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Abstract

This paper conducts a comparative analysis of portfolio optimization
methods with a focus on Bayesian approaches, applying them to a dataset of
Al-related stocks from the U.S. market. While the classical Markowitz
model relies on fixed estimates of return and risk, the Bayesian framework
incorporates parameter uncertainty, allowing for more adaptive decision-
making. In addition to portfolio construction, the study applies conditional
volatility and beta dynamics as a supplementary tool for Bayesian models’
performance analysis, by using the Conditional CAPM model and the DCC-
GARCH approach. The performance is evaluated in terms of risk-adjusted
returns, particularly the Sharpe ratio, demonstrating the potential advantages
of Bayesian optimization in fast-evolving sectors like artificial intelligence.
The research finds that although the Markowitz model achieved the highest
Sharpe ratio, it also involved the highest concentration risk. Furthermore, the
more advanced the Bayesian model, the higher the Sharpe ratio, while
conditional volatility and beta levels were simultaneously reduced.

Keywords: Bayesian portfolio optimization; Markowitz Mean-Variance
Optimization; Al Stocks; Conditional beta; DCC GARCH

Introduction
1.1. Background

For a long time, the idea of artificial intelligence was imaginable, and
a number of people suggested it unachievable. In recent years, artificial
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intelligence (AI) has undergone rapid development, transformed industries
and redefined the way we process information. The emergence of the first
generative Al resulted in the boom among companies and a new industry
emerged. A new race has started, where the goal is the construction of
Artificial Generative Intelligence (AGI). Thus, a number of IT companies
started to test new models and create new Al products.

In the field of finance, this evolution has led to the emergence of new
tools and methods, including the integration of machine learning models into
portfolio management and asset pricing. According to the World Economic
Forum (2018), the integration of Al into financial services can significantly
accelerate data analysis and lead to more comprehensive decision-making
processes.

This research aims to compare different portfolio optimization
models, including Bayesian and Markowitz as well, which involve the
machine learning in its basis. For these purposes the Al portfolio, which
consist of 10 large-cap US Al companies will be constructed by using daily
returns. The study’s objective is the examination on the model’s
performances. Additionally, the study will investigate the conditional
volatility and market risk exposure of all models by applying the conditional
CAPM as the theoretical framework and DCC-GARCH as a supplementary
tool. This could bring some significant insights, while it’s crucial to consider
not only the performance, but the time-varying risk of each model.

1.2 Objective

While the primary objective of this study is the comparative analysis
on different Bayesian optimal weight models on the example of USA Al
companies, the analysis also aims to examine the AI company index
performance, volatility and market risk exposure, by applying conditional
CAPM model.

1.3 Significance

This study primarily will help institutional and retail investors, as
long it discloses the artificial intelligence topic in the basis of its theoretical
framework, by applying machine learning mechanisms for the financial data
analysis. Additionally, the conditional CAPM model and DCC-GARCH
were implemented into the analysis, while making it more significant for a
variety stakeholders who concern about the volatility an market risk
exposure under time-varying framework.

14 Innovation

This research is innovative in its integration of Bayesian portfolio
optimization with machine learning techniques to evaluate Al-related stocks.
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While previous studies have explored Bayesian frameworks in finance, the
application to Al-sector assets remains underexplored. By combining
statistical rigor with a sector-specific focus, the study offers new insights into
portfolio construction under uncertainty. The use of updated macro-financial
data and Al-driven fundamentals further enhances the novelty of the
approach.

2.1  Literature Review

To begin with, the Modern Portfolio Theory (MPT) was initially
introduced by Harry Markowitz in his article "Portfolio Selection", which
was published in the Journal of Finance in 1952. The theory advocates for a
portfolio that is diversified by incorporating assets that are poorly correlated,
meaning that they behave differently in different market conditions.
Markowitz's most significant contribution lies in his ability to translate the
concepts of "risk" and "profitability" into mathematical terms, and the
development of the Markowitz Mean Variance Optimization (MVO) model,
which is going to be tested in the current research as well.

The foundation of the Bayesian framework can be traced back to the
18th century with the work of Thomas Bayes, whose theorem was later
formalized and extended by Pierre-Simon Laplace (Bayes, 1763; Laplace,
1812). In the context of modern statistics and financial modeling, Bayesian
methods have gained prominence due to their ability to incorporate prior
beliefs and update them with new information. Zellner and Chetty (1965)
were among the first to apply Bayesian techniques to econometric models,
demonstrating their flexibility and robustness in estimating uncertain
parameters. The Bayesian framework treats unknown parameters, such as
expected returns and covariances in finance, as random variables with
probability distributions. This approach enables analysts to formally
incorporate uncertainty and derive posterior distributions that reflect both
prior beliefs and observed data, offering a dynamic alternative to classical
estimation methods.

