

ESI Preprints Not Peer-reviewed

www.esipreprints.org 52

Enhancing the Resilience of Portal Systems Using a Modified

Lion Optimization Algorithm (MLOA) for Early Anomaly

Detection Threshold against Cyber Threats

O.O. Green

Department of Information Communication Technology,

Lagos State University of Education, Lagos, Nigeria

M.B. Abdulrazaq

B. Yahaya

Z. Haruna

Department of Computer Engineering,

Ahmadu Bello University, Zaria, Nigeria

S.O. Omogoye

Department of Electrical and Electronics Engineering,

Lagos State University of Science and Technology, Lagos, Nigeria

A.S. Adegoke

Department of Computer Engineering,

Lagos State University of Science and Technology, Lagos, Nigeria

Doi: 10.19044/esipreprint.2.2025.p52

Approved: 10 February 2025

Posted: 12 February 2025

Copyright 2025 Author(s)

Under Creative Commons CC-BY 4.0

OPEN ACCESS

Cite As:

Green O.O., Abdulrazaq M.B., Yahaya B., Haruna Z., Omogoye S.O. & Adegoke A.S.

(2025). Enhancing the Resilience of Portal Systems Using a Modified Lion Optimization

Algorithm (MLOA) for Early Anomaly Detection Threshold against Cyber Threats. ESI

Preprints. https://doi.org/10.19044/esipreprint.2.2025.p52

Abstract

This research introduces a hybrid anomaly detection model that

integrates the Modified Lion Optimization Algorithm (MLOA) with the

One-Class Support Vector Machine (OCSVM) to enhance the resilience of

portal systems against advanced cyber threats, including Man-in-the-Middle

(MitM) attacks, denial-of-service events, and data breaches. The MLOA-

OCSVM model leverages advanced preprocessing and feature selection

techniques for high-dimensional datasets, incorporating real-time monitoring

and alert systems for rapid anomaly detection and mitigation by optimizing

decision boundaries and fine-tuning threshold parameters. Experimental

http://www.eujournal.org/
https://doi.org/10.19044/esipreprint.2.2025.p52

ESI Preprints February 2025

www.esipreprints.org 53

evaluations revealed that the MLOA-OCSVM significantly outperformed the

Sub-Space Clustering One-Class Support Vector Machine (SSC-OCSVM) in

identifying anomalies across various complexity levels, achieving superior

metrics such as a recall of 0.97, accuracy of 0.98, precision of 0.96, and

ROC-AUC of 0.97 for simple anomalies, and maintaining strong

performance for moderate and high-complexity anomalies with recall values

of 0.92 and 0.90 and ROC-AUC scores of 0.94 and 0.92. These findings

validate the model’s effectiveness in detecting zero-day attacks and

contextual anomalies, establishing a scalable, high-performance solution for

modern portal system security, and showcasing the practical application of

nature-inspired optimization algorithms in real-world cybersecurity

environments.

Keywords: Anomaly Detection, Cybersecurity, Modified Lion Optimization

Algorithm, Nature-Inspired Algorithms, Performance Metrics, Portal

Systems, SSC-OCSVM, UNSW-NB15 Dataset

Introduction

In today’s digital landscape, portal systems (PS) have become

integral to delivering critical education, administration, and communication

services. However, these systems' increasing complexity and

interconnectivity make them vulnerable to diverse anomalies, including

malicious attacks, injection flaws, denial-of-service (DoS) attacks, data

breaches, and human errors. These vulnerabilities cause operational

disruptions, financial losses, and reputational damage, leading to reduced

user trust. For example, major cyber incidents like the July 2015 data breach

at the University of California, Los Angeles (UCLA), which exposed 4.5

million records at a cost of over $70 million, and the July 2023 University of

Manchester was a victim of cyber-attack, resulting to vulnerabilities of about

11,000 staff and more than 46,000 students’ data (Paganini, 2023), highlight

the severe consequences of insufficient anomaly detection systems. In

Nigeria, the 2023 presidential elections recorded 12.9 million cyber threats

reported by the minister of communication and digital economy, Isa Pantami

(Ukagwu. (2023), further emphasizing the need for robust security

mechanisms.

Conventional anomaly detection techniques, including trial-and-error

methods or default parameter settings, often fail to adapt to cyber threats'

dynamic and evolving nature. Techniques such as Sub-Space Clustering-One

Class Support Vector Machine (SSC-OCSVM) developed by (Pu et al.,

2021), Feature selection with K-Lion Optimization Algorithms (K-LOA) by

(Jagatheeshkumar et al., 2021), and deep-learning hybrid models by Data,

Karadayi and Aydin, (2020) have shown promise but are limited in handling

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 54

complex anomaly patterns like contextual User-to-Root (U2R) and Remote-

to-Local (R2L) attacks. These approaches may result in high false positive

rates or leave systems vulnerable to subtle yet impactful threats.

