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Abstract 

This paper explores the conceptual formation of curvature as a 

unifying principle between mathematical reasoning and artistic expression. 

Curvature, traditionally studied within the field of differential geometry, 

finds a compelling counterpart in the visual language of art, manifesting in 

forms, lines, and symbolic representations across various artistic traditions. 

This interdisciplinary approach introduces readers, particularly non-

specialists, to the foundational mathematical concepts underlying curvature, 

highlighting their intuitive and interpretive applications in visual art. By 

examining parabolic, sinusoidal, and exponential curves within both abstract 

and figurative compositions, the study bridges the epistemological gap 

between the analytic and the aesthetic. In doing so, it contributes to 

contemporary discourse in both educational and creative domains. The paper 
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also underscores the educational value of this cross-disciplinary 

methodology, emphasizing its potential to enrich classroom instruction, 

enhance visual literacy, and support STEAM-based learning initiatives. 

 
Keywords: Curvature, Art, Differential Geometry, Aesthetic, STEAM 

education 

 

Introduction 

The idea of curvature holds a pivotal place in both mathematical 

theory and artistic representation. In art, curvature often manifests through 

lines, shapes, and spatial compositions that artists use to convey motion, 

tension, harmony, and emotion. Mathematically, curvature is rigorously 

defined and analyzed through the tools of differential geometry, often 

involving abstract models that describe how space bends or changes. This 

paper adopts a didactic and exploratory perspective, aiming to introduce non-

specialist readers to the mathematical underpinnings of curvature and its 

interpretive value in visual art. 

Through simplified representations, such as parabolas, sinusoids, and 

spirals, this study connects mathematical expressions with expressive artistic 

devices. In doing so, it frames curvature not merely as a formal or scientific 

property but as a symbolic and compositional tool with deep cultural and 

emotional resonance (Hoffman & Richards, 1984; Arnheim, 1974). While 

advanced mathematical techniques are beyond the scope of this paper, the 

intention is to offer a conceptual framework that fosters interdisciplinary 

thinking, particularly within education and art. 

This approach responds to the growing need for integrative models in 

contemporary learning - ones that recognize the intersections between 

abstract logic and creative inquiry (Tan, et al., 2023; Hammer, 2014). These 

intersections have been discussed in both mathematical pedagogy and artistic 

exploration (Henderson & Taimina, 2001; Devlin, 2011; Sinclair & Watson, 

2017; UNESCO, 2015). As such, the study contributes to broader efforts in 

STEAM (Science, Technology, Engineering, Art, Mathematics) education by 

positioning curvature as a shared language bridging disciplines traditionally 

viewed in isolation. 

The rest of the paper is organized as follows. Firstly, it is 

demonstrated how curvature is used artistically to evoke emotion, 

symbolism, and spatial balance, particularly within abstract and figurative 

art. Secondly, we explain basic mathematical ideas behind curvature using 

accessible terms, including parabolas, sinusoids, and spirals, to support a 

general understanding for non-specialists. Thirdly, illustrative examples from 

historical and contemporary art, showing how mathematical curves appear in 

composition, movement, and symbolism are presented. Fourtly, we highlight 
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the potential of integrating curvature into STEAM education, enhancing 

visual literacy and interdisciplinary thinking in both arts and sciences. Next, 

our discussion explores how this interdisciplinary framework fosters 

collaboration between artists and mathematicians and proposes broader 

applications in pedagogy and research. Finally, the conclusion summarizes 

the key findings and reflects on future directions for research and curriculum 

development involving curvature across art and mathematics. 

 

Curvature in the Logic of Art: A Conceptual Analysis 

Curvature is a fundamental geometric notion and, in tandem, a 

powerful aesthetic device. In mathematics, curvature quantifies the deviation 

of a line or surface from flatness. In art, it guides the viewer’s eye, evokes 

emotion, and structures visual meaning. Thus, curvature is far more than a 

geometrical measure. It is a conceptual tool that artists use to shape form, 

guide perception, convey meaning, and structure visual logic. By 

understanding its morphological, perceptual, semiotic, and formal aspects, 

we gain insight into why curved forms have influenced so deeply in art and 

design. Understanding the technical, emotional and semantic value of 

curvature in arts is a complex task and many theories have been developed, 

such as perception and visual aesthetics theories (McRobie, 2017; Ruta, et 

al., 2023). 

The notion of Curvature in art can symbolize various themes, from 

the dynamism of motion to the calmness of symmetry. Artistic expressions 

frequently employ curvature to guide the viewer's gaze, suggest volume, or 

evoke certain emotions. In many classical compositions, curved lines lead 

viewers into the scene, creating a sense of flow or natural rhythm. 

Additionally, curvature in sculptures and architecture contributes to balance 

and aesthetic harmony (Gombrich, 1960). 

The "logic of art" here refers to the guiding principles or semiotics 

used in art to communicate with viewers. This logic often employs curvature 

to convey meanings that transcend literal forms. For instance, abstract art by 

artists such as Wassily Kandinsky explore "spiritual" meanings through 

curved shapes that lack representational content but are rich in emotional 

resonance (Kandinsky, 1947). In Renaissance art, curved lines often guide 

the viewer's eye, creating harmony and balance. This intentional use of 

curvature is seen in Leonardo da Vinci’s “The Last Supper,” where curved 

arches frame the scene, leading attention toward central figures (Grieve, 

2018). 

 

A Naive Mathematical Approach to Curvature in Art 

In this section, we introduce an accessible mathematical framework 

that can be used by artists or theorists without extensive backgrounds in 
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mathematics (Smith, 1958). Rather than employing rigorous proofs, we rely 

on intuitive descriptions of curvature: 

1. Curved Lines and Emotional Tone: Artists use simple curves 

(such as parabolic or sinusoidal shapes) to create tension or release in 

compositions. 

Example: The parabolic curve often represents balance and stability, 

seen in works by artists like Leonardo da Vinci (Livio, 2002). The curves in 

da Vinci’s compositions resemble parabolic shapes, defined by: 
 

2y ax bx c= + + . 
 

2. Curvature as Flow: The flow of curvature, where a line or shape 

smoothly transitions, can be represented by simple sine functions. For a 

sinusoidal curve we have: 

( ) sin( )= +f x a bx c , 

where:  

• a  affects amplitude, impacting visual intensity,  

• b affects frequency, determining rhythm or tension,  

• c  adjusts phase influencing movement and positioning. 

 

Example: In landscape art, curved hills and flowing rivers can be 

approximated with sinusoidal waves, creating a sense of organic movement 

and continuity. 

3. Curvature as Symbolism: In abstract art, curvature often 

symbolizes movement or growth, an element that is reflected mathematically 

in exponential growth functions: 

( ) = kxf x e , 

where k  dictates the curve's growth rate, analogous to a spiral or 

expanding form in art. 

 

Mathematical Framework of Curvature 

In mathematics, curvature can be classified as the degree to which a 

curve deviates from being a straight line or a surface from being a plane. 

This concept is often analyzed in differential geometry, where curvature 

provides a tool to study properties of surfaces (Pressley, 2001). For instance, 

Gaussian curvature helps describe surfaces by measuring their intrinsic 

curvature, while mean curvature gives insight into surface behavior in three-

dimensional space (Kreyszig, 1991). 
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Curvature of Curves 

For a planar curve C , the curvature   at any point is defined as the 

rate of change of the curve's tangent angle with respect to arc length, given 

by: 

2 3 2[1 ( ) ]


=

+

y

y
 , 

 

where y  and y  represent the first and second derivatives of the 

curve function, respectively. 

If the curve is represented parametrically as ( ) ( ( ), ( ))=r t x t y t , then: 

 

2 2 3 2[( ) ( ) ]

   −
=

 +

x y y x

x y
 . 

 

Example Calculation 

For a circle of radius R , parameterized as ( ) ( cos , sin )=r t R t R t , i.e. 

( ) cos=x t R t  ( ) sin=y t R t  and thus ( ) sin = −x t R t , ( ) cos = −x t R t , 

( ) cos =y t R t , ( ) sin = −y t R t , from where we derive: 

 

2 2 2 2 3 2

sin ( sin ) cos ( cos ) 1

( cos sin )

−  − −  −
= =

+

R t R t R t R t

R t R t R
 . 

 

This constant curvature is characteristic of circles, aligning with the 

uniform balance and symmetry often found in classical art. 

By the Pythagorean identity 
2 2sin cos 1+ =t t , we get the result. 

1. Calculating 2 2( ) ( ) +x y , we find: 
2 2 2 2 2 2 2 2 2( ) ( ) ( sin ) ( cos ) sin cos + = − + = + =x y R t R t R t R t R . 

2. Now substitute these values back into the curvature formula: 

 
2 2

2 3 2 3

1

( )

R R

R R R
= = = . 

 

The result 1 R=  means that the curvature of a circle of radius R  is 

constant at every point on the circle and is inversely proportional to the 

radius. A smaller circle (with a smaller R ) will have a higher curvature 

(more "bent"), while a larger circle (with a larger R ) will have a lower 

curvature (flatter). 

This result is unique to circles, i.e. for any point on a circle, the 
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curvature remains the same. 

A Gaussian curvature K  (Kühnel, 2006) is the product of the 

principal curvatures, 1 and 2 , at each point on a surface: 

1 2= K   . 

• Positive K  (e.g., on a sphere): Both principal curvatures curve in the 

same direction. 

• Negative K  (e.g., on a saddle): The curvatures bend in opposite 

directions, creating a shape with unique geometric and aesthetic 

properties. 

 

Visual Aids 

Fractal patterns have been present in art for centuries, carrying 

aesthetic and spiritual significance across diverse cultures - for instance, 

Leonardo da Vinci's representations of trees reflect these underlying 

mathematical principles (Gao & Newberry, 2024). 

A) Fractal Analysis of Pollock’s Curves: Show log-log plots of 

Pollock’s patterns (Taylor, et al., 2008). 

Below are shown four graphical illustrations based on the discussed 

mathematical concepts. 

1. Parabolic Curve: The graph shows a simple parabolic curve, 
20.1=y x . This shape, often used in architecture and classical 

compositions, provides stability and balance. 

2. Sinusoidal Curve: The sine wave, sin( )=y x , represents natural 

rhythm and flow, commonly found in landscapes and abstract art to 

convey a sense of continuity. 

3. Exponential Spiral: The spiral, 
0.1=r e 

, displays exponential 

growth, symbolizing movement, growth, and continuity, often seen in 

natural forms and abstract art. 

4. Fractal Pattern: The Sierpinski Triangle (Kempkes, et al., 2019) is a 

recursive pattern representing a fractal. Fractals, like those in Jackson 

Pollock's art, display self-similarity across scales, showing how 

complexity can be created through repetition. 
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Fractal Pattern: Sierpinski Triangle 

 
 

B) Curved Fractal Patterns in Nature and Art: Comparisons of fractal 

patterns in Pollock's work and natural fractals (e.g., tree branches, river 

networks). Below are two additional visualizations illustrating Gaussian 

curvature on 3D surfaces, showing the difference between positive and 

negative curvature: 

1. Positive Gaussian Curvature (Sphere): The surface of a sphere has 

positive Gaussian curvature, where each point curves uniformly in all 

directions. This characteristic is common in rounded, balanced 

structures, such as domes or certain sculptural forms in art, conveying 

harmony and completeness. 

2. Negative Gaussian Curvature (Saddle or Hyperbolic Paraboloid): 

The hyperbolic paraboloid (saddle shape) has negative Gaussian 

curvature, curving in opposite directions along each axis. This shape 

is frequently seen in modern architecture, abstract sculptures, and 

surrealist compositions, suggesting dynamic, tension-filled forms. 
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Negative Gaussian Curvature: Saddle (Hyperbolic Paraboloid) 

 
 

These visualizations give an inside view of how simple mathematical 

curves can inspire or be identified within artistic compositions. The 

curvature types not only define surface geometry but also play significant 

roles in the visual impact of forms in art and architecture. 

 

Case Studies in Art 

Architecture: The Parabolic Arches of Antoni Gaudí 

Antoni Gaudí’s architectural masterpieces, particularly the iconic 

Sagrada Familia in Barcelona, beautifully exemplify the use of curvature in 

design (Middleton & Petruzzello, 2024). Gaudí employed parabolic arches - 

curves shaped by mathematical precision - to achieve both structural 

efficiency and artistic elegance. These arches distribute weight naturally, 

minimizing stress on supporting materials and enhancing stability without 

sacrificing beauty. Beyond functionality, the organic shapes evoke natural 

forms such as trees, caves, and waves, creating a sense of harmony between 

the built environment and the natural world. Gaudí’s innovative use of 

curvature reflects his deep understanding of geometry and his desire to 

integrate mathematical logic into a spiritually inspired aesthetic. His work 

continues to influence modern architecture, serving as a bridge between 

scientific reasoning and artistic vision. 

 

Abstract Art: Jackson Pollock’s Dynamic Curves 

Jackson Pollock’s abstract expressionist paintings are known for their 

intense energy, marked by sweeping lines, splatters, and fluid drips. While 

they may appear chaotic at first glance, Pollock’s artworks often display 

recurring patterns that can be examined through mathematical frameworks, 

especially fractal geometry and chaos theory (Taylor, et al., 2011). The 

"curvature" in his work emerges not from traditional arcs or spirals but from 

the rhythmic density and directional flow of paint across the canvas. His drip 
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technique produces intricate layers and textures, forming complex visual 

systems that resemble natural phenomena such as turbulence or branching 

patterns. Scholars have even used fractal analysis to measure self-similarity 

within his works. Pollock’s method thus opens fascinating intersections 

between abstract art and mathematics, suggesting that even seemingly 

spontaneous creativity can follow underlying mathematical rules. His 

paintings challenge conventional definitions of curvature while inviting a 

deeper, analytical appreciation of form and movement. 

 

Educational Implications and Benefits 

The interdisciplinary methodology outlined in this article presents 

numerous educational benefits, especially for educators and learners engaged 

in both the mathematical sciences and the visual arts. By treating curvature 

as a conceptual bridge, the study fosters a more holistic understanding of 

spatial and symbolic relationships. For students, particularly those with 

limited formal training in mathematics, anchoring abstract concepts in 

artistic examples provides an intuitive and visually compelling pathway to 

learning. 

This method promotes cognitive engagement, critical thinking, and 

creativity, encouraging learners to explore beyond traditional disciplinary 

boundaries. Using simplified mathematical functions such as parabolic arcs, 

sinusoidal curves, and exponential forms, educators can demonstrate how 

mathematical ideas are embedded within and can enhance visual 

composition. Moreover, the integration of artistic frameworks into 

mathematical instruction improves visual literacy and supports multiple 

learning modalities.  

In a classroom context, these examples can serve as entry points into 

discussions of symmetry, transformation, and spatial reasoning, aligning 

with STEAM educational models that value interdisciplinary collaboration 

(Amanova, et al., 2025). The emphasis on emotional tone and compositional 

balance in artworks further reinforces the notion that mathematical forms are 

not purely technical but also expressive and interpretive. Educational 

theorists have highlighted similar cross-disciplinary models as effective in 

improving comprehension and engagement (Rose & Meyer, 2002; Sousa, 

2016; Henriksen et al., 2015; Boaler, 2016). In this way, the article promotes 

a learning environment that validates diverse cognitive styles and fosters 

meaningful dialogue between the analytic and the artistic. 

 

Discussion and Implications for Cross-Disciplinary Studies 

The exploration of curvature as a shared conceptual language 

between mathematics and art opens a robust pathway for interdisciplinary 

learning and collaboration. This study underscores how even a naive 
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mathematical lens can provide meaningful interpretive tools for artists, while 

offering mathematicians a glimpse into the intuitive deployment of formal 

principles within artistic practices (Andrés & Franco, 2021; McRobie, 2017). 

Curvature, in this light, is not merely a geometric descriptor but a symbolic 

medium capable of expressing motion, balance, tension, and emotional 

resonance within visual compositions (Silva & Barona, 2009; Ruta et al., 

2023). 

This cross-disciplinary perspective promotes the value of visual 

literacy in STEM fields and mathematical literacy in the arts. Artists, 

particularly those working in abstract or conceptual domains, may leverage 

mathematical notions such as parabolic or sinusoidal curves as storytelling 

devices or compositional anchors. Simultaneously, educators and 

mathematicians may draw pedagogical inspiration from how these forms are 

used to convey meaning without formal mathematical notation - highlighting 

the interpretive potential of geometry and symmetry in cultural contexts 

(Sinclair & Watson, 2001; Devlin, 2011). 

Furthermore, emerging research in cognitive science and 

neuroaesthetics supports the psychological impact of curvature on human 

perception and emotion (Fierro-Newton, 2024; Taylor et al., 2011). Curved 

forms tend to be preferred over angular ones, suggesting that aesthetic 

choices may be rooted in neurobiological processing. This reinforces the 

argument that both scientific and artistic inquiries can benefit from shared 

methodologies and mutual reflection. 

As STEAM-based education continues to gain traction globally, 

integrating accessible mathematical frameworks within arts curricula - and 

vice versa - can foster holistic educational models. These models recognize 

diversity in cognitive approaches and encourage students to draw 

connections across traditionally siloed disciplines. The implications of this 

approach extend to curriculum design, teacher training, and research 

methodologies, advocating for a blended paradigm that merges analytic 

precision with expressive intuition. 

 

Conclusion 

This article has presented an interdisciplinary inquiry into the role of 

curvature as a bridge between mathematical reasoning and artistic 

expression. By examining parabolic, sinusoidal, and exponential forms 

through both visual and analytical lenses, we have demonstrated how 

curvature can function not only as a structural or aesthetic element, but also 

as a metaphorical and interpretive device. 

The study’s core proposition - that even simplified mathematical 

frameworks can deepen our understanding of visual composition and artistic 

logic - has implications for both academic research and classroom practice. 
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Whether through educational design, visual storytelling, or the structuring of 

spatial perception, the integration of mathematical concepts into art enriches 

both fields, fostering creativity, engagement, and cross-disciplinary literacy. 

Future research might explore the application of more sophisticated 

mathematical models - such as topological transformations, fractal dynamics, 

or machine learning-based image analysis - in understanding artistic forms. 

Similarly, further qualitative and quantitative studies could investigate how 

students and educators respond to interdisciplinary approaches involving 

curvature. As we continue to bridge disciplinary boundaries, the study of 

curvature exemplifies how conceptual elegance, and artistic vision can 

converge to inspire new forms of inquiry and innovation. 
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