Recent advancements in machine learning have significantly
expanded the toolkit available for financial data analysis, particularly
through the integration of Bayesian methods. Bade, Frahm and Jaekel (2008)
applied the portfolio optimization models under the Bayesian framework and
compared this methodology with traditional portfolio optimization models,
resulting in better performance and finding that prior investor’s information
has a crucial role on the model’s outcomes. Mukeri, Shaikh, and Gaikwad
(2020) apply an expert Bayesian framework for bankruptcy prediction,
demonstrating that the incorporation of prior knowledge enhances
interpretability and reduces false positives compared to traditional models.
Pfarrhofer (2024) further advances this approach by using multivariate
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Bayesian machine learning models for scenario analysis in macro-financial
environments, emphasizing the importance of accounting for nonlinearities
and asymmetries in the relationships between economic and financial
indicators. In a related line of research, Gonzalvez et al. (2019) explore the
application of Gaussian processes and Bayesian optimization in financial
contexts, such as interest rate modeling and trend-based investment
strategies, highlighting the ability of Bayesian methods to improve
forecasting accuracy and decision-making under uncertainty.

Subsequently, the capital asset pricing model (CAPM) developed by
Sharpe (1964) and Lintner (1965), and their papers significantly contributed
to financial analysis, by providing a simple yet powerful framework to
understand the relationship between risk and expected return. The model
introduced the concept of systematic risk, captured by the beta coefficient,
and established that the expected return of an asset is determined by its
sensitivity to the overall market return, as well as the risk-free rate. Black
(1972) presents a model of capital market equilibrium with restricted
borrowing, extending the traditional Capital Asset Pricing Model (CAPM)
by incorporating constraints on investor borrowing and its impact on asset
prices. Fabozzi and Francis (1978) introduce one of the major changes to the
standard capital asset pricing model (CAPM) is the replacement of the
constant beta by a time-varying beta, which can be named as the emergence
of the conditional CAPM.

Nevertheless, there are a various method to estimate the time-varying
beta. Engle (2000) proposes the Dynamic Conditional Correlation model, a
straightforward enhancement of multivariate GARCH models, which enables
for the modeling of time-varying correlations between multiple financial
time series, which could aid in the estimation of beta. Jain (2011) proposes
the Heterogeneous Autoregressive Beta model to capture time-varying betas,
providing a more adaptable approach to modeling dynamic risk exposures by
incorporating diverse responses across various assets. Corradi, Distaso, and
Fernandes (2013) investigate the connection between conditional alphas and
realized betas, emphasizing the significance of time-varying risk measures in
explaining asset returns and performance beyond conventional asset pricing
models. Engle (2016) develops the Dynamic Conditional Beta model, which
expands upon traditional asset pricing models by incorporating time-varying
betas to capture dynamic risk exposures in financial markets. Zhang and
Choudhry (2016) compare GARCH models and the Kalman Filter in
forecasting the daily time-varying beta of European banks during the crisis
period, highlighting the advantages and limitations of both approaches in
capturing dynamic risk exposures. In conclusion, Aloy et al. (2020)
conducted a comparative analysis of various techniques for modeling time-
varying conditional betas, focusing on their application to Real Estate
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Investment Trusts (REITs), demonstrating the advantages and limitations of
different approaches in capturing dynamic risk exposures.

I Empirical analysis
3.1 Methodology

While this study aims to analyze the portfolio optimization
approaches, it is crucial to start with the classical way, which is known as the
Markowitz Mean-Variance Optimization (MVO), which was proposed by
the Harry Markowitz in 1952. In MVO the portfolio is constructed using the
sample mean and the sample covariance matrix and the main objective of
this model can be expressed as follows:

A
max (WT,U -3 WTZW)

(1
Subject to:

=1

Where w = [wy,...,wy]is the weight vector, where each w;
corresponds to the percentage of the portfolio that is allocated to an asset, u
is the sample mean, A is investor’s risk aversion coefficient, X is the sample
covariance matrix.

In purpose of unification of objectives among all models, the current
study aims to use MVO with developed objective, which requires to
maximize the Sharpe ratio, a commonly used risk-adjusted performance
measure. Hence, this condition can be explained as follows:

()
Subject to:

i=1

This formulation ensures that the resulting portfolio balances both
expected return and volatility in a way that maximizes efficiency. In this
study, this adjusted Markowitz model served as a benchmark to compare
against Bayesian strategies. Additionally, the current study assumes that the
risk-free rate equals zero, as long as it is constant among all models.