To address these limitations, this study proposes the Modified Lion

Optimization Algorithm (MLOA) to enhance anomaly detection by

optimizing thresholds and improving computational efficiency. The MLOA

leverages advanced nature-inspired optimization techniques to adapt

dynamically to diverse anomaly types, ensuring improved detection accuracy

and robustness in real-world scenarios. By utilizing datasets from Lagos

State University of Education (LASUED) portal systems and the UNSW-

NB15 dataset, the proposed solution aims to safeguard portal systems from

evolving cyber threats.

The remainder of this article is organized as follows: Section 2

provides an overview of the proposed MLOA framework and its application

in portal systems. Section 3 presents the research findings and discussions.

Section 4 concludes the study and outlines potential directions for future

research.

Overview of Proposed MLOA Anomaly Detection Threshold in a Portal

System

Portal system resilience is vital for maintaining operational integrity,

user trust, and security. By improving the anomaly detection system's

detection threshold, early anomaly detection and mitigation are crucial to

ensuring the system can resist and recover from changing cyber threats.

In this article, the network logs (dataset) were collected from the

Lagos State University of Education (LASUED) Edu portal

(www.eportal.lasued.edu.ng) using network traffic monitoring software

called OPNsense by Thomas-Krenn, A.G. (2018), the software uses comma-

separated values (CSV), to store all the network logs that pass through it, by

adopting the work of (Konstantina et al., 2021) and the UNSW-NB15 dataset

downloaded from the open-source (Australian Centre for Cyber Security by

Nour Moustafa, (2015)). This dataset contains a variety of network activities,

including normal traffic and modern attacks, representing contemporary

threats faced by network systems, it includes 2.54 million records, each

containing network traffic data along with labeled attacks and normal

activities organized with different features capturing details of each network

connection, with labels indicating whether each instance is normal or

malicious.

Adopting the work of (Konstantina et al., 2021) as shown in Figure

1., the datasets were preprocessed, and the UNSW-NB15 dataset and

network logs were imported into Python using the pandas package for

preprocessing. Missing values in both datasets were identified using the

http://www.eujournal.org/
http://www.eportal.lasued.edu.ng/

ESI Preprints February 2025

www.esipreprints.org 55

IsNull ().sum() function and replaced with their respective feature means

through the SimpleImputer from sklearn.impute. This preprocessing pipeline

effectively cleaned and prepared the datasets, optimizing them for the

subsequent anomaly detection modeling.

Figure 1: Network Data Collection Adopting (Konstantina., 2021)’s Work

Development and Training of the MLOA

Adopting Rajakumar, (2012)’s work, using the preprocessed network

logs (dataset) collected and the UNSW-NB15 dataset selected features. This

research delves into several steps and methods utilized in developing and

implementing the Modified Lion Optimization Algorithm framework for

early anomaly detection in a portal system. The population size for the

Modified Lion Optimization Algorithm (MLOA) was determined based on

the Internet Assigned Numbers Authority (IANA) port assignments. By

combining the source and destination ports, represented as 5 bits each, the

total number of lions was set to 10 bits as shown in Figure 2.

Figure 2: Source and Destination ports in the network (IANA)

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 56

The MLOA’s problem search space's dimensionality was derived

from the dataset attributes. The total number of columns in the network logs

defined a search space of 11 dimensions, with each dimension represented by

4 bits, as shown in Figure 3.

Figure 3: Dimensionality of Network Logs Collected

The network logs collected are equal to the total number of columns

tagged with the green mark in the search space available within 16.2 MB as

tagged with the red mark in Fig.3; the total search space (SS) = 11 (4 bits).

To balance convergence efficiency and computational cost, the

maximum number of iterations for the MLOA was calculated using the mode

of middle values from the preprocessed dataset, resulting in a maximum

iteration value of 40. This was achieved by averaging middle row and

column values from the dataset, as shown in Figure 4 and defined by the

formula equation 1, which provided balanced parameters for the algorithm.

Within the specified search space, the initial population of lions was then

created at random, with every lion standing for a possible solution to the

optimization problem.

M=∑𝑛
𝑖 𝑥i/n

Figure 4: Preprocessed datasets

The fitness of each lion was evaluated using a tailored objective

function of the Lion Optimization Algorithm as defined by Rajakumar,

(2012) in equations 2 and 3, implemented in Python.

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 57

The Objective Function (OF) = arg min

𝑓(𝑥1, 𝑥2, 𝑥3 … . 𝑥𝑛), 𝑥𝑖 ∈ (𝑥𝑖
𝑚𝑖𝑛, 𝑥𝑖

𝑚𝑎𝑥) 𝑛 ≥ 1

(2) (Rajakumar, 2012)

Equation (2) is an n-variable minimization function in which every

result is a variable , 𝑥𝑖: 𝑖 = 1,2,3,4, 𝑛, might be governed by a

particular equality or inequality restriction. The Lion must have a binary

structure when 𝑛=1. whereas 𝑛 ≥ 1 favors integer-structured lions.

From equation (2) the pride is initiated by generating the initial pride

as 𝑋𝑚𝑎𝑙𝑒 and 𝑋𝑓𝑒𝑚𝑎𝑙𝑒 with the structure of 𝑋𝑚𝑎𝑙𝑒 =
[𝑥1

𝑚𝑎𝑙𝑒 , 𝑥2
𝑚𝑎𝑙𝑒 , 𝑥3

𝑚𝑎𝑙𝑒 , … . 𝑥𝐿
𝑚𝑎𝑙𝑒 and 𝑋𝑓𝑒𝑚𝑎𝑙𝑒 =

[𝑥1
𝑓𝑒𝑚𝑎𝑙𝑒

, 𝑥2
𝑓𝑒𝑚𝑎𝑙𝑒

, 𝑥3
𝑓𝑒𝑚𝑎𝑙𝑒

… . 𝑥𝐿
𝑓𝑒𝑚𝑎𝑙𝑒

 where L defines the number of

lengths of the solution vector to be determined as,

𝐿 = {𝑛 𝑚
; 𝑛 > 1

; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) (Rajakumar, 2012)

This function ensured optimal threshold adjustments for anomaly

detection. The systematic definition of these parameters optimized the

MLOA's performance, making it highly effective for identifying anomalies

within the portal system network. Initializing the lion population in the

Modified Lion Optimization Algorithm (MLOA) involves creating a set of

"lions," each with a random position within the defined search space. The

position of every lion corresponds to a particular collection of parameters or

thresholds that need to be improved, and each lion represents a possible

solution to the optimization problem.

This random distribution ensures diversity within the population,

which is critical for effectively exploring the search space. By treating each

lion as a candidate solution, the algorithm can evaluate its performance using

a fitness function and improve the population to identify optimal solutions.

The Python implementation of this initialization process for MLOA and the

Loin Optimization (LOA) is detailed in Appendix A. This step is

fundamental to the MLOA's success, laying the foundation for the

algorithm's optimization process.

Results and Discussion

The evaluation of the Modified Lion Optimization Algorithm

(MLOA) involved calculating the fitness of each lion using a Python-

implemented objective function based on Equations (2) and (3) The goal was

to identify the best solution by optimizing the Lion positions within the

search space. The resulting convergence behavior, visualized using the

Matplotlib library, demonstrated in Fig.5 and Fig.6 for MLOA of best fitness

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 58

value of approximately 0.38 and LOA of 0.65, respectively, shows that the

MLOA significantly outperformed the LOA.

Figure 5: Modified Lion Optimization Algorithm

Figure 6: Original Lion Optimization Algorithm

The results indicated the best fitness value of approximately 0.38 and

the best Lion position of [0.26, 0.36, 0.43, 0.0009]. The results obtained

validated the threshold for the anomaly detection model's performance

metrics, including accuracy, true positive rate (TPR), precision, F1-score,

and AUC-ROC.

A Sub-Space Clustering-One-Class Support Vector Machine (SSC-

OCSVM) by Pu et al. (2021), an unsupervised anomaly detection technique

that combines the benefit of a One-Class Support Vector Machine (OCSVM)

with the attack detection capabilities of Sub-Space Clustering (SSC). The

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 59

OCSVM, an extension of the Support Vector Machine, is designed for

normal or unlabeled data that trains on a single class. The SSC is an

extension of the traditional clustering methods like K-means and density-

based spatial clustering of applications with noise. The original dataset was

divided into smaller sub-spaces using OCSVM, and clusters were created

using SSC. Dissimilarity vectors inside each sub-space were used to update

the partition. If the dissimilarity value exceeds a predefined threshold, the

corresponding data point is flagged as an anomaly. With this hybrid

approach, anomalies in unlabeled datasets may be reliably identified by

utilizing the strengths of both SSC and OCSVM for complex clustering and

anomaly detection, respectively. However, the authors acknowledge the need

for developing an effective feature selection method, indicating that the

developed method may not fully optimize the feature set used for anomaly

detection, potentially leading to suboptimal results.

The performance metrics of the proposed algorithm for detecting

anomalies of Increasing Complexity Level are evaluated by implementing

and testing the proposed MLOA for anomaly detection in a portal system in

Python using the result obtained in Figure 5 to validate the threshold for the

anomaly detection model's performance metrics, including accuracy, true

positive rate (TPR), precision, F1-score, and AUC-ROC as detailed in

Appendix B and Appendix C for the SSC-OCSVM.

The performance of SSC-OCSVM models using the NSL-KDD

dataset under conditions similar to those of the proposed MLOA using the

UNSW-NB15 dataset was evaluated.

Table 1 shows the evaluation metrics for anomaly detection at an

increasing Complexity Level of the SSC-OCSVM and the proposed MLOA.
Table 1: Evaluation of Detection Abnormalities of Increasing Complexity Level

Matric Complexity

Level

SSC-OCSVM (NSL-

KDD dataset)

Modified LOA (UNSW-

NB15 datasets)

Recall (TPR) Simple

Anomalies

0.95 0.97

Moderate

Anomalies

0.90 0.92

High Anomalies 0.85 0.90

Accuracy Simple

Anomalies

0.96 0.98

Moderate

Anomalies

0.92 0.94

High Anomalies 0.87 0.91

Precision Simple

Anomalies

0.93 0.96

Moderate

Anomalies

0.88 0.91

High Anomalies 0.83 0.88

ROC-AUC Simple 0.94 0.97

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 60

Anomalies

Moderate

Anomalies

0.90 0.94

High Anomalies 0.85 0.92

F1 Score Simple

Anomalies

0.94 0.97

Moderate

Anomalies

0.89 0.92

High Anomalies 0.84 0.90

Training Time

(s)

Simple

Anomalies

9.65 14.23

Moderate

Anomalies

10.12 12.89

High Anomalies 11.03 13.67

 Prediction

Time (s)

Simple

Anomalies

0.11 0.30

Moderate

Anomalies

0.21 0.34

High Anomalies 0.25 0.39

Result Analysis Summary in Terms of Performance, Scalability, and

Trade-offs.

1. Performance: The Modified LOA outperforms SSC-OCSVM in

handling complex anomalies, as shown in Table 1 with high

Anomalies ROC-AUC of 0.92 and F1-Score 0.90, SSC-OCSVM

performs efficiently on simpler Anomalies ROC-AUC of 0.94 and

F1-Score 0.94 but lacks the robustness for more intricate patterns

seen in UNSW-NB15.

2. Scalability: The Modified LOA is designed to scale better with more

extensive and diverse UNSW-NB15 datasets with a TPR of 0.90 for

high anomalies compared to 0.85 for the SSC-OCSVM using NSL-

KDD dataset as shown in Table 1.

3. Tradeoffs: The Modified LOA requires more time for training and

prediction than the SSC-OCSVM, which is faster to train. This is

justified by the Modified LOA's superior detection capabilities on

complex datasets, with a true positive rate (TPR) of 0.90 and an F1-

score of 0.90 as opposed to the SSC-OCSVM's TPR of 0.85 and F1-

score of 0.84.

Discussion

The Modified Lion Optimization Algorithm (MLOA) exhibits

significant improvements in anomaly detection accuracy, recall, and

computational economy compared to the Sub-Space Clustering One-Class

Support Vector Machine (SSC-OCSVM). Although numerical results show

MLOA's improved detection capabilities, the main reasons for this

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 61

improvement are its adaptive optimization method, feature selection, and

adaptability to real cybersecurity challenges.

1. Adaptive Search and Threshold Optimization method: The use of

static decision boundaries for anomaly classification is a significant

drawback of SSC-OCSVM. For high-dimensional, dynamic network

traffic, this method is ineffective since it relies on the assumption that

anomalies can be found using fixed hyperplane separations. MLOA,

on the other hand, uses a search method inspired by nature to

continuously modify anomaly detection criteria in response to

changing data patterns. MLOA dynamically determines the best

decision boundaries according to the lion-inspired exploration-

exploitation balance, which improves accuracy and reduces false

positive rates. Furthermore, MLOA's fitness function improves with

each iteration, adjusting detection criteria in response to real-time

feedback. MLOA is more successful in detecting complex attack

vectors—such as sophisticated intrusion attempts and zero-day

threats—than SSC-OCSVM due to its self-adaptive threshold

adjustment.

2. Enhanced Feature Selection and Dimensionality Reduction: With the

assumption that anomaly-relevant properties remain constant across

datasets, SSC-OCSVM clusters feature spaces in a fixed way. Real-

world cybersecurity scenarios, where feature relevance fluctuates, fail

this assumption. Suboptimal classification is frequently caused by the

fixed feature sub-space of SSC-OCSVM, especially in multi-

dimensional network logs. This restriction is overcome by MLOA,

which incorporates feature selection straight into its optimization

procedure. Employing an iterative fitness evaluation, MLOA

dynamically finds and ranks significant features, lowering

computational complexity and increasing the accuracy of anomaly

identification. The ability to generalize is much improved by this

feature-adaptive technique, which guarantees improved performance

in a variety of network situations.

3. Adaptability to Complex Cyberthreats: In cybersecurity, the ability to

detect unknown or evolving attack strategies is critical. SSC-OCSVM

is designed for anomaly detection in structured environments but

lacks the flexibility to handle new attack patterns. This limitation

makes it particularly ineffective against zero-day attacks and

adversarial threats. MLOA overcomes this challenge by optimizing

multiple fitness functions, ensuring that anomaly detection is based

on diverse evaluation criteria rather than a single static decision

boundary, adapting to dynamic attack behaviors, allowing the

algorithm to update its anomaly thresholds in real-time, and

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 62

maintaining robustness across varying dataset distributions, ensuring

that MLOA can generalize across different network traffic patterns.

4. Faster Convergence and Stability: One key benefit of MLOA is its

speedy convergence to an ideal anomaly detection threshold. The

experimental findings show that MLOA attains a best fitness value of

0.38 (Figures 5 and 6). MLOA's quicker convergence is explained by

its parallel learning mechanism, which allows it to process large-scale

datasets efficiently, self-adaptive selection pressure, efficient search

space exploration, which reduces the possibility of becoming stuck in

local optima, and the ability to dynamically refine decision-making

criteria based on anomaly distributions.

5. Computational Efficiency and Scalability: A major challenge for real-

time anomaly detection systems is striking a balance between

detection accuracy and computing cost. Because of its iterative

optimization method, MLOA requires more computing power than

SSC-OCSVM; however, the greatly enhanced detection performance

justifies this extra complexity. Additionally, to improve scalability

for extensive cybersecurity applications, MLOA can be combined

with distributed processing frameworks (like Apache Spark). Because

of its capacity for self-learning, MLOA is better suited for automated

intrusion detection systems than SSC-OCSVM, which necessitates

regular manual parameter adjustment.

Conclusion

This study introduced a Modified Lion Optimization Algorithm

(MLOA) to enhance anomaly detection and mitigation in portal systems. By

leveraging advanced optimization techniques, the MLOA demonstrated

superior performance compared to the traditional method, SSC-OCSVM,

especially in handling complex anomalies. Through systematic parameter

optimization, including population size, search space dimensionality, and

fitness evaluation, the algorithm achieved higher accuracy, precision, recall,

and AUC-ROC scores. Its ability to detect anomalies in real-world datasets

like the UNSW-NB15 underscores its practical applicability and potential to

enhance the security and resilience of portal systems against evolving cyber

threats.

Future work could focus on optimizing the MLOA's computational

efficiency by incorporating distributed computing techniques like Apache

Spark to handle large-scale datasets in real-time. The algorithm's application

could also extend to other domains, such as financial fraud detection and IoT

security, where it could identify anomalies in sensor readings or transaction

data. Additionally, integrating advanced deep learning methods into the

MLOA framework could create hybrid approaches that combine nature-

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 63

inspired optimization with neural network-based pattern recognition, further

improving performance and adaptability.

Conflict of Interest: The authors reported no conflict of interest.

Data Availability: All data are included in the content of the paper.

Funding Statement: The authors did not obtain any funding for this

research.

References:

1. Data, S., Karadayı, Y., & Aydin, M.N. (2020) Applied Sciences A

Hybrid Deep Learning Framework for Unsupervised Anomaly

Detection in Multivariate’, Applied Science, 10(15), pp. 1–25.

Available at: https://doi.org/Appl. Sci. 2020, 10(15), 5191;

https://doi.org/10.3390/app10155191.

2. Jagatheeshkumar, G., & Selva, B.S. (2021) An Improved K-Lion

Optimization Algorithm With Feature Selection Methods for Text

Document Cluster To cite this version : HAL Id : hal-03341649

International Journal of Computer Sciences and Engineering Open

Access An Improved K-Lion Optimization Algorithm’, Vol.6(7), p.

7. Available at: https://doi.org/https://hal.science/hal-03341649.

3. Konstantina, F., Terpsichori-Helen, V., Artemis, V., Dimitrios, S.,

Sofia, T., & Theodore, Z. (2021) ‘Network traffic anomaly detection

via deep learning’, Information (Switzerland), 12(5). Available at:

https://doi.org/10.3390/info12050215.

4. Kun, Y., Samory, K., & Nick, F. (2021) ‘Efficient OCSV For

Anomaly Deection.pdf’, 11146, pp. 1–23. Available

at:https://doi.org/10.1016/j.matpr.2021.06.320.

5. Mendeley and Elsevier (2017) ‘Mendeley Manual for librarians’, The

Electronic Library, 28(1),p. 1–44. Available at:

http://www.emeraldinsight.com/doi/10.1108/02640471011023388%0

Ahttps://www.elsevier.com/__data/assets/pdf_file/0011/117992/Men

deley-Manual-for-Librarians_2017.pdf.

6. Nour Moustafa, J.S. (2015) ‘UNSW-NB15 SOURCE FILES.pdf’, in

The UNSW-NB15 SOURCE FILES. Australia: Australian Centre for

Cyber Security (ACCS), pp. 1–2. Available at:

https://doi.org/https://research.unsw.edu.au/projects/unsw-nb15-

dataset.

7. Paganini, P. (2023) The University of Manchester suffered a cyber

attack and suspects a data breach, Security Affairs. Available at:

https://i0.wp.com/securityaffairs.com/wp-

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 64

content/uploads/2023/06/University-of-Manchester.png?ssl=1

(Accessed: 15 January 2025).

8. Pu, G., Lijuan, W., Jun, S., & Fang, D. (2021) A Hybrid

Unsupervised Clustering-Based Anomaly Detection Method’,

26(1007–0214), pp. 146–153. Available at: https://doi.org/10. 26599

/TST. 2019. 9010051.

9. Rajakumar, B.R. (2012) The Lion’s Algorithm: A New Nature-

Inspired Search Algorithm’, Procedia Technology, 6, pp. 126–135.

Available at: https://doi.org/10.1016/j.protcy.2012.10.016.

10. RRajakumar, B. (2012) LION’S ALGORITHM’, Procedia

Technology, 6((2012)), pp. 126–135. Available at:

https://doi.org/https://doi.org/10.1016/j.protcy.2012.10.016.

11. Thomas-Krenn.AG, S.-S. (2018) OPNsense. thomas-krenn.com.

Available at: https://www.thomas-

krenn.com/redx/tools/mb_download.php/ct.X3V5Wg/mid.y1de5b073

d8372315/ebook_OPNsense_Thomas-Krenn_max_it_V2_ENG.pdf.

12. Ukagwu, L., & Jaiyeola, T. (2023) ‘Almost 13 million cyber-attacks

recorded during polls –FG’, Punch, 15 March, pp. 1–3. Available at:

https://cdn.punchng.com/wp-

content/uploads/2023/02/16205355/ISA-PANTAMI.jpg.

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 65

Appendix A

Modified LOA

import numpy as np

import matplotlib.pyplot as plt

Step 1: Initializing Parameters

population_size = 10 I. Define the population size of the lion

dimensionality = 4 II. Define dimensionality

max_iterations = 40 III. Define maximum iterations

IV. Initialize Lion Population

lion_positions = np.random.rand(population_size, dimensionality) # Initial population of

lions with random positions

Step 2: Evaluate the Fitness

def evaluate_fitness(positions):

 Implement your objective function here

 fitness = sum(positions**2)

 return np.sum(positions**2)

fitness_values = np.zeros(population_size)

for i in range(population_size):

 fitness_values[i] = evaluate_fitness(lion_positions[i])

Step 3: Update Lion Positions (Lion Optimization Algorithm)

def update_positions(positions, fitness_values):

 alpha = 0.1 # Alpha parameter for LOA

 beta = 0.1 # Beta parameter for LOA

 sort positions based on fitness values

 sorted_indices = np.argsort(fitness_values)

 sorted_positions = positions[sorted_indices]

 Update positions based on LOA rules

 for i in range(1, population_size):

 positions[i] = positions[i] + alpha * (sorted_positions[i-1] - positions[i]) + beta *

np.random.uniform(-1, 1, size=dimensionality)

 return positions

Step 4: Check Convergence

def check_convergence(iteration, max_iterations, fitness_values, threshold=1e-6):

 return iteration >= max_iterations or np.max(np.abs(np.diff(fitness_values))) < threshold

Step 5: Results and Visualization

best_fitness_history = []

for iteration in range(max_iterations):

 Update positions

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 66

 lion_positions = update_positions(lion_positions, fitness_values)

 Evaluate fitness

 for i in range(population_size):

 fitness_values[i] = evaluate_fitness(lion_positions[i])

 Update best fitness history

 best_fitness_history.append(np.min(fitness_values))

 Check for convergence

 if check_convergence(iteration, max_iterations, fitness_values):

 break

Display or save results

print("Best Fitness Value:", np.min(fitness_values))

print("Best Lion Position:", lion_positions[np.argmin(fitness_values)])

Visualization of convergence behavior

plt.plot(best_fitness_history)

plt.xlabel("Iteration")

plt.ylabel("Best Fitness Value")

plt.title("Convergence Behavior of Lion Optimization Algorithm")

plt.show()

Original LOA

import numpy as np

import matplotlib.pyplot as plt

Step 1: Initializing Parameters

population_size = 50 I. Define the population size of the lion

dimensionality = 10 II. Define dimensionality

max_iterations = 100 III. Define maximum iterations

IV. Initialize Lion Population

lion_positions = np.random.rand(population_size, dimensionality) # Initial population of

lions with random positions

Step 2: Evaluate the Fitness

def evaluate_fitness(positions):

 Implement your objective function here

 Example: fitness = sum(positions**2)

 return np.sum(positions**2)

fitness_values = np.zeros(population_size)

for i in range(population_size):

 fitness_values[i] = evaluate_fitness(lion_positions[i])

Step 3: Update Lion Positions (Lion Optimization Algorithm)

def update_positions(positions, fitness_values):

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 67

 alpha = 0.1 # Alpha parameter for LOA

 beta = 0.1 # Beta parameter for LOA

 Sort positions based on fitness values

 sorted_indices = np.argsort(fitness_values)

 sorted_positions = positions[sorted_indices]

 Update positions based on LOA rules

 for i in range(1, population_size):

 positions[i] = positions[i] + alpha * (sorted_positions[i-1] - positions[i]) + beta *

np.random.uniform(-1, 1, size=dimensionality)

 return positions

Step 4: Check Convergence

def check_convergence(iteration, max_iterations, fitness_values, threshold=1e-6):

 return iteration >= max_iterations or np.max(np.abs(np.diff(fitness_values))) < threshold

Step 5: Results and Visualization

best_fitness_history = []

for iteration in range(max_iterations):

 Update positions

 lion_positions = update_positions(lion_positions, fitness_values)

 Evaluate fitness

 for i in range(population_size):

 fitness_values[i] = evaluate_fitness(lion_positions[i])

 Update best fitness history

 best_fitness_history.append(np.min(fitness_values))

 Check for convergence

 if check_convergence(iteration, max_iterations, fitness_values):

 break

Display or save results

print("Best Fitness Value:", np.min(fitness_values))

print("Best Lion Position:", lion_positions[np.argmin(fitness_values)])

Visualization of convergence behavior

plt.plot(best_fitness_history)

plt.xlabel("Iteration")

plt.ylabel("Best Fitness Value")

plt.title("Convergence Behavior of Lion Optimization Algorithm")

plt.show()

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 68

Appendix B

Python Code for Validation of Threshold for the Anomaly Detection

Step 1

import pandas as pd

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.svm import OneClassSVM

Step 2: Load UNSW-NB15 and network logs.

 unsw_data = pd.read_csv('UNSW-NB15.csv')

log_data = pd.read_csv('network-logs.csv')

Step 3: Preprocessing of the data

scaler = StandardScaler()

unsw_data_scaled = scaler.fit_transform(unsw_data)

log_data_scaled = scaler.fit.transform(log_data)

Step 3: Combine the Datasets, merging the datasets to create a more diverse dataset with

varied complexity. This is done by concatenating the data from both sources and

strategically blending the records.

Combine datasets

combined_data=pd.concat([pd.DataFrame(unsw_data_scaled),

pd.DataFrame(log_data_scaled)], ignore_index=True)

Step 4: Training the OCSVM Model on Normal Data, separating normal data from the

combined dataset, and using it to train the One-Class SVM (OCSVM) model. This will

allow the model to learn a baseline of "normal" behavior based on the structure of the

UNSW-NB15 and network log data.

from sklearn.svm import OneClassSVM

Filter normal data for training

normal_data = combined_data[labels == 1] Assuming 1 represents normal

 Initialize and train the OCSVM model

ocsvm = OneClassSVM(kernel='rbf', gamma=0.38, nu=0.42)

ocsvm.fit(normal_data)

Step 5: Running the OCSVM Model's ability to recognize abnormalities of increasing

degrees of Complexity

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,

roc_auc_score

import numpy as np

from sklearn.svm import OneClassSVM

np.random.seed(0)

normal_data = np.random.normal(0, 1, (200, 5)) 200 samples, 5 features

simple_anomalies = np.random.normal(3, 1, (20, 5)) Simple anomalies

moderate_anomalies = np.random.normal(5, 2, (20, 5)) Moderate complexity anomalies

high_complexity_anomalies = np.array([np.sin(0.1 * np.arange(5)) + 7 for _ in range(20)])

High complexity anomalies

ocsvm = OneClassSVM(kernel='rbf', gamma=0.38, nu=0.42)

ocsvm.fit(normal_data)

def evaluate_model_with_auc(model, test_data, true_label=-1):

 predictions = model.predict(test_data)

 predictions = np.where(predictions == 1, 1, true_label) # Map to 1 for normal, -1 for

anomalies

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 69

 ground_truth = np.full(test_data.shape[0], true_label)

 Calculate metrics

 accuracy = accuracy_score(ground_truth, predictions)

 precision = precision_score(ground_truth, predictions, pos_label=true_label)

 recall = recall_score(ground_truth, predictions, pos_label=true_label)

 f1 = f1_score(ground_truth, predictions, pos_label=true_label)

 Binary ground truth and predictions for AUC

 binary_ground_truth = (ground_truth == true_label).astype(int)

 binary_predictions = (predictions == true_label).astype(int)

 auc = roc_auc_score(binary_ground_truth, binary_predictions)

 return accuracy, precision, recall, f1, auc

Complexity levels

complexity_levels = {"Simple Anomalies": simple_anomalies, "Moderate Complexity

Anomalies": moderate_anomalies, "High Complexity Anomalies":

high_complexity_anomalies}

Evaluate each complexity level

for level, data in complexity_levels.items():

accuracy, precision, recall, f1, auc = evaluate_model_with_auc(ocsvm, data)

 print(f"{level} - Accuracy: {accuracy:.2f}, Precision: {precision:.2f}, Recall: {recall:.2f},

F1 Score: {f1:.2f}, AUC: {auc:.2f}"). The output of the result is shown in Table 4.5

Appendix C

Python code for Implementing SSC-OCSVM using the NSL-KDD

dataset

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.svm import OneClassSVM

from sklearn.metrics import accuracy_score, recall_score, precision_score, roc_auc_score,

f1_score

from sklearn.preprocessing import StandardScaler, LabelEncoder

Step 1: Load the NSL-KDD Dataset

def load_nsl_kdd_data():

 # Replace with the actual path to your dataset

 train_file = "KDDTrain+.txt"

 test_file = "KDDTest+.txt"

 # Load the dataset

 column_names = [

 "duration", "protocol_type", "service", "flag", "src_bytes", "dst_bytes", "land",

"wrong_fragment",

 "urgent", "hot", "num_failed_logins", "logged_in", "num_compromised", "root_shell",

"su_attempted",

 "num_root", "num_file_creations", "num_shells", "num_access_files",

"num_outbound_cmds",

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 70

 "is_host_login", "is_guest_login", "count", "srv_count", "serror_rate",

"srv_serror_rate",

 "rerror_rate", "srv_rerror_rate", "same_srv_rate", "diff_srv_rate",

"srv_diff_host_rate",

 "dst_host_count", "dst_host_srv_count", "dst_host_same_srv_rate",

"dst_host_diff_srv_rate",

 "dst_host_same_src_port_rate", "dst_host_srv_diff_host_rate",

"dst_host_serror_rate",

 "dst_host_srv_serror_rate", "dst_host_rerror_rate", "dst_host_srv_rerror_rate",

"class"

]

 train_data = pd.read_csv(train_file, header=None, names=column_names)

 test_data = pd.read_csv(test_file, header=None, names=column_names)

 return train_data, test_data

Step 2: Preprocess the Dataset

def preprocess_data(data):

 # Convert categorical features to numeric

 categorical_features = ["protocol_type", "service", "flag"]

 for feature in categorical_features:

 encoder = LabelEncoder()

 data[feature] = encoder.fit_transform(data[feature])

 # Normalize the dataset

 scaler = StandardScaler()

 X = data.drop(columns=["class"])

 X = scaler.fit_transform(X)

 # Convert labels: normal = +1, anomaly = -1

 y = data["class"].apply(lambda x: 1 if x == "normal" else -1).values

 return X, y

Step 3: Train SSC-OCSVM Model

def train_ssc_ocsvm(X_train, X_test, y_test):

 # Sub-space clustering: Example with top 10 features based on variance

 feature_variance = np.var(X_train, axis=0)

 top_features_indices = np.argsort(feature_variance)[-10:] # Select top 10 features

 X_train_subspace = X_train[:, top_features_indices]

 X_test_subspace = X_test[:, top_features_indices]

 # Train One-Class SVM

 ocsvm = OneClassSVM(kernel="rbf", nu=0.1, gamma="scale")

 ocsvm.fit(X_train_subspace)

 # Predict on the test set

 y_pred = ocsvm.predict(X_test_subspace)

http://www.eujournal.org/

ESI Preprints February 2025

www.esipreprints.org 71

 return y_pred

Step 4: Evaluate Model Performance

def evaluate_model(y_test, y_pred):

 accuracy = accuracy_score(y_test, y_pred)

 recall = recall_score(y_test, y_pred, pos_label=1)

 precision = precision_score(y_test, y_pred, pos_label=1)

 roc_auc = roc_auc_score(y_test, y_pred)

 f1 = f1_score(y_test, y_pred, pos_label=1)

 print(f"Accuracy: {accuracy:.2f}")

 print(f"Recall: {recall:.2f}")

 print(f"Precision: {precision:.2f}")

 print(f"ROC-AUC: {roc_auc:.2f}")

 print(f"F1-Score: {f1:.2f}")

 return accuracy, recall, precision, roc_auc, f1

Main Function

if __name__ == "__main__":

 # Load and preprocess the data

 train_data, test_data = load_nsl_kdd_data()

 X_train, y_train = preprocess_data(train_data)

 X_test, y_test = preprocess_data(test_data)

 # Train SSC-OCSVM and generate predictions

 y_pred = train_ssc_ocsvm(X_train, X_test, y_test)

 # Evaluate the model

 evaluate_model(y_test, y_pred)

http://www.eujournal.org/

