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Abstract 
In this paper, single tree extraction was carried out using the first and 

last pulse airborne LIght Detection And Ranging (LIDAR) data. The LIDAR 
data was collected from TopoSys in May 2007 in the Milicz forest district, 
Poland, with a density of 7 points m-2. The total study area contains 25 
circular plots of different radius according to the age of the trees. The 
absolute height of each point was obtained by normalizing the LIDAR raw 
data points using a digital terrain model (DTM) of the area. The value of σ 
used while smoothing was found higher for the deciduous tree dominating 
plots as compared to the coniferous plots. A modified k-means clustering 
algorithm was applied to extract the clusters of single tree above 4m height 
in each plot from the normalized LIDAR point clouds. 3-D convex polytope 
reconstruction from the extracted clusters of each tree was carried out using 
QHull algorithm. The validated result shows that an average of nearly 86% 
of the matured deciduous and 93% of the matured coniferous trees were 
extracted by the presented approach. Almost equal average accuracies were 
obtained in the case of young deciduous and coniferous tree species (58%). It 
seems that the algorithm did not work well with relatively younger tree types 
even after varying the parameters at pre-processing steps. The study showed 
that the adjustment of certain parameters like threshold distance, smoothing 
factor and scaling factor for the height before initialising the main process, 
has a substantial impact on the number and shape of the trees to be extracted 
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more appropriately by applying the modified k-means procedure. There is a 
future scope of improving and testing the algorithm with different density of 
LIDAR data in different forest conditions. 

 
Keywords: Lidar, forestry, segmentation, clustering, delineation 
 
1. Introduction 

In the past decade the demand of airborne LIght Detection And 
Ranging (LIDAR) data with high quality (e.g. optimal footprint size, high 
point density) and more information (intensity, pulse width, number of 
echoes from each emitted laser pulse) has increased for various applications. 
Some of the LIDAR based applications of interest are the estimation of 
biophysical parameters in forest management performance using different 
techniques (Woodget et al. 2007, Suárez et al. 2008, Maltamo et al. 2009, 
Ørka et al. 2009a) and environmental planning practices (Nilsson 1996, 
Hudak et al. 2008, Tooke et al. 2009). The increasing demands of single tree 
extraction, as a basis to improve the forest management performance, is the 
motivating factor for developing various methodologies for single tree 
extraction from airborne laser scanner (ALS) data. The term 'single tree' 
includes the term 'single tree crown' throughout the paper because of the 
difficulty in delineating the whole tree. Clustering algorithms provide a good 
way of partitioning the complete normalized ALS dataset of the test area into 
an individual cluster (e.g. tree in a forested test site). Through this 
mechanism, the 3-D geometric feature spaces are divided into individual 
clusters containing point values similar to each other using a squared 
Euclidean or any other distance matrix. There are several clustering 
mechanisms, for example, the hierarchical tree clustering, the k-means and 
the fuzzy C-means (FCM). In this study, the most popular k-means was 
chosen, which is an iterative hill-climbing approach and a staple of clustering 
methods. In contrast to the hierarchical clustering based approach, the k-
means uses the actual observations of the objects and not just their 
proximities (Gupta et al. 2010). In the hierarchical clustering, the tree is not a 
single set of clusters unlike the k-means, but rather a multilevel hierarchy. 
The FCM is one of the promising alternative approaches for cluster analysis. 
Few works on FCM have been done for image data (Dulyakarn and 
Rangsanseri 2001, Chen et al. 2005).  

Various studies on the application of airborne LIDAR data for 
vegetation related information retrieval have been conducted in the past by 
using different methods (Hyyppä et al. 2006, Persson et al. 2006, Wang et al. 
2008a, Wang et al. 2008b, Ko et al. 2009, Vauhkonen et al. 2009). There are 
two main approaches in extracting forest information from LIDAR data: the 
canopy height distribution-based and the individual tree detection-based 
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approaches (Maltamo et al. 2006). For the single tree delineation, the major 
existing algorithms are the digital surface model (DSM) or the normalized 
DSM (nDSM) based, which are the result of a surface interpolation (Hyyppä 
and Inkinen 1999, Persson et al. 2002, Koch et al. 2006, Rossmann et al. 
2007). The main drawback is that the trees and young regeneration in the 
intermediate and lower forest layers are invisible from the nDSM surface and 
hence cannot be detected at all (Reitberger et al. 2008a, Reitberger et al. 
2009). Wang et al. (2008a) presented a new method for 3-D single tree 
crown contour extraction at different height level using a hierarchical 
morphological process. In their study, they have suggested to use the pre-
knowledge of the stand situation in their algorithm to control the input 
variables. Wang et al. (2008b) tried to find out better results by modifying 
the horizontal and vertical space of the voxel space and the crown growing 
radius for different forest types, but they still found considerable failures in 
the individual tree detection. Reitberger et al. (2008a) showed that the new 
full waveform LIDAR data significantly improves the detection rate of single 
trees using a 3D segmentation technique based on the normalized cut 
segmentation method using variable LIDAR point density (10 and 25 points 
m-2). The high point density from the full waveform data (25 points m-2) was 
the key factor to segment the dominant trees in the upper canopy layer as 
well as the dominated smaller trees in the lower and intermediate layers in 3-
D using normalized cut method (Reitberger et al. 2009). However, the 
increased detection rate also deteriorates the reliability of the segmentation 
process by the factor 2 in terms of false positives (Reitberger et al. 2008a). If 
the density of laser pulses is increased per square meter, the probability of 
individual trees detection is increased (Maltamo et al. 2006). Several studies 
have been performed in the past by using the local maxima to find out the 
tree top locations, majority in the image domain and fewer in the vector 
domain. A pixel counts as a local maximum, if all of its neighbours have got 
a lower height-value or if all the neighbours of some connected pixels with 
equal height (a “plateau”) have got a lower height value (Koch et al. 2006). 
In tree detection on a nDSM, local adaptation has been done at least by 
adjusting the window size used for finding local maxima (Popescu et al. 
2002) and by choosing different scales, produced by Gaussian filtering, in 
the different parts of the image (Persson et al. 2002). Popescu et al. (2002) 
estimated the plot level tree heights with LIDAR data based on the local 
filtering with a canopy height-based variable window size. In the study 
conducted by Pitkänen et al. (2004), the first-pulse LIDAR derived nDSM 
was smoothed with canopy height based selection of degree of smoothing. 
The local maxima on the smoothed nDSM were considered as tree locations 
(Pitkänen et al. 2004). An approach to delineate single tree crowns 
automatically using the first and last pulse LIDAR data in the deciduous and 
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mixed temperate forests of Germany was presented by Koch et al. (2006). 
The tree tops were detected with a local maxima filter in the nDSM. 
Afterwards, the tree crowns as regions were delineated with a combination of 
a pouring algorithm, knowledge-based assumptions on the shape of trees, 
and a final detection of the crown-edges by searching vectors starting from 
the trees tops. Based on the assumption that the tree tops have a certain 
minimal distance from each other, they chose 1m for the trees below 22m 
and 2m for the trees above 22m. If the two tree tops were within this 
distance, the corresponding crown segments were merged using the 
segmentation algorithm (Koch et al. 2006). In the study conducted by Tiede 
et al. (2008), a supervised approach for the process of segmentation and the 
object generation utilising human a priori knowledge on the specific scale 
domain of the target features has been presented. Tiede and Hoffmann 
(2006) have developed specific rule sets for the single tree crown delineation 
using the first and last pulse ALS data, which was later adapted (Tiede et al. 
2008) to the specific conditions in the study areas and the data sets used. In 
their rule sets, a region growing segmentation algorithm was programmed 
using a continuity constraint starting from the tree tops (local maxima) as 
seed points. 