Bayesian portfolio optimization extends the classical approach by
incorporating parameter uncertainty into the model. Instead of relying on
point estimates for expected returns and covariances, the Bayesian approach
treats these quantities as random variables with prior distributions. Bayesian
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statistics is a probabilistic framework that allows us to quantify and update
uncertainty about unknown parameters using observed data. In this context,
the unknown parameters of interest — such as expected returns (u) or
covariances (X) — are treated as random variables. The beliefs about these
parameters before observing the data are expressed through prior
distributions, and once new data becomes available, these beliefs are updated
using Bayes’ rule, resulting in posterior distributions. Bayes’ rule can be
written as:

P(X|6)P(6)
PO|X) = P0Y) « P(X|0)P(0)
3)
Where 6 is model parameters, X is the observed data, P(8|X) is the
posterior distribution of the parameters, P(X|6) is the likelihood function,
P(X) is the prior distribution.
In the Bayesian framework the, the analysis begins with the
specification of a prior distribution, for example:

1
u~N(po, k—OE)
4)

Where p represents the investor’s subjective belief or prior estimate
of the expected return for each asset, and k illustrates the prior precision,
indicating the confidence level in the prior belief on p,.

Furthermore, in purpose to examine the conditional volatility and
market risk exposure under the time-varying concept, the conditional CAPM
model was implemented. Recall, that the beta coefficient drivers from the
classical CAPM where it reflects the stock’s exposure to the market risk. The
CAPM formula presented below:

E(R.) = Rp + B(Ry — Ry),
)

Where, E(R,) is the expected return on the equity, Ry — risk-free rate,
R,, — return on the market portfolio. § — beta coefficient, which can be
calculate as its written below:

__ cov(Rm,Ry)

’B T varRpy)
(6)
The CAPM is a remarkable framework, crafted by a diverse group of
scholars. However, it has a significant drawback — it relies on static

variables, which often leads to unrealistic outcomes. To address this issue, a
subsequent version of the model was developed, giving rise to the
Conditional CAPM. This version incorporates the dynamic nature of
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financial data, incorporating it into the formula. The model adopts a different
perspective:
Et(Ri,t+1) - Rf = ﬁi,t[Et(Rm,tH) - Rf]a
(7)
Sometimes, the equation (7) can be expressed more conveniently in
the following form:
Et(ﬁ',tﬂ) = IBi,tEt(fM,tﬂ),
(8)
Where Et(f'i,t+1) = Et(Ri,t+1) — Ry, Et(fM,t+1) = Et(Rm,t+1) — Ry,
meaning conditional expectation of the net excess return of asset i and of the
market. Here, it is important to say, that the new return is calculated as
follows:
1 (Pricet+1)

r=1n

Pricey 7’

)

Thus, the return is calculated as the log division of price change.
Furthermore, in the context of a conditional CAPM model based on time-
series data, the beta coefficient also becomes time-varying and can be
expressed as follows:

By = covt(Rm,t+1.Rit+1)
Lt vare(Rm,t+1)
(10)

There are various methods for calculating the conditional variance
and conditional beta, however, the current study will apply GARCH(1,1) and
Dynamic Conditional Correlation GARCH (DCC-GARCH) model
respectively. The DCC-GARCH model was developed by Engle and
Sheppard (2001) and Engle (2002) in order to estimate large, time-varying
covariance matrices. It combines dynamic correlation with the GARCH
model, allowing it to handle heteroscedasticity as well as large, dynamic
covariance matrices. Recall, that the GARCH(1,1) takes the following view:

of = w + ag?, + Bol 4,

(11

Where o is the conditional variance at time t; w is the constant term;

a is the coefficient of the autoregressive term; €2, is the squared residual at

time t-1; B is the coefficient of the moving average of squared shocks term,;

o/, is the conditional variance at time t-1. Regarding the DCC-GARCH

formula, although it is quite complicated, the current study sill aims to
briefly explain it.
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There is the following set of formulas:
H; = D¢R:D,
D = diag(\Zhllt, e \/hNNt)
Q=0—-a—-p)Q +ag_1&_1+PQ:

(12)
R, = diag(Q,)™Q.diag(Q)™

Where H; is the conditional covariance matrix; D; is a diagonal

matrix of time-varying standard deviations from univariate GARCH models;

hyne 1s the conditional variance of asset, which was calculated via GARCH

before, R; is he time-varying correlation matrix; @, is an intermediate

correlation matrix; Q,_4 is the long-run unconditional correlation matrix of

standardized residuals; a and 8 are parameters controlling the dynamics of
correlation.

3.2 Research Design

To starts with, the USA Al companies index was constructed,
including 10 large-cap stocks, which are connected with Al industry. The
index uses daily returns starting from the 10" December of 2020, to the 1*
January of 2025. The Nasdag-100 was chosen as the market representative
and as a benchmark. All data were divided into two sections: the first
includes the training model period, which is from 10/12/2020 to 1/1/2024,
and the second is out-of-sample data, especially for testing models. It starts
from 1/1/2024 to 1/1/2025. The Table 3.1 summaries general information
regarding the stocks included in Al index constructed for this research and
the data were obtained in the middle of May 2025 from the informational

platform TradingView for free access.
Table 3.1 The structure of the US Al Index

Company Capitalization Main Al Involvement
MSFT 3.42T USD Investments in OpenAl, Azure Al
NVDA 3.3T USD GPUs and architecture for Al training
AMZN 2.19T USD AWS AