s digital landscape, portal systems (PS) have become 

integral to delivering critical education, administration, and communication 

services. However, these systems' increasing complexity and 

interconnectivity make them vulnerable to diverse anomalies, including 

malicious attacks, injection flaws, denial-of-service (DoS) attacks, data 

breaches, and human errors. These vulnerabilities cause operational 

disruptions, financial losses, and reputational damage, leading to reduced 

user trust. For example, major cyber incidents like the July 2015 data breach 

at the University of California, Los Angeles (UCLA), which exposed 4.5 

million records at a cost of over $70 million, and the July 2023 University of 

Manchester was a victim of cyber-attack, resulting to vulnerabilities of about 

11,000 staff and more than 46,000 students’ data (Paganini, 2023), highlight 

the severe consequences of insufficient anomaly detection systems. In 

Nigeria, the 2023 presidential elections recorded 12.9 million cyber threats 

reported by the minister of communication and digital economy, Isa Pantami 

(Ukagwu. (2023), further emphasizing the need for robust security 

mechanisms. 

Conventional anomaly detection techniques, including trial-and-error 

methods or default parameter settings, often fail to adapt to cyber threats' 

dynamic and evolving nature. Techniques such as Sub-Space Clustering-One 

Class Support Vector Machine (SSC-OCSVM) developed by (Pu et al., 

2021), Feature selection with K-Lion Optimization Algorithms (K-LOA) by 

(Jagatheeshkumar et al., 2021), and deep-learning hybrid models by Data, 

Karadayi and Aydin, (2020) have shown promise but are limited in handling 
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complex anomaly patterns like contextual User-to-Root (U2R) and Remote-

to-Local (R2L) attacks. These approaches may result in high false positive 

rates or leave systems vulnerable to subtle yet impactful threats. 

To address these limitations, this study proposes the Modified Lion 

Optimization Algorithm (MLOA) to enhance anomaly detection by 

optimizing thresholds and improving computational efficiency. The MLOA 

leverages advanced nature-inspired optimization techniques to adapt 

dynamically to diverse anomaly types, ensuring improved detection accuracy 

and robustness in real-world scenarios. By utilizing datasets from Lagos 

State University of Education (LASUED) portal systems and the UNSW-

NB15 dataset, the proposed solution aims to safeguard portal systems from 

evolving cyber threats. 

The remainder of this article is organized as follows: Section 2 

provides an overview of the proposed MLOA framework and its application 

in portal systems. Section 3 presents the research findings and discussions. 

Section 4 concludes the study and outlines potential directions for future 

research. 

 

Overview of Proposed MLOA Anomaly Detection Threshold in a Portal 

System 

Portal system resilience is vital for maintaining operational integrity, 

user trust, and security. By improving the anomaly detection system's 

detection threshold, early anomaly detection and mitigation are crucial to 

ensuring the system can resist and recover from changing cyber threats.  

In this article, the network logs (dataset) were collected from the 

Lagos State University of Education (LASUED) Edu portal 

(www.eportal.lasued.edu.ng) using network traffic monitoring software 

called OPNsense by Thomas-Krenn, A.G. (2018), the software uses comma-

separated values (CSV), to store all the network logs that pass through it, by 

adopting the work of (Konstantina et al., 2021) and the UNSW-NB15 dataset 

downloaded from the open-source (Australian Centre for Cyber Security by 

Nour Moustafa, (2015)). This dataset contains a variety of network activities, 

including normal traffic and modern attacks, representing contemporary 

threats faced by network systems, it includes 2.54 million records, each 

containing network traffic data along with labeled attacks and normal 

activities organized with different features capturing details of each network 

connection, with labels indicating whether each instance is normal or 

malicious.   

Adopting the work of (Konstantina et al., 2021) as shown in Figure 

1., the datasets were preprocessed, and the UNSW-NB15 dataset and 

network logs were imported into Python using the pandas package for 

preprocessing. Missing values in both datasets were identified using the 
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IsNull ().sum() function and replaced with their respective feature means 

through the SimpleImputer from sklearn.impute. This preprocessing pipeline 

effectively cleaned and prepared the datasets, optimizing them for the 

subsequent anomaly detection modeling.  

 
Figure 1: Network Data Collection Adopting (Konstantina., 2021)’s Work 

 

Development and Training of the MLOA  

Adopting Rajakumar, (2012)’s work, using the preprocessed network 

logs (dataset) collected and the UNSW-NB15 dataset selected features. This 

research delves into several steps and methods utilized in developing and 

implementing the Modified Lion Optimization Algorithm framework for 

early anomaly detection in a portal system. The population size for the 

Modified Lion Optimization Algorithm (MLOA) was determined based on 

the Internet Assigned Numbers Authority (IANA) port assignments. By 

combining the source and destination ports, represented as 5 bits each, the 

total number of lions was set to 10 bits as shown in Figure 2.  

 
Figure 2: Source and Destination ports in the network (IANA) 
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The MLOA’s problem search space's dimensionality was derived 

from the dataset attributes. The total number of columns in the network logs 

defined a search space of 11 dimensions, with each dimension represented by 

4 bits, as shown in Figure 3. 

 
Figure 3: Dimensionality of Network Logs Collected 

 

The network logs collected are equal to the total number of columns 

tagged with the green mark in the search space available within 16.2 MB as 

tagged with the red mark in Fig.3; the total search space (SS) = 11 (4 bits). 

To balance convergence efficiency and computational cost, the 

maximum number of iterations for the MLOA was calculated using the mode 

of middle values from the preprocessed dataset, resulting in a maximum 

iteration value of 40. This was achieved by averaging middle row and 

column values from the dataset, as shown in Figure 4 and defined by the 

formula equation 1, which provided balanced parameters for the algorithm. 

Within the specified search space, the initial population of lions was then 

created at random, with every lion standing for a possible solution to the 

optimization problem. 

M=∑𝑛
𝑖 𝑥i/n 

 
Figure 4: Preprocessed datasets 

 

The fitness of each lion was evaluated using a tailored objective 

function of the Lion Optimization Algorithm as defined by Rajakumar, 

(2012) in equations 2 and 3, implemented in Python.  
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The Objective Function (OF) = arg min 

𝑓(𝑥1, 𝑥2, 𝑥3 … . 𝑥𝑛 ), 𝑥𝑖 ∈ (𝑥𝑖
𝑚𝑖𝑛, 𝑥𝑖

𝑚𝑎𝑥) 𝑛 ≥ 1 

(2)  (Rajakumar, 2012) 

Equation (2) is an n-variable minimization function in which every 

result is a variable , 𝑥𝑖: 𝑖 =  1,2,3,4, . . . . . . 𝑛, might be governed by a 

particular equality or inequality restriction. The Lion must have a binary 

structure when 𝑛=1. whereas 𝑛 ≥ 1 favors integer-structured lions.  

From equation (2) the pride is initiated by generating the initial pride 

as 𝑋𝑚𝑎𝑙𝑒 and 𝑋𝑓𝑒𝑚𝑎𝑙𝑒 with the structure of 𝑋𝑚𝑎𝑙𝑒 =
[𝑥1

𝑚𝑎𝑙𝑒 , 𝑥2
𝑚𝑎𝑙𝑒 , 𝑥3

𝑚𝑎𝑙𝑒 , … . 𝑥𝐿
𝑚𝑎𝑙𝑒 and 𝑋𝑓𝑒𝑚𝑎𝑙𝑒 =

[𝑥1
𝑓𝑒𝑚𝑎𝑙𝑒

, 𝑥2
𝑓𝑒𝑚𝑎𝑙𝑒

, 𝑥3
𝑓𝑒𝑚𝑎𝑙𝑒

… . 𝑥𝐿
𝑓𝑒𝑚𝑎𝑙𝑒

 where L defines the number of 

lengths of the solution vector to be determined as, 

𝐿 = {𝑛 𝑚 
;  𝑛 > 1

; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

(3) (Rajakumar, 2012) 

This function ensured optimal threshold adjustments for anomaly 

detection. The systematic definition of these parameters optimized the 

MLOA's performance, making it highly effective for identifying anomalies 

within the portal system network. Initializing the lion population in the 

Modified Lion Optimization Algorithm (MLOA) involves creating a set of 

"lions," each with a random position within the defined search space. The 

position of every lion corresponds to a particular collection of parameters or 

thresholds that need to be improved, and each lion represents a possible 

solution to the optimization problem. 

This random distribution ensures diversity within the population, 

which is critical for effectively exploring the search space. By treating each 

lion as a candidate solution, the algorithm can evaluate its performance using 

a fitness function and improve the population to identify optimal solutions. 

The Python implementation of this initialization process for MLOA and the 

Loin Optimization (LOA) is detailed in Appendix A. This step is 

fundamental to the MLOA's success, laying the foundation for the 

algorithm's optimization process.   

 

Results and Discussion  

The evaluation of the Modified Lion Optimization Algorithm 

(MLOA) involved calculating the fitness of each lion using a Python-

implemented objective function based on Equations (2) and (3) The goal was 

to identify the best solution by optimizing the Lion positions within the 

search space. The resulting convergence behavior, visualized using the 

Matplotlib library, demonstrated in Fig.5 and Fig.6 for MLOA of best fitness 
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value of approximately 0.38 and LOA of 0.65, respectively, shows that the 

MLOA significantly outperformed the LOA. 

 
Figure 5: Modified Lion Optimization Algorithm 

 

 
Figure 6: Original Lion Optimization Algorithm 

 

The results indicated the best fitness value of approximately 0.38 and 

the best Lion position of [0.26, 0.36, 0.43, 0.0009]. The results obtained 

validated the threshold for the anomaly detection model's performance 

metrics, including accuracy, true positive rate (TPR), precision, F1-score, 

and AUC-ROC.  

A Sub-Space Clustering-One-Class Support Vector Machine (SSC-

OCSVM) by Pu et al. (2021), an unsupervised anomaly detection technique 

that combines the benefit of a One-Class Support Vector Machine (OCSVM) 

with the attack detection capabilities of Sub-Space Clustering (SSC). The 
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OCSVM, an extension of the Support Vector Machine, is designed for 

normal or unlabeled data that trains on a single class. The SSC is an 

extension of the traditional clustering methods like K-means and density-

based spatial clustering of applications with noise. The original dataset was 

divided into smaller sub-spaces using OCSVM, and clusters were created 

using SSC. Dissimilarity vectors inside each sub-space were used to update 

the partition. If the dissimilarity value exceeds a predefined threshold, the 

corresponding data point is flagged as an anomaly. With this hybrid 

approach, anomalies in unlabeled datasets may be reliably identified by 

utilizing the strengths of both SSC and OCSVM for complex clustering and 

anomaly detection, respectively. However, the authors acknowledge the need 

for developing an effective feature selection method, indicating that the 

developed method may not fully optimize the feature set used for anomaly 

detection, potentially leading to suboptimal results. 

The performance metrics of the proposed algorithm for detecting 

anomalies of Increasing Complexity Level are evaluated by implementing 

and testing the proposed MLOA for anomaly detection in a portal system in 

Python using the result obtained in Figure 5 to validate the threshold for the 

anomaly detection model's performance metrics, including accuracy, true 

positive rate (TPR), precision, F1-score, and AUC-ROC as detailed in 

Appendix B and Appendix C for the SSC-OCSVM.  

The performance of SSC-OCSVM models using the NSL-KDD 

dataset under conditions similar to those of the proposed MLOA using the 

UNSW-NB15 dataset was evaluated. 

Table 1 shows the evaluation metrics for anomaly detection at an 

increasing Complexity Level of the SSC-OCSVM and the proposed MLOA. 
Table 1: Evaluation of Detection Abnormalities of Increasing Complexity Level 

Matric Complexity 

Level 

SSC-OCSVM (NSL-

KDD dataset)  

Modified LOA (UNSW-

NB15 datasets) 

Recall (TPR) Simple 

Anomalies 

0.95 0.97 

Moderate 

Anomalies 

0.90 0.92 

High Anomalies 0.85 0.90 

Accuracy Simple 

Anomalies 

0.96 0.98 

Moderate 

Anomalies 

0.92 0.94 

High Anomalies 0.87 0.91 

Precision Simple 

Anomalies 

0.93 0.96 

Moderate 

Anomalies 

0.88 0.91 

High Anomalies 0.83 0.88 

ROC-AUC Simple 0.94 0.97 
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Anomalies 

Moderate 

Anomalies 

0.90 0.94 

High Anomalies 0.85 0.92 

F1 Score Simple 

Anomalies 

0.94 0.97 

Moderate 

Anomalies 

0.89 0.92 

High Anomalies 0.84 0.90 

Training Time 

(s) 

Simple 

Anomalies 

9.65 14.23 

Moderate 

Anomalies 

10.12 12.89 

High Anomalies 11.03 13.67 

  Prediction 

Time (s) 

Simple 

Anomalies 

0.11 0.30 

Moderate 

Anomalies 

0.21 0.34  

High Anomalies 0.25 0.39 

 

Result Analysis Summary in Terms of Performance, Scalability, and 

Trade-offs. 

1. Performance: The Modified LOA outperforms SSC-OCSVM in 

handling complex anomalies, as shown in Table 1 with high 

Anomalies ROC-AUC of 0.92 and F1-Score 0.90, SSC-OCSVM 

performs efficiently on simpler Anomalies ROC-AUC of 0.94 and 

F1-Score 0.94 but lacks the robustness for more intricate patterns 

seen in UNSW-NB15. 

2. Scalability: The Modified LOA is designed to scale better with more 

extensive and diverse UNSW-NB15 datasets with a TPR of 0.90 for 

high anomalies compared to 0.85 for the SSC-OCSVM using NSL-

KDD dataset as shown in Table 1.  

3. Tradeoffs: The Modified LOA requires more time for training and 

prediction than the SSC-OCSVM, which is faster to train. This is 

justified by the Modified LOA's superior detection capabilities on 

complex datasets, with a true positive rate (TPR) of 0.90 and an F1-

score of 0.90 as opposed to the SSC-OCSVM's TPR of 0.85 and F1-

score of 0.84. 

 

Discussion  

The Modified Lion Optimization Algorithm (MLOA) exhibits 

significant improvements in anomaly detection accuracy, recall, and 

computational economy compared to the Sub-Space Clustering One-Class 

Support Vector Machine (SSC-OCSVM). Although numerical results show 

MLOA's improved detection capabilities, the main reasons for this 
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improvement are its adaptive optimization method, feature selection, and 

adaptability to real cybersecurity challenges. 

1. Adaptive Search and Threshold Optimization method: The use of 

static decision boundaries for anomaly classification is a significant 

drawback of SSC-OCSVM. For high-dimensional, dynamic network 

traffic, this method is ineffective since it relies on the assumption that 

anomalies can be found using fixed hyperplane separations. MLOA, 

on the other hand, uses a search method inspired by nature to 

continuously modify anomaly detection criteria in response to 

changing data patterns. MLOA dynamically determines the best 

decision boundaries according to the lion-inspired exploration-

exploitation balance, which improves accuracy and reduces false 

positive rates. Furthermore, MLOA's fitness function improves with 

each iteration, adjusting detection criteria in response to real-time 

feedback. MLOA is more successful in detecting complex attack 

vectors—such as sophisticated intrusion attempts and zero-day 

threats—than SSC-OCSVM due to its self-adaptive threshold 

adjustment. 

2. Enhanced Feature Selection and Dimensionality Reduction: With the 

assumption that anomaly-relevant properties remain constant across 

datasets, SSC-OCSVM clusters feature spaces in a fixed way. Real-

world cybersecurity scenarios, where feature relevance fluctuates, fail 

this assumption. Suboptimal classification is frequently caused by the 

fixed feature sub-space of SSC-OCSVM, especially in multi-

dimensional network logs. This restriction is overcome by MLOA, 

which incorporates feature selection straight into its optimization 

procedure. Employing an iterative fitness evaluation, MLOA 

dynamically finds and ranks significant features, lowering 

computational complexity and increasing the accuracy of anomaly 

identification. The ability to generalize is much improved by this 

feature-adaptive technique, which guarantees improved performance 

in a variety of network situations. 

3. Adaptability to Complex Cyberthreats: In cybersecurity, the ability to 

detect unknown or evolving attack strategies is critical. SSC-OCSVM 

is designed for anomaly detection in structured environments but 

lacks the flexibility to handle new attack patterns. This limitation 

makes it particularly ineffective against zero-day attacks and 

adversarial threats. MLOA overcomes this challenge by optimizing 

multiple fitness functions, ensuring that anomaly detection is based 

on diverse evaluation criteria rather than a single static decision 

boundary, adapting to dynamic attack behaviors, allowing the 

algorithm to update its anomaly thresholds in real-time, and 
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maintaining robustness across varying dataset distributions, ensuring 

that MLOA can generalize across different network traffic patterns. 

4. Faster Convergence and Stability: One key benefit of MLOA is its 

speedy convergence to an ideal anomaly detection threshold. The 

experimental findings show that MLOA attains a best fitness value of 

0.38 (Figures 5 and 6). MLOA's quicker convergence is explained by 

its parallel learning mechanism, which allows it to process large-scale 

datasets efficiently, self-adaptive selection pressure, efficient search 

space exploration, which reduces the possibility of becoming stuck in 

local optima, and the ability to dynamically refine decision-making 

criteria based on anomaly distributions. 

5. Computational Efficiency and Scalability: A major challenge for real-

time anomaly detection systems is striking a balance between 

detection accuracy and computing cost. Because of its iterative 

optimization method, MLOA requires more computing power than 

SSC-OCSVM; however, the greatly enhanced detection performance 

justifies this extra complexity. Additionally, to improve scalability 

for extensive cybersecurity applications, MLOA can be combined 

with distributed processing frameworks (like Apache Spark). Because 

of its capacity for self-learning, MLOA is better suited for automated 

intrusion detection systems than SSC-OCSVM, which necessitates 

regular manual parameter adjustment. 

 

Conclusion 

This study introduced a Modified Lion Optimization Algorithm 

(MLOA) to enhance anomaly detection and mitigation in portal systems. By 

leveraging advanced optimization techniques, the MLOA demonstrated 

superior performance compared to the traditional method, SSC-OCSVM, 

especially in handling complex anomalies. Through systematic parameter 

optimization, including population size, search space dimensionality, and 

fitness evaluation, the algorithm achieved higher accuracy, precision, recall, 

and AUC-ROC scores. Its ability to detect anomalies in real-world datasets 

like the UNSW-NB15 underscores its practical applicability and potential to 

enhance the security and resilience of portal systems against evolving cyber 

threats. 

Future work could focus on optimizing the MLOA's computational 

efficiency by incorporating distributed computing techniques like Apache 

Spark to handle large-scale datasets in real-time. The algorithm's application 

could also extend to other domains, such as financial fraud detection and IoT 

security, where it could identify anomalies in sensor readings or transaction 

data. Additionally, integrating advanced deep learning methods into the 

MLOA framework could create hybrid approaches that combine nature-
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inspired optimization with neural network-based pattern recognition, further 

improving performance and adaptability. 
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Appendix A 

Modified LOA 
 

import numpy as np 

import matplotlib.pyplot as plt 

 

Step 1: Initializing Parameters 

population_size = 10   I. Define the population size of the lion 

dimensionality = 4  II. Define dimensionality 

max_iterations = 40    III. Define maximum iterations 

 

IV. Initialize Lion Population 

lion_positions = np.random.rand(population_size, dimensionality)  # Initial population of 

lions with random positions 

 

Step 2: Evaluate the Fitness 

def evaluate_fitness(positions): 

     Implement your objective function here 

     fitness = sum(positions**2) 

    return np.sum(positions**2) 

 

fitness_values = np.zeros(population_size) 

for i in range(population_size): 

    fitness_values[i] = evaluate_fitness(lion_positions[i]) 

 

Step 3: Update Lion Positions (Lion Optimization Algorithm) 

def update_positions(positions, fitness_values): 

    alpha = 0.1  # Alpha parameter for LOA 

    beta = 0.1   # Beta parameter for LOA 

 

    sort positions based on fitness values 

    sorted_indices = np.argsort(fitness_values) 

    sorted_positions = positions[sorted_indices] 

 

    Update positions based on LOA rules 

    for i in range(1, population_size): 

        positions[i] = positions[i] + alpha * (sorted_positions[i-1] - positions[i]) + beta * 

np.random.uniform(-1, 1, size=dimensionality) 

 

    return positions 

 

Step 4: Check Convergence 

def check_convergence(iteration, max_iterations, fitness_values, threshold=1e-6): 

    return iteration >= max_iterations or np.max(np.abs(np.diff(fitness_values))) < threshold 

 

Step 5: Results and Visualization 

best_fitness_history = [] 

 

for iteration in range(max_iterations): 

    Update positions 
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    lion_positions = update_positions(lion_positions, fitness_values) 

 

    Evaluate fitness 

    for i in range(population_size): 

        fitness_values[i] = evaluate_fitness(lion_positions[i]) 

 

    Update best fitness history 

    best_fitness_history.append(np.min(fitness_values)) 

 

    Check for convergence 

    if check_convergence(iteration, max_iterations, fitness_values): 

        break 

 

Display or save results 

print("Best Fitness Value:", np.min(fitness_values)) 

print("Best Lion Position:", lion_positions[np.argmin(fitness_values)]) 

 

Visualization of convergence behavior 

plt.plot(best_fitness_history) 

plt.xlabel("Iteration") 

plt.ylabel("Best Fitness Value") 

plt.title("Convergence Behavior of Lion Optimization Algorithm") 

plt.show() 

 

Original LOA 
 

import numpy as np 

import matplotlib.pyplot as plt 

 

Step 1: Initializing Parameters 

population_size = 50   I. Define the population size of the lion 

dimensionality = 10    II. Define dimensionality 

max_iterations = 100   III. Define maximum iterations 

 

IV. Initialize Lion Population 

lion_positions = np.random.rand(population_size, dimensionality)  # Initial population of 

lions with random positions 

 

Step 2: Evaluate the Fitness 

def evaluate_fitness(positions): 

     Implement your objective function here 

     Example: fitness = sum(positions**2) 

    return np.sum(positions**2) 

 

fitness_values = np.zeros(population_size) 

for i in range(population_size): 

    fitness_values[i] = evaluate_fitness(lion_positions[i]) 

 

Step 3: Update Lion Positions (Lion Optimization Algorithm) 

def update_positions(positions, fitness_values): 
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    alpha = 0.1  # Alpha parameter for LOA 

    beta = 0.1   # Beta parameter for LOA 

 

     Sort positions based on fitness values 

    sorted_indices = np.argsort(fitness_values) 

    sorted_positions = positions[sorted_indices] 

 

     Update positions based on LOA rules 

    for i in range(1, population_size): 

        positions[i] = positions[i] + alpha * (sorted_positions[i-1] - positions[i]) + beta * 

np.random.uniform(-1, 1, size=dimensionality) 

 

    return positions 

 

Step 4: Check Convergence 

def check_convergence(iteration, max_iterations, fitness_values, threshold=1e-6): 

    return iteration >= max_iterations or np.max(np.abs(np.diff(fitness_values))) < threshold 

 

Step 5: Results and Visualization 

best_fitness_history = [] 

 

for iteration in range(max_iterations): 

    Update positions 

    lion_positions = update_positions(lion_positions, fitness_values) 

 

    Evaluate fitness 

    for i in range(population_size): 

        fitness_values[i] = evaluate_fitness(lion_positions[i]) 

 

    Update best fitness history 

    best_fitness_history.append(np.min(fitness_values)) 

 

    Check for convergence 

    if check_convergence(iteration, max_iterations, fitness_values): 

        break 

Display or save results 

print("Best Fitness Value:", np.min(fitness_values)) 

print("Best Lion Position:", lion_positions[np.argmin(fitness_values)]) 

 

Visualization of convergence behavior 

plt.plot(best_fitness_history) 

plt.xlabel("Iteration") 

plt.ylabel("Best Fitness Value") 

plt.title("Convergence Behavior of Lion Optimization Algorithm") 

plt.show() 
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Appendix B 
 

Python Code for Validation of Threshold for the Anomaly Detection 
 

Step 1 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import StandardScaler 

from sklearn.svm import OneClassSVM 

Step 2: Load UNSW-NB15 and network logs. 

 unsw_data = pd.read_csv('UNSW-NB15.csv')  

log_data = pd.read_csv('network-logs.csv') 

Step 3: Preprocessing of the data 

scaler = StandardScaler()  

unsw_data_scaled = scaler.fit_transform(unsw_data)  

log_data_scaled = scaler.fit.transform(log_data) 

Step 3: Combine the Datasets, merging the datasets to create a more diverse dataset with 

varied complexity. This is done by concatenating the data from both sources and 

strategically blending the records.  

Combine datasets  

combined_data=pd.concat([pd.DataFrame(unsw_data_scaled), 

pd.DataFrame(log_data_scaled)], ignore_index=True)  

Step 4: Training the OCSVM Model on Normal Data, separating normal data from the 

combined dataset, and using it to train the One-Class SVM (OCSVM) model. This will 

allow the model to learn a baseline of "normal" behavior based on the structure of the 

UNSW-NB15 and network log data. 

from sklearn.svm import OneClassSVM  

Filter normal data for training  

normal_data = combined_data[labels == 1]  Assuming 1 represents normal  

 Initialize and train the OCSVM model 

ocsvm = OneClassSVM(kernel='rbf', gamma=0.38, nu=0.42)  

ocsvm.fit(normal_data) 

Step 5: Running the OCSVM Model's ability to recognize abnormalities of increasing 

degrees of Complexity 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, 

roc_auc_score 

import numpy as np 

from sklearn.svm import OneClassSVM 

np.random.seed(0) 

normal_data = np.random.normal(0, 1, (200, 5))   200 samples, 5 features 

simple_anomalies = np.random.normal(3, 1, (20, 5))   Simple anomalies 

moderate_anomalies = np.random.normal(5, 2, (20, 5))   Moderate complexity anomalies 

high_complexity_anomalies = np.array([np.sin(0.1 * np.arange(5)) + 7 for _ in range(20)])  

High complexity anomalies 

ocsvm = OneClassSVM(kernel='rbf', gamma=0.38, nu=0.42) 

ocsvm.fit(normal_data) 

def evaluate_model_with_auc(model, test_data, true_label=-1): 

    predictions = model.predict(test_data) 

    predictions = np.where(predictions == 1, 1, true_label)  # Map to 1 for normal, -1 for 

anomalies 
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      ground_truth = np.full(test_data.shape[0], true_label) 

     

    Calculate metrics 

    accuracy = accuracy_score(ground_truth, predictions) 

    precision = precision_score(ground_truth, predictions, pos_label=true_label) 

    recall = recall_score(ground_truth, predictions, pos_label=true_label) 

    f1 = f1_score(ground_truth, predictions, pos_label=true_label) 

  Binary ground truth and predictions for AUC 

    binary_ground_truth = (ground_truth == true_label).astype(int) 

    binary_predictions = (predictions == true_label).astype(int) 

    auc = roc_auc_score(binary_ground_truth, binary_predictions) 

    return accuracy, precision, recall, f1, auc 

Complexity levels 

complexity_levels = {"Simple Anomalies": simple_anomalies, "Moderate Complexity 

Anomalies": moderate_anomalies, "High Complexity Anomalies": 

high_complexity_anomalies} 

Evaluate each complexity level 

for level, data in complexity_levels.items(): 

accuracy, precision, recall, f1, auc = evaluate_model_with_auc(ocsvm, data) 

 print(f"{level} - Accuracy: {accuracy:.2f}, Precision: {precision:.2f}, Recall: {recall:.2f}, 

F1 Score: {f1:.2f}, AUC: {auc:.2f}"). The output of the result is shown in Table 4.5 

 

Appendix C 
 

Python code for Implementing SSC-OCSVM using the NSL-KDD 

dataset 
 

import numpy as np 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.svm import OneClassSVM 

from sklearn.metrics import accuracy_score, recall_score, precision_score, roc_auc_score, 

f1_score 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

 

# Step 1: Load the NSL-KDD Dataset 

def load_nsl_kdd_data(): 

    # Replace with the actual path to your dataset 

    train_file = "KDDTrain+.txt" 

    test_file = "KDDTest+.txt" 

 

    # Load the dataset 

    column_names = [ 

        "duration", "protocol_type", "service", "flag", "src_bytes", "dst_bytes", "land", 

"wrong_fragment", 

        "urgent", "hot", "num_failed_logins", "logged_in", "num_compromised", "root_shell", 

"su_attempted", 

        "num_root", "num_file_creations", "num_shells", "num_access_files", 

"num_outbound_cmds", 
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        "is_host_login", "is_guest_login", "count", "srv_count", "serror_rate", 

"srv_serror_rate", 

        "rerror_rate", "srv_rerror_rate", "same_srv_rate", "diff_srv_rate", 

"srv_diff_host_rate", 

        "dst_host_count", "dst_host_srv_count", "dst_host_same_srv_rate", 

"dst_host_diff_srv_rate", 

        "dst_host_same_src_port_rate", "dst_host_srv_diff_host_rate", 

"dst_host_serror_rate", 

        "dst_host_srv_serror_rate", "dst_host_rerror_rate", "dst_host_srv_rerror_rate", 

"class" 

    ] 

 

    train_data = pd.read_csv(train_file, header=None, names=column_names) 

    test_data = pd.read_csv(test_file, header=None, names=column_names) 

 

    return train_data, test_data 

 

# Step 2: Preprocess the Dataset 

def preprocess_data(data): 

    # Convert categorical features to numeric 

    categorical_features = ["protocol_type", "service", "flag"] 

    for feature in categorical_features: 

        encoder = LabelEncoder() 

        data[feature] = encoder.fit_transform(data[feature]) 

 

    # Normalize the dataset 

    scaler = StandardScaler() 

    X = data.drop(columns=["class"]) 

    X = scaler.fit_transform(X) 

 

    # Convert labels: normal = +1, anomaly = -1 

    y = data["class"].apply(lambda x: 1 if x == "normal" else -1).values 

 

    return X, y 

 

# Step 3: Train SSC-OCSVM Model 

def train_ssc_ocsvm(X_train, X_test, y_test): 

    # Sub-space clustering: Example with top 10 features based on variance 

    feature_variance = np.var(X_train, axis=0) 

    top_features_indices = np.argsort(feature_variance)[-10:]  # Select top 10 features 

    X_train_subspace = X_train[:, top_features_indices] 

    X_test_subspace = X_test[:, top_features_indices] 

 

    # Train One-Class SVM 

    ocsvm = OneClassSVM(kernel="rbf", nu=0.1, gamma="scale") 

    ocsvm.fit(X_train_subspace) 

 

    # Predict on the test set 

    y_pred = ocsvm.predict(X_test_subspace) 
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    return y_pred 

 

# Step 4: Evaluate Model Performance 

def evaluate_model(y_test, y_pred): 

    accuracy = accuracy_score(y_test, y_pred) 

    recall = recall_score(y_test, y_pred, pos_label=1) 

    precision = precision_score(y_test, y_pred, pos_label=1) 

    roc_auc = roc_auc_score(y_test, y_pred) 

    f1 = f1_score(y_test, y_pred, pos_label=1) 

 

    print(f"Accuracy: {accuracy:.2f}") 

    print(f"Recall: {recall:.2f}") 

    print(f"Precision: {precision:.2f}") 

    print(f"ROC-AUC: {roc_auc:.2f}") 

    print(f"F1-Score: {f1:.2f}") 

 

    return accuracy, recall, precision, roc_auc, f1 

 

# Main Function 

if __name__ == "__main__": 

    # Load and preprocess the data 

    train_data, test_data = load_nsl_kdd_data() 

    X_train, y_train = preprocess_data(train_data) 

    X_test, y_test = preprocess_data(test_data) 

 

    # Train SSC-OCSVM and generate predictions 

    y_pred = train_ssc_ocsvm(X_train, X_test, y_test) 

 

    # Evaluate the model 

    evaluate_model(y_test, y_pred) 
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