A method for delineating crowns from the raw first return ALS data 
using Delaunay triangles and Voronoi polygons in a vector environment for 
a Finnish test site was presented by Cici (2009). The seed points were 
identified at three different scales based on the elevation value (Cici 2009). 
In this case, the seed points were the local maxima at their scale and 
considered directly as the tree tops. The accuracy was largely scale-
dependent and the algorithm needs to be tested in different forest conditions 
with different datasets (Cici 2009). Single tree extraction by applying 
clustering based approaches with airborne LIDAR data has been carried out 
in the past (Morsdorf et al. 2003, Morsdorf et al. 2004, Doo-Ahn et al. 2008, 
Cici et al. 2008, Reitberger et al. 2008b). Morsdorf  et al. (2003) used the 
first and last pulse data with an overall density of 30 points m-2 and the k-
means method to extract single trees in the Swiss National Park. They used 
local maxima derived from the smoothened DSM as the seed points. In 
contrast to the algorithm used in the presented approach, instead of scaling-
down the z-coordinate value, they scaled it up by three. They argued for it 
that they did it to accommodate the aspect ratio of pine tree crowns, which 
ranged in between 3-6. Riaño et al. (2004) estimated a derivative of foliage 
biomass, the crown bulk density, using LIDAR metrics with the k-means 
clustering at both plot and individual tree scales. The individual tree level 
analyses were not completely successful in their work. Ko et al. (2009) have 
shown in their paper deciduous-coniferous classification using the single 
leaf-on Riegl LMS-Q560 /LMS Q280i full waveform data of high point 
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density (21 points m-2). They separated 65 individual tree crowns manually 
from the LIDAR data and characterised the tree crown shape by comparing 
the crown of real LIDAR tree point clouds to artificially generated point 
clouds by the Lindenmayer system language. They applied simple k-means 
clustering for deriving the branches of 27 coniferous and 38 deciduous trees 
for improved visualisation. They also calculated the volume and surface area 
of the convex hull reconstructed from each tree crown clusters. Nevertheless, 
in their study the result was not validated using any field data. Ørka et al. 
(2009b) tested supervised classification strategy using linear discriminant 
analysis (LDA), random forest (RF) algorithm and support vector machines 
(SVM) for the tree species classification. They also used unsupervised k-
means clustering and the k-means clustering in combination with the 
unsupervised RF algorithm for the same objective. Their result showed that 
the accuracies were lower in the case of unsupervised methods than for the 
supervised ones applied to overall tree species classification. However, in the 
study conducted by Reitberger et al. (2008a), almost equal accuracies were 
obtained with unsupervised (Expectation-Maximization algorithm) and 
supervised (maximum likelihood classification) methods. They used 
different datasets (first and last pulse and full waveform) of different point 
densities in the leaf-on and leaf-off seasons. Their result showed that the 
classification accuracy decreases slightly for the lower and intermediate 
layers in the leaf-on case. This work explicitly differs from the previous 
work done by Gupta et al. (2010) in way a that the previous work was a 
comparative study of the two clustering mechanisms viz. k-means and 
hierarchical clustering mechanism in their varied forms, without any 
quantitative.    

The shape of the tree crowns using the vector data are shown in 
different forms and relate approximately to the geometry of the actual tree 
crown when examined visually. There are many ways for constructing the 
shape of the extracted LIDAR point cloud of a single tree using different 
computational geometry concepts like convex hull, 3D Delaunay 
triangulation. The individual cluster can also be shown as 3-D surface or in 
the form of a mesh. Vauhkonen et al. (2009) used linear discriminant 
analysis for the classification of individual trees and alpha shape metrics for 
tree species classification (pine, spruce, and deciduous trees) in Scandinavian 
test sites comprising 92 dominant or co-dominant trees detected and 
delineated manually from a very dense ALS data (40 points m-2). The 
method applied required to be tested for larger datasets with varying point 
density. 

The objective of this paper is to examine the potential of the modified 
k-means algorithm for single tree extraction using ALS data, the validation 
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of the result obtained with that of the field data, and the shape determination 
of the extracted tree clusters in 3-D using QHull algorithm. 
 
 
2. Materials and Methodology 
2.1. Study area and field data characteristics 

Investigations were carried out in the Milicz forest district, State 
Forestry Regional Management in Wrocław, Poland. This was done by the 
Faculty of Forestry, Warsaw University of Life Sciences, Warsaw, Poland. 
The Milicz forest district comprises 26 250ha, of which, 96% (25 362ha) is 
covered by the forest. The dominant tree types are Scots pine (Pinus 
sylvestris – 76%), Oak (Quercus sp. – 9%), European Beech (Fagus 
sylvatica – 4.7%), Alder (Alnus glutinosa - 4.5%) and 5.8% others species 
(Birch - Betula pendula, Norway spruce - Picea abies, European larch - 
Larix decidua, Hornbeam - Carpinus betulus and few minor species). The 
plots containing coniferous trees (mainly Scots pine) are mostly made up of 
single canopy layer. From the field-inventoried data, the age of the trees in 
the forested area varies between five to greater than 100 years and that of 
analyzed plots with different dominant species, varies between 26 and 152 
years. The average stand volume is 290 m3 ha-1. Generally, flat relief covers 
the study area, except in a plot no. 3, with occasional sand dunes. Figure 1 
shows the location of the study area. 

 
Figure 1. Location of plots within the Milicz Forest District, Poland. 

 
The forest inventory was carried out in autumn 2006 covering 30 

sample plots. The radius and size of the sample plot depend upon the age of 
the stand (Rosa 1977) as presented in table 1. In this study, the projected size 
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of the sample plots is similar to the size of the plots used in the Polish 
Operational Forest Inventory (Bruchwald and Zajączkowski 2002), where 
they have applied the prism inventory method using “variable radius” plots. 
Each tree has a different “plot” radius - larger trees have larger plots. The 
adjustment was necessary in order to compare the results from both 
traditional and remote sensing methods. The radius of the sample plots 
changes with the age as it is correlated with the tree density and the tree 
trunk Diameter at Breast Height (DBH). Due to the changing plot size, more 
than 20 trees were measured in each sample plot. It was also necessary to 
avoid micro-variation in cross-section breast-height stand area or basal area, 
which is the base for the average stand volume calculations. 

Age (years) Radius (m) Plot size (ha) 

21 – 30 3.99 0.005 

31 – 40 5.64 0.01 

41 – 60 7.98 0.02 

61 – 80 9.77 0.03 

81 – 100 11.28 0.04 

> 100 12.62 0.05 
Table 1. Age of the stand, radius of the plot and total area of 25 plots in each age class. 

 
Thirty plots were measured (as a reference for terrestrial and airborne 

LIDAR measurements) using the geodetic method (coordinates of centre 
point of each plot using DGPS). Other recorded parameters were azimuth 
and distance from the middle point of each sample plot to each tree inside the 
plot, the DBH of all trees (using diameter tape), the height of all trees from 
different layers (separately for each species using Suunto clinometer) and the 
position of each tree trunk coordinates. The tree coordinates were derived 
using the azimuth and distance from the centre point of each plot using 
Suunto compass and tape. 

A comparison was initially made between the field measured data 
(vector layers) and the LIDAR data that showed that one sample plot had 
been harvested before the laser scanning was carried out. In four out of 29 
remaining sample plots, it was not possible to connect single trees from the 
field measurements with the corresponding trees on the DSM and 
orthophoto. Therefore, five sample plots were excluded from the further 
analysis and the study was focused on the remaining 25 sample plots. Table 
1 shows the correlation of the average age of the plot and the radius of the 
circular plot with the total area of the plots in each age class. It is important 
to note that the radius of the plot can be modified if it lies on undulating 
terrain. For example, the radius of the plot no. 3 (dominated by the matured 
European beech), whose slope was 9%, was modified from 12.62 to 12.71m. 
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2.2. First and last pulse airborne LIDAR data and preprocessing 
For the individual tree extraction, the first and last pulse ALS data 

were captured by TopoSys (Falcon II System) on 2-3 May, 2007, with a 
scanner on flight of altitude 700m above ground level at the wavelength of 
1560nm, a scan angle of 14.3° degrees (±7°) and a 70cm footprint size of the 
laser beam. There is a strong irregularity in the pattern of the collected 
LIDAR raw data points with the point density for the first and last echo 
being 7 m-2. 

Earlier investigations made by W Zakładzie Systemów Informacji 
Przestrzennej i Geodezji Leśnej (ZSIPiGL), Faculty of Forestry, Warsaw 
Agricultural University, Warsaw, Poland, showed that the field data matched 
with that of the LIDAR point data (Wang et al. 2008b). The vector data (tree 
position, tree height, DBH) were acquired at ground level. The vector data 
were some time not very accurate due to different accuracy level of two 
different Global Positioning System (GPS) instruments used during the flight 
and ground measurements, respectively. In such case, nDSM and orthophoto 
were used to distinguish the neighbouring trees in the upper canopy layer. 
Once the trees were identified correctly both on the nDSM and orthophoto, 
the data from 25 sample plots were merged with 100% certainty between the 
field measurements and their correspondent nDSM (Wang et al. 2008b) of 
0.5m resolution.  
 
2.3. Orthophoto characteristics 

RGB and CIR true-orthophoto were based on the images collected 
during spring (April-May) 2007 with the TopoSys line scanner, at 700m 
above ground level. DSM from LIDAR data is a base for true-orthophoto 
calculation or the orthorectification. The recorded LIDAR data was 
combined with the recorded DSM and for each recorded "pixel" the position 
in the DSM was calculated. The orthorectification of the images using the 
DSM was carried out strip by strip. In a next step these single strips were 
patched together with contrast and brightness balancing. Finally, the whole 
patched area was cut down into tiles and resampled in to 8-bit true-
orthophoto with the spatial resolution of 25cm.  
 
2.4 Data processing 

All the data processing works were carried out in a 100m by 100m 
area in each of the 25 circular plots. Subsequently, for accuracy assessment, 
the data were clipped to the plot size. This was done to include those 
reference tree crowns and tree top points, which were intersected at the edge 
and/or were found outside the circular plot. 

The raster Digital Terrain Model (DTM) and DSM of 0.5m resolution 
were calculated from the raw LIDAR point clouds in the TreesVis 
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environment. The TreesVis is software for LIDAR data visualisation and 
analysis developed by the Department of Remote Sensing and Landscape 
Information Systems, Albert-Ludwigs University, Freiburg, Germany 
(Weinacker et al. 2004). The nDSM was generated by subtracting the height 
values of the DTM from the corresponding DSM in the TreesVis. Filtering 
and interpolation of the raw LIDAR data were performed using an 'Active 
Contour Algorithm' implemented in the TreesVis software (Weinacker et al. 
2004). The DSM, DTM and nDSM images were used as an input for various 
preprocessing steps viz. normalization of the raw LIDAR points, generating 
the boundary of each plot as a region and extracting the local maxima above 
5m height. The raw LIDAR points were normalized using the DTM to 
ensure the absolute height of the object and to eliminate the influence of the 
terrain. The obtained normalized LIDAR data were then used in the main 
process for clustering. 
 
Clustering by Modified k-means 

The k-means is a numerical, unsupervised and non-deterministic 
method. The k-means treats each observation in the input data as an object 
having a location in the space. It is also advantageous to implement k-means 
since it uses the actual observations of the objects (rather than the larger set 
of dissimilarity measures), and not just their proximities unlike the 
hierarchical clustering based approaches. The objective of the k-means 
method is to minimise the total intra-cluster variance or the squared error 
function. In this algorithm, the sum of absolute differences between each 
point and its closest centre in Euclidian 3-D space is minimised. Each 
centroid is the mean of the points in that cluster. This objective can be 
expressed in the following ‘equation (1)’: 

k 
     D = Σ      Σ        │xi-Cj│2                                     (1) 
               i=1   xi є Ck 
where, there are k clusters Ck with iterations i beginning from 1 to k, D is the 
total intra-cluster variance or the squared error function, xi is the data point 
(vector data) and Cj is the mean vector or cluster centre. 

The minimum computational complexity of the k-means algorithm is 
O(ndcT) where n is the number of d-dimensional pattern, d is the number of 
feature vectors, c is the number of assigned clusters and T is the number of 
iterations.  

The k-means algorithm was supervised to use the local maxima as 
external seed points to initialise the iteration, instead of selecting it randomly 
by the user. This was done because finding the pattern of individual trees in 
natural forest conditions is very difficult by selecting k clusters randomly 
using the normal k-means algorithm. To avoid trial and error approach with 
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several repetitions and cross-checking each time visually with reference data 
in order to choose an appropriate k clusters for each plot, the normal k-means 
algorithm, thus, was modified. The performance of the algorithm was 
improved by reducing the height value of data points and the external seed 
points to half. The logic behind this reduction of height is that it brings the 
normalized raw points as well as the local maxima points to be used as seed 
points closer 'height-wise' and minimise the intra-cluster variance, which is 
the ultimate objective of the k-means algorithm. The reduction of the height 
to half was found empirically with trial and error based approach and has 
been kept constant for all the 25 plots investigated. This was in contrast to 
the work presented by Morsdorf et al. (2003) in which they also used the 
local maxima as seed points. In contrast to the algorithm presented in this 
paper, they scaled-up the z-coordinate by three to accommodate the aspect 
ratio of pine tree crowns, which ranged between 3-6 based on the field data. 
On the contrary, in a previous study conducted by Gupta et al. (2010), it was 
concluded that by scaling down the height value of the normalized raw 
points as well as seed points 'height-wise' in the space helps in minimising 
the intra-cluster variance or the squared error function. The closer the points 
will be, more precise will be the cluster formation with regard to the actual 
tree/tree crown and its shape. Additionally, this study differs from Morsdorf 
et al. (2003) in a way that the unwanted local maxima points were deleted by 
search criteria using a threshold distance in the pre-processing step as 
highlighted below. 
 
Extraction of local maxima and weeding out the unwanted local maxima 
points using a semi-automatic approach 

The local maxima points were extracted from the nDSM image above 
5m height having a grey value larger than the grey value of all its 8 
neighbours. Before extracting the local maxima, a gentle discrete Gaussian 
smoothing was performed on the nDSM image. After extraction, the local 
maxima points were projected over the true-orthophoto for visual check. It 
was observed that the number of extracted local maxima points were too 
high. For seeding purpose, this simply means that a higher number of single 
trees will be extracted after running the algorithm. In the next step, the seed 
points that were too close to each other were excluded based on the search 
criteria using the threshold distance. The filtered local maxima were finally 
used as external seed points in the modified k-means algorithm. The 
threshold distance, varied depending on the forest conditions. For example, 
the plot that holds mainly older trees requires higher threshold distance 
because local maxima from smaller peaks will most likely represent only 
branches, hence needs to be eliminated. Since, the local maxima from a peak 
in a plot containing younger trees will most likely to be a tree top, it requires 
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comparatively smaller threshold distance. The value of the threshold distance 
for filtering the local maxima (obtained after very gentle smoothing) with 
younger trees of single and narrow crown at the tree top or conifer was found 
between 2-3m. While the threshold distance for filtering the local maxima 
(obtained after gentle to moderate smoothing) of relatively older trees with 
wider crown and more intermittent peaks at the tree top was found between 
2-5m. The search and exclusion process was carried out as follows: 
(a) Set the threshold distance (dthres), for each plot (to filter out the local 

maxima points above it and to avoid multiple local maxima from single 
trees)  

(b) Set i = 1 
(c) Calculate the Euclidean distance D(i,j) of each local maxima point pi 

with reference to all remaining local maxima points Lj as expressed in 
the following ‘equation (2)’: 

    n 
              D(i,j) = Σ      Σ         │pi-Lj│2                                             (2) 
   i=1   pi є Ln 
where, there are n local maxima points Ln from 1 to n. D(i,j) is the inter-point 
Euclidean distance, pi is the local maximum point and Lj is the remaining 
local maxima points. 

(d) if, D(i,j) ≥ dthres, select the local maxima point pi and assign it to 
Lj, 

else, reject pi 
(e) Increment i = i++ and update the Lj to get a new set L1(i), L2 (i), 

.....,Ln(i) 
(f) Repeat steps (b) to (e) until Ln(i) = Ln(i + 1) for all n 

The Gaussian smoothing of the nDSM levels out minor height 
deviations. In addition, small trees or branches might be also lost, if the 
image is strongly smoothened. In order to minimise such effects, the 
intensity of smoothing was adapted to the height of the trees (Koch et al. 
2006). In a height based filtering method applied by Pitkänen et al. (2004) 
for single tree detection on the nDSM, five Gaussian kernels were used so 
that the kernel size increased along the height of pixel being smoothed 
causing the increase in smoothing. They have selected the smallest and 
largest σ values by looking visually for finding the optimum number of local 
maxima that fit in to the selected tree height range. The height ranges and 
corresponding σ values used by Pitkänen et al. (2004) were 0-6m σ 0.4; 6-
14m σ 0.6; 14-22m σ 0.8; 22-30m σ 1.0 and over 30m σ 1.2. Koch et al. 
(2006) divided the nDSM into two height classes, below and above 20m 
height, respectively. Each height class was filtered separately with a 
Gaussian function (σ = 0.81 for trees below 20m and σ = 2.0 for trees above 
20m), and both parts were merged afterwards. In their study, the optimal 
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number of height classes, the height-threshold, and the smoothing intensity 
have been determined in pre-tests for the presented data by visual judgment 
of preliminary segmentation results.  

In the presented study, the σ value considered for the three European 
beech dominating plots was in the range of 1.3-1.4. The mean height value 
(Hmean) of the European beech ranged between 30-34m. The σ value used for 
each of the Oak and Hornbeam dominating plots were 1.0 and 0.9, 
respectively. The Hmean of each Oak and Hornbeam dominating plots were 
31m and 22m, respectively. The value of σ used for the 20 Scots pine 
dominating plots were in the range of 0.6-0.8. Among the 20 Scots pine 
plots, the Hmean ranged between 12-24m (majority above 17m). The value of 
σ was lowered in coniferous tree species compared to the deciduous tree 
species because of their crown width.  

According to Tiede et al. (2006) search radius, a region-specific 
parameter, for the local maximum was controlled according to the tree type, 
tree height and tree density in their tree crown delineation algorithm (varied 
between 1-4m). The search radius was adapted for each region depending on 
the assigned domain, for e.g. taller deciduous trees require a bigger search 
radius to avoid detecting false positives due to the flat and wide crown 
structure while the dense coniferous stands require a smaller search radius to 
detect close standing tree tops. Their study differs from the modified k-
means approach presented in a way that they further used the region-growing 
algorithm on the nDSM using set criteria for delineating single tree crown, 
e.g. maximum crown width and difference in height between different 
objects which, in turn, depend on the tree height and the tree type. The crown 
width, used as a priori knowledge, was directly linked to the individual tree 
height value derived from the ALS data (Pitkänen et al. 2004, Koch et al. 
2006, Tiede et al. 2008). According to Maltamo et al. (2004) and Pitkänen 
(2001) the local maxima method is mainly suited to find dominant trees. In 
the presented study, this was not validated because of homogeneity in the 
tree height and tree type in most of the studied plots. Thus, the height and 
tree type specific σ value for smoothing of nDSM image and dthres for the 
removal of unwanted seed points are important user controlled and forest 
dependable variables in the presented approach. 
  
Modified k-means algorithm 

The modified k-means algorithm applied to a set of n-dimensional 
vectors (here, 3-D vector points) works as follows: 

(a) Scale down the height value of the external seed points and that 
of the data points by half before initialising the iterative 
partitioning process  

(b) Set i = 1 
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(c) Select external seed points as a set of k means C1(1), C2 (1), 
.....,Ck(1) where i = 1 in this case (mean vector for each cluster 
centre) 

(d) For each vector xi, begin computation D (xi, Ck(i), for each i = 
1, ......, k) and assign xi to the cluster Cj with the nearest 
Euclidian distance in 3-D space (means) 

(e) i = i++ and update the means (Cj) to get a new set C1(i), C2 (i), 
.....,Ck(i) 

(f) Repeat steps (b) to (e) until Ck(i) = Ck(i + 1) for all k 
(g) Scale up the height value of the seed points and clustered data 

points to its original 
 
2.5. 3-D Reconstruction of Individual tree clusters 

The tree crowns are abundantly found in convex shape. Therefore, 
the shape reconstruction of the extracted tree requires a different method. 
The geometrical reconstruction of each delineated tree cluster was done 
using the QHull approach (Barber et al. 1996). QHull is a general dimension 
code for computing convex hulls using Quickhull algorithm (Berg et al. 
1997). Each tree crown cluster was constructed with triangular surface as a 
3-D convex polytope. Those clusters whose polytopes could not be formed 
were discarded. 

The convex hull of a set of points is the smallest convex set 
containing those points. O’Rourke (1994) has given the detailed introduction 
with example codes. QHull can be used if the surface is convex or 
completely visible from an interior point. It projects each site to a sphere that 
is centered at the interior point, and then computes the convex hull of the 
projected sites. The facets of the convex hull correspond to a triangulation of 
the surface. This algorithm combines the 2-d Quickhull algorithm with the n-
d beneath-beyond algorithm (Preparata and Shamos 1985). The main 
advantages of Quickhull are its output of performance sensitivity (in terms of 
the number of extreme points), reduced space requirements, and floating-
point error handling. Therefore, each tree crown can be depicted as a 3-D 
object with a triangular surface in the case of 3-D convex polytope.  
 
2.6. Validation method  

After the careful consideration of available informations, an 
evaluation procedure has been devised and presented in this study. The 
related approaches to validate the detected tree tops has been presented by 
the authors (Persson et al. 2002, Heurich et al. 2004, Koch et al. 2006, Wang 
et al. 2008b, Koch et al. 2009, Reitberger et al. 2009). For the accuracy 
assessment of automatically detected tree tops with reference to field 
measured tree tops, four major validation classes have been adopted. In 
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addition, two more classes (Ignored and Error) were included because of 
their significant role in the accuracy assessment. 
• Exact - only one automatically detected tree top within a reference tree 

crown, the distance between the reference tree top and the detected tree 
top points is ≤ 3m 

• Nearly Exact - one automatically detected tree top nearly at the same 
height level nearby a reference tree crown (may fall outside of the crown 
as well). The distance between the reference tree top and the 
automatically detected tree top points is between 3-5m 

• Gap - there is no automatically detected tree top inside or nearby the 
reference tree crown 

• Doubtful - doubtful quality of the reference tree tops, but correct detected 
tree tops. This was found after the visual inspection of the tree tops using 
the nDSM and orthophoto. Some of the examples in this case are: a 
reference tree top point outside the edge of the crown and plot, two tree 
tops up to the 3-5m distance apart to each other, which are sometimes 
measured from the ground as a single tree and the position of the 
reference tree top shifted from the detected one 

• Ignored - more detected tree tops than the reference tree tops were found 
in some plots. After a careful visual check using the nDSM and aerial 
photographs it was assumed that this is due to ground measurement errors 

• Error - more than one automatically detected tree top point with-in the 
same reference tree crown having the height difference of more than 5m. 
A hypothesis could be established taking in to account that no such tree 
was measured in the field which could be a 2nd or 3rd tier plant though it 
was detectable automatically. But it was considered as an error because 
no field measured data was available to confirm the hypothesis. In some 
cases, more than one tree top was detected with in the tree crown nearly at 
the same height level. Such extra tree tops has been considered as error 
points 

The clusters obtained were evaluated against the field inventory data. 
This validation was based on the spatial relationship between the field 
measured tree tops, the tree crowns and the automatically detected tree tops 
with reference to the above mentioned six classes. The distance was 
measured between the automatically detected tree tops and the field 
measured tree tops in the Euclidean 3-D space lying within, at the edge or 
outside the reference tree crown in ArcGIS environment. The ArcGIS 
shapefiles were generated for each sample plot for the visual inspection and 
evaluation. Each detected tree top was then assigned with appropriate class. 
Figure 2 shows an example of a sample plot with its related information. 
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Figure 2. Field plot and related attributes with validation classes in a test area of Poland. 
 
3. Results and Discussion 

It was accepted that the whole single tree extraction in the natural 
forested condition is nearly impossible due to the high variation in the 
terrain, tree type, multistoried trees, tree density, tree crown density, crown 
width and gap variation. Therefore, each tree crown extracted has been 
considered as a single tree. After the pre-processing and the running of the 
modified k-means algfigorithm, the 3-D points of each tree cluster were 
extracted above 4m height. This was done to avoid the effect of low ground 
vegetation during the clustering process. From the 3-D points of an 
individual tree cluster, tree top points were extracted. The accuracy 
assessment of the four major validation classes of automatically detected tree 
tops with reference to the field measured tree tops has been presented in 
table 2. 

According to the observations after the first validation, some tree tops 
(plots no. 5 of young Hornbeam and plots no. 21 of mature Scots pine) were 
wrongly detected at the outer edge of the respective reference tree crown on 
the same height level. But, such detected tree tops were present within 
different neighbouring crown, which put them in 'doubtful' category. Such 

 

Circular sample plot 

Field measured tree crowns 

Field measured tree tops 

  Automatically extracted tree tops  

Extracted tree top on the edge of crown  

Tree crown without extracted tree tops  

Orthophoto 

Automatically extracted tree tops within  
the plot but no crown delineated   
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'doubtful' cases were considered as correctly detected tree tops after the 
visual checks. This was due to inaccurately delineated reference tree crown. 
In plot no. 5 (young Hornbeam) and plots dominated with young and mature 
Scots pine (6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21 and 25), some 
detected tree tops were outside the edge of the reference tree crowns at the 
same height level and therefore, were kept in 'nearly exact' class. 

In plots dominated with young and mature Scots pine (6, 7, 8, 9, 13, 
15, 17, 19, 22, 24 and 25) there were more automatically detected tree tops 
within each plot but there were no reference tree crowns and tree tops. Such 
trees have been classified as 'ignored' (see table 3) after the visual inspection 
using aerial photographs and nDSM images. 

In plots 7 and 18, dominated with mature Scots pine, few reference 
tree tops were just outside the edge of the respective tree crown within the 
plot. Such tree tops were included as correct reference tree tops and were put 
under an appropriate class after validation. In some plots, dominated with the 
young Scots pine (11, 16 and 20) and the mature Scots pine (18 and 19), few 
extra tree tops were detected as 'error' points as they did not match with any 
tree crown or nearest reference tree top. In some plots, no reference crowns 
were present for the trees crowns that were intersecting more than 50% of 
the plot boundary, however, tree tops were detected after applying the 
algorithm (see figure 2). Such detected tree tops were also classified as 'error' 
due to lack of the reference tree top and reference tree crown. In few plots, 
positional shifts were up to one-third in some of the reference tree crowns, 
and between reference tree tops and detected tree tops. This was found while 
evaluating through aerial photographs and nDSM (see figure 2). In general, it 
was found that the automatically detected tree tops were better positioned 
than the field measured ones, while making a comparison through aerial 
photographs and nDSM. The higher accuracy could be attributed to more 
accurate GPS instrument used during the airborne LIDAR measurements. 

After rearranging the result as displayed in table 2 by including 
'ignored' and 'error' classes, the final result is shown in table 3. 

In the case of the plots 6, 7, 8 and 25 (dominated with mature Scots 
pine), due to addition of 'ignored' points, the automatically detected tree tops 
got outnumbered (>100%) than the reference tree tops (see table 3) due to 
missing field measured tree tops. The result from table 3 show that 83.8% of 
the average accuracy was achieved in all 25 plots using the modified k-
means algorithm with reference to the field inventory data.  

A species-wise comparison was also made from the automatically 
detected tree tops during the validation procedure as shown in table 4. 

There is a distinct difference in the tree top count of automatically 
detected trees and the reference trees of relatively young age with high tree 
density in the three tree species (European beech, Hornbeam and Scots Pine). 
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For younger species, the tree top count was lower than the mature ones of the 
same species due to the omission of very close seed points below the dthres. 
For example, in the case of plot 1, dominated by relatively young European 
beech of an average age 87 years, a low number of tree tops were detected as 
compared to the plots 3 and 4 containing mainly older tree species of an 
average age of 142 and 152 years, respectively (see table 3). A similar result 
was found for plot no. 5 with young Hornbeam trees of an average age of 50 
years (there is no any other Hornbeam plot to compare) and plots 10, 16 and 
20 (young Scots pine), with trees of an average age of 57, 33 and 42 years, 
respectively. The average percentage accuracy of the detected tree tops of 
dominant tree species present in the study area has been shown in table 6. 

From the table 2, the average percentage accuracy for the 
automatically detected 'exact' and 'exact' + 'nearly exact' tree tops has been 
calculated and the result has been presented in table 5.  

From table 5 it is clear that in the case of matured European beech 
and Scots pine, the average percentage accuracies for 'exact' tree tops are 
~70% and ~78%, respectively. While in the case of matured European beech 
and Scots pine, the 'exact' + 'nearly exact' tree tops together taken into 
consideration, the average accuracies are ~85% and ~84%, respectively. In 
the case of young European beech and Scots pine, the average percentage 
accuracies for 'exact' tree tops, are ~38% and ~54%, respectively. The 
average percentage accuracies in case of 'exact' + 'nearly exact' tree tops of 
young European beech and Scots pine increased to ~48% and ~59%, 
respectively. For a single plot of matured Oak species, the average accuracy 
for 'exact' and 'exact' + 'nearly exact' tree tops is almost the same (~64%) 
because 'nearly exact' tree tops were not extracted in this case. For a single 
young plot of Hornbeam, the average accuracies for the 'exact' and 'exact' + 
'nearly exact' tree tops are ~40% and ~53%, respectively. In all relatively 
younger plots of different tree species, the result for  'exact' and 'exact' + 
'nearly exact' tree tops were not satisfactory (see table 5).  

The overall average percentage accuracy substantially improved in all 
cases once the 'doubtful' tree tops from table 2, and 'ignored' and 'error' cases 
from table 3 have been considered in the validation procedure (table 3). The 
exceptions were plot no. 18 containing of mature Scots pine and plot no. 20 
containing young Scots pine as shown in table 3. A species-wise average 
percentage accuracy of detected tree tops has been summarised in the table 6. 

It is noticeable from table 6 that the modified k-means algorithm 
worked well for both deciduous and coniferous species. The performance of 
the algorithm using low density (7 points m-2) first and last pulse normalized 
LIDAR data in leaf-on season can also be compared to the result reported in 
the literature using different approaches (Heurich 2006, Holmgren and 
Persson 2004, Packalén and Maltamo 2007, Reitberger et al. 2008c, Vehmas 
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et al. 2008, Wang et al. 2008b). The result from table 6 shows that an 
average of nearly 86% of the matured deciduous and nearly 93% of the 
matured coniferous trees were extracted by the presented approach. Almost 
equal average accuracies were obtained in the case of young deciduous and 
coniferous tree species (58%). The above result also shows that for the plots 
containing mature trees, the algorithm worked relatively well as compare to 
the younger ones of the same tree species. Even with an incomplete 
assessment of all tree species, LIDAR data has became an efficient means to 
support small to large-scale inventories. This is because the reasonably 
correct and rapid assessment of information about dominant trees provides a 
valuable basis for the derivation of forest parameters needed for sustainable 
forest management. In addition, the correct delineation of single or scattered 
trees in the forest landscape is also of high value for a number of 
management tasks (Koch et al. 2006). The accuracy achieved using the 
presented vector based study was found better compared to the height based 
filtering method used by Pitkänen et al. (2004), where only about 40% of all 
trees were detected and a large number of suppressed, small trees were not 
detected from the unfiltered nDSM. In addition, the number of false 
detection was very high (~65%) in their unfiltered nDSM approach. They 
also concluded that more trees are detectable by tuning the variables but this 
again causes an increase in the percentage of false detection at the same or 
faster rate. This shows the need for parameter adjustment before the tree 
detection, which was implemented in the presented method. 

In this study, the number of trees to be extracted is decided by the 
number of external seed points to be used during the initialisation of the k-
means, which, in turn, is dependent on the σ and dthres. This was in contrast to 
the study conducted by Ko et al. (2009) in which they derived the branches 
of deciduous and coniferous trees by calculating the mean silhouette values 
repeatedly for different k values. The method presented by Ko et al. (2009) 
for finding the suitable value of k for different tree species of different age 
groups in different forest condition for a larger area is not a feasible one. The 
local maxima method has also certain limitations in finding accurate seed 
points for crown delineation (Maltamo et al. 2004, Wulder et al. 2000, Tiede 
and Hoffmann 2006), especially in the dense and highly structured forest 
(Tiede et al. 2008). It was noted that the dthres setting becomes more difficult 
with the increasing forest complexity. For example, the plot containing 
mainly older trees with higher crown width requires higher dthres because 
local maxima from smaller peaks will most likely represent only branches, 
hence needs to be eliminated in the later step. Whereas, the local maxima 
from a peak in a plot containing younger coniferous trees will most likely to 
be a tree top, hence requires comparatively smaller dthres to restore it. In 
addition, during the investigation it was found that the smoothing done on 
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the nDSM, a step before extracting the local maxima, is not necessary if the 
threshold distance is appropriately set to filter out the unwanted local 
maxima. The smoothing on the nDSM removes the noise present in the 
image and blurs it. At the same time, it removes the details also. Setting the 
threshold (a measure for how much noise should be removed) and kernel size 
(radius of the area considered when changing pixels while convolution) are 
two important user-defined parameters while smoothing. Alternatively, with 
the use of dthres directly in the pre-processing step, the smoothing can be 
avoided and the risk of losing the information from the nDSM is being 
reduced. On the other hand, the smoothing eliminates first all the weak 
maxima (with low grey value) which are produced mainly from the branches 
of the individual trees than the tops of the trees. This situation is of higher 
significance in the case of trees with wider canopies or complex forest 
structure with dense canopies and small canopy gaps. Therefore, the 
selection of local maxima is a user-dependent choice within the given 
method. The region growing algorithms use local maxima as seed points to 
delineate the tree crowns and work in the image domain. While, the 
presented modified k-means uses the local maxima as external seed points 
and work purely in vector domain using normalized LIDAR data. The 
external seed points used in the modified approach is to avoid the random 
selection of the machine generated user-defined seed points to partition the 
whole data set in to clusters. The possibility that the laser scanner might have 
missed the highest point of the tree, a problem sometime related to the 
specific shape and structure of the tree (crown height, crown width and 
crown density), cannot be ignored. Crowns, especially deciduous tree 
crowns, with more than one local maximum are due to its flat, rather than 
conical shape. It is difficult to identify only one local maximum per tree 
crown in case of understory trees, which are only partly visible. The multiple 
crowns further complicate the identification of only one local maximum per 
tree crown (Tiede et al. 2008). It was assumed that the filtering of nDSM 
image might move the locations of local maxima slightly compared to the 
original image in some cases. It was expected that more intense the filtering, 
more bias is the estimated height compared to the original height, hence low 
to moderate smoothing was applied. 

The LIDAR data is not randomly positioned on the 2-D surface. 
There are gaps in between the LIDAR point clouds. In case of the reflection 
from a tree, these could be canopy gaps. This is due to the LIDAR system, 
scan angle, point density and forest structures. The k-means algorithm 
depends both on the input data distribution and input parameters assigned 
during the run-time. For example, missing points (canopy gaps) in the input 
data could move the position of the centroid during the algorithm runtime 
slightly. There are possibilities that the centroid could shift from the middle 
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of the tree cluster to the denser part of the local tree cluster resulting in 
skewed tree clusters. However, such case was not visible after random visual 
check of the sample tree clusters. The shape of the output individual tree 
cluster to be extracted is dependent on the constant height reduction factor 
applied on the external seed points and the normalized LIDAR data before 
the modified k-means initialisation. Once the clustering was over, the height 
value was scaled-up to its normal. 

The reconstruction of the cluster is a valid option to depict its shape 
in the geometrical form. The shape characteristics of the tree crowns are 
dependent on many factors like age, the forest condition in which the tree 
crown grows (open, moderately dense and very dense) and the influence of 
human-induced factors. Two examples of the clusters containing points of 
young and matured individual tree and their respective 3-D convex polytopes 
have been represented in figures 3 and 4. 

Figure 3. Young Scots pine cluster (a) and the respective 3-D convex polytope (b). 

Figure 4. Matured Scots pine cluster (a) and the respective 3-D convex polytope (b). 
The triangulation of the surface through forming the facets from 

vertices using QHull algorithm can be easily seen in figures 3 and 4. In both 
the cases, facets were successfully formed even when there was a gap in 
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clusters containing LIDAR points obtained after running the algorithm. The 
shape of the 3-D convex polytope formed from the respective extracted 
cluster denotes the approximate shape of the individual tree as is present in 
the field. However, in the present study, due to lack of the field photograph 
of a particular tree, it was not possible to show the shape correlation.  
 
4. Conclusion 

The modified k-means algorithm based on first and last pulse ALS 
data for 25 test plots in the Polish forest area performed well for the single 
tree extraction above 4m height. LIDAR data were processed above 4m 
height in order to avoid the bad clustering due to low ground vegetation such 
as bushes and grasses. The traditional k-means method generates arbitrarily 
bad clustering due to randomisation of the process. The iterative partitioning 
based modified k-means algorithm is comparatively good for partitioning 
natural objects when user has a control over the seeding and the points are 
brought closer in z-dimension before the initialisation of the algorithm. A 
different σ value was used while smoothing the nDSM before extracting the 
seed points. The mean height value of the trees and the corresponding σ 
value range were 30-34m σ 1.3-1.4 for three European beech dominating 
plots; 31m σ 1.0 for a single Oak dominating plot; 22m σ 0.9 for a single 
Hornbeam dominating plot and 12-24m σ 0.6-0.8 for twenty Scots pine 
dominating plots. In general, the value of σ used for the deciduous tree 
dominating plots was higher compared to the coniferous plots. 

The individual tree level reference data of each plot with species-
specific information helped in validating the result at individual tree level as 
presented in tabulated forms. The results in section 3 shows that the modified 
k-means algorithm worked equally well both for mature deciduous and 
coniferous tree species. The result also shows that the algorithm for the 
mature and older tree species worked better as compared to the relatively 
younger ones irrespective of species. It was assumed that more studies are 
required to be done in different forest conditions in order to establish a better 
estimate. 

The detection of small or suppressed trees is still a problem. In a 
dense deciduous forest with tightly interlocked, homogeneous canopy, it was 
difficult to separate tree crowns from each other by applying the algorithm. 
Thus, the tree number was underestimated. In the case of young tree species, 
which have a high tree density, sufficient number of external seed points 
could not be generated by the modified algorithm. This was mainly due to 
omission of very closely spaced seed points. The problem could not be 
solved even by changing the variables in the pre-processing steps. As a 
result, in such cases, relatively low number of tree tops were detected from 
the algorithm as compared to the field inventory data. It was found that 
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scaling down the height value of the normalized 3-D LIDAR points as well 
as the seed points, helps in minimising the intra-cluster variance or the 
squared error function, which is the ultimate objective of the k-means 
method. The number of trees to be extracted is decided by the number of 
external seed points to be used during the initialisation of the k-means, 
which, in turn, is dependent on the smoothing factor and dthres. The shape of 
the output individual tree cluster to be extracted is determined by scaling 
down the height value of the external seed points and the normalized LIDAR 
data before the cluster initialisation. The reduction of z-coordinates was kept 
constant for all the plots (half). It can be concluded that the empirically 
found distance threshold is one of the significant parameters in the extraction 
of the number of external seed points during the pre-processing steps and the 
performance of the algorithm. The investigation shows that the dthres is a 
forest dependent variable and the setting procedure of this threshold is an 
important input in tree extraction. The value of dthres for younger trees with 
single and narrow crown at the tree top or conifers was found between 2-3m 
with very gentle smoothing. While, the dthres for the relatively older trees 
with wider crown diameter and more intermittent peaks at the top or 
broadleaved trees was varying between 2-5m with gentle to strong 
smoothing. It can be concluded that the dthres setting becomes more difficult 
with increasing forest complexity. During the investigation, it was found that 
the smoothing is not mandatory if the threshold distance is appropriately set 
to filter out the unwanted local maxima. The smoothing on the nDSM distort 
the image quality and removes the details. On the other hand, smoothing 
eliminates first all the weak maxima being probably produced from the 
branches of the trees than the tree tops. Thus, the value of σ used during the 
smoothing and the dthres used for the removal of extracted unwanted seed 
points are important user controlled forest dependent variables in this 
approach. This is important in the case of trees with wider crowns at the top 
or in mixed forest conditions. The dependency about the number of trees to 
be extracted cannot be replaced by merely applying simple k-means 
procedure that implies random selection of user-specific k seed points that 
often result in arbitrary number of clusters of poor quality (Gupta et al. 
2010). Therefore, there is an obvious advantage of the modified k-means 
approach used in this study over the simple k-means or hierarchical based 
clustering (Gupta et al. 2010) or other approaches using k-means used for 
single tree extraction by other investigators such as Morsdorf et al. (2003) 
and more recently Ørka et al. (2009b). The number of trees to be extracted 
depends on the k-value but it is not the sole criteria to extract the tree in its 
appropriate form, and therefore cannot be validated as such. The result was 
validated by comparing the automatically detected tree tops with reference to 
the field measured tree tops as outlined in the section 2.6.  
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Testing the developed algorithm in 25 Polish test sites and comparing 
the results with the available field inventory data has a significant role in the 
algorithm establishment for single tree delineation. This was instrumental in 
improving the algorithm at the pre-processing and during the main 
processing steps in order to extract single trees with acceptable accuracy. 
The significance of a pre-knowledge about the test site can't be ruled out in 
setting the variables used during the investigation. In case of Poland test 
sites, the single mature dominant tree species (Scots pine) in 17 out of 25 
plots has led to higher accuracy (see table 6) even when first and last pulse 
airborne LIDAR data of low point density (7 points m-2) was used.  

The main problem in validating the results is the availability of 
correct field inventory data in some cases. The validation of the field data 
after a careful visual check showed that the positioning of some of the 
reference data was erroneous, even after some corrections. The main error in 
coordinates could be attributed to the fact that different types of GPS 
instruments have been used and a different signal quality was received in the 
forest during the field and airborne measurements. In the field, the position 
of each tree top and trunk was measured with Sunnto instruments. The 
inaccuracy for the measurements with the Sunnto instrument might be higher 
than the measurements from the ALS according to the visual checks using 
the aerial photographs and nDSM images. This leads to inaccuracies during 
the validation procedure. The problem was reduced using 'ignored' tree tops 
class. However, by adopting this in four Scots pine plots (plot no. 6, 7, 8, and 
25), an overshooting in the number of detected tree tops was found as 
compared to the field inventory tree tops (see table 3). On the other hand, 
from airborne measurement, it is hard to find the tree trunk position mainly 
due to obstruction by the tree crowns. During the field measurements, the 
distance from the middle point to a tree trunk was a criterion whether the tree 
should be included or excluded from the sample plot. If the distance (from 
the middle point to a tree trunk) to a tree and half of its diameter is added and 
the result is less than the sample plot radius, then the tree was included in the 
respective sample plot. Sometimes, the trees grow not straight but crooked. 
Because of this reason, some crowns were inside the sample plot while its 
trunk was outside. The tree tops extracted from such crowns have been 
included in the 'ignored' class. 

The quality of the final solution largely depends on the forest 
characteristics in which the algorithm has to be applied, the LIDAR point 
density, the threshold distance and the initial set of clusters to be used during 
the algorithm run-time. The point density of the extracted cluster has a direct 
effect on the shape of 3-D convex polytope. If the reflected hits obtained in 
the original LIDAR data are from the tree trunk positions, then more 
appropriately obtained is the shape of the tree through 3-D triangulation 
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mechanism. On the other hand, if the number of vertices in the cluster is too 
small, then the polytope formation fails. However, such incident was very 
rare. 

In the future, the algorithm will be implemented for the single tree 
delineation with the point clouds derived from the full waveform ALS data 
of high point density (with or without utilising the other parameters like 
intensity and pulse width) in different forest conditions. A separate study 
also required to be done with the leaf-on and leaf-off datasets for better 
discrimination of tree species, particularly on the complex forest sites. 
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1 2 3 4 5 6 7 8 9 

Plot 
No. 

Dominatin
g Species 

Avg. 
Age 
(Yea
rs) 

Referen
ce tree 
tops 
(Σ) 

Exac
t 

(Σ) 

Nearly 
Exact 

(Σ) 

Gap 
(Σ) 

Doubtf
ul 
(Σ) 

Auto. 
detected tree 

tops (Σ) 
(5+6+8) 

1 Beech 87 21 8 2 9 2 12 
2 Oak 142 14 9 0 4 1 10 
3 Beech 142 7 4 2 1 0 6 
4 Beech 152 6 5 0 0 1 6 
5 Hornbeam 50 15 6 2 6 1 9 
6 Scots pine 105 21 17 1 3 0 18 
7 Scots pine 105 22 17 1 4 0 18 
8 Scots pine 105 16 12 3 1 0 15 
9 Scots pine 105 20 13 3 4 0 16 
10 Scots pine 57 24 14 0 9 1 15 
11 Scots pine 77 20 16 1 3 0 17 
12 Scots pine 67 28 21 4 3 0 25 
13 Scots pine 67 21 16 1 4 0 17 
14 Scots pine 67 21 16 1 4 0 17 
15 Scots pine 80 13 10 1 2 0 11 
16 Scots pine 33 23 12 2 9 0 14 
17 Scots pine 107 30 26 1 3 0 27 
18 Scots pine 107 31 22 4 5 0 26 
19 Scots pine 107 17 14 0 3 0 14 
20 Scots pine 42 38 20 2 15 1 23 
21 Scots pine 97 24 13 2 7 2 17 
22 Scots pine 97 20 16 1 3 0 17 
23 Scots pine 97 22 21 0 1 0 21 
24 Scots pine 97 25 22 0 3 0 22 
25 Scots pine 107 18 14 1 3 0 15 

Σ 517 364 35 109 9 408 
% 100.0 70.4 6.8 21.1 1.7 78.9 

Table 2. Primary result after validation. 
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Plo
t 

No. 

Dominatin
g Species 

Avg. 
Age 

(Years
) 

Sum of 
referenc
e  trees 

tops 

Sum of auto. 
detected trees 
tops (Exact, 

Nearly Exact, 
Doubtful) 

Ignore
d 

Erro
r 

Final 
auto. 

detected 
tree tops 

(Σ) 
((5+6)-7)) 

Final auto. 
detected 
tree tops 

(%) 
 

1 Beech 87 21 12 0 0 12 57.1 
2 Oak 142 14 10 0 0 10 71.4 
3 Beech 142 7 6 1 0 7 100.0 
4 Beech 152 6 6 0 0 6 100.0 
5 Hornbeam 50 15 9 0 0 9 60.0 
6 Scots pine 105 21 18 5 0 23 109.5 
7 Scots pine 105 22 18 5 0 23 104.5 
8 Scots pine 105 16 15 3 0 18 112.5 
9 Scots pine 105 20 16 3 0 19 95.0 

10 Scots pine 57 24 15 0 0 15 62.5 
11 Scots pine 77 20 17 0 1 16 80.0 
12 Scots pine 67 28 25 0 0 25 89.3 
13 Scots pine 67 21 17 3 0 20 95.2 
14 Scots pine 67 21 17 0 0 17 81.0 
15 Scots pine 80 13 11 1 0 12 92.3 
16 Scots pine 33 23 14 0 1 13 56.5 
17 Scots pine 107 30 27 2 0 29 96.7 
18 Scots pine 107 31 26 0 1 25 80.6 
19 Scots pine 107 17 14 1 1 14 82.4 
20 Scots pine 42 38 23 0 2 21 55.3 
21 Scots pine 97 24 17 0 0 17 70.8 
22 Scots pine 97 20 17 2 0 19 95.0 
23 Scots pine 97 22 21 0 0 21 95.5 
24 Scots pine 97 25 22 1 0 23 92.0 
25 Scots pine 87 18 15 4 0 19 105.6 

Σ & % 517 408 31 6 433 (83.8%) 
Table 3. Final result after validation. 
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Speci
es ID 

Dominati
ng 

Species 

No. 
of 

Plo
ts 

Total No. 
of 

reference 
crowns 
and tree 

tops 

% of field 
detected 
tree tops 

in fraction 
for each 

tree 
species 

Total 
Area 
(ha) 

Total No. of 
auto. 

detected tree 
tops 

% of 
auto. 

detected 
tree tops 
for each 

tree 
species 

1 European 
Beech 

3 34 6.6 0.19 25 73.5 

2 Oak 1 14 2.7 0.05 10 71.4 
3 Hornbea

m 
1 15 2.9 0.02 9 60.0 

4 Scots 
pine 

20 454 87.8 0.76 389 85.7 

Σ & % 25 517 100.0 1.02 433 83.8 
Table 4 species-wise accuracy assessment of the result 

 
Species Type Stage Average %   

accuracy (Exact) 
Average % accuracy 

(Exact + Nearly 
Exact) 

European Beech Deciduous Mature 70.2 84.5 
European Beech Deciduous Young 38.1 47.6 

Oak Deciduous Mature 64.3 64.3 
Hornbeam Deciduous Young 40.0 53.3 
Scots pine Coniferous Mature 77.5 84.3 
Scots pine Coniferous Young 54.4 59.0 

Table 5. Species-wise average accuracy (%) for the automatically detected 'exact' and 'exact' 
+ 'nearly exact' tree tops. 

 
Species Stage Average % accuracy 

European Beech Mature 100.0 
European Beech Young 57.1 

Oak Mature 71.4 
Hornbeam Young 60.0 
Scots pine Mature 92.8 
Scots pine Young 58.1 

Table 6. Species-wise overall average accuracy (%) for the automatically detected tree tops. 
 
 
 
 
 
 
 
 
 
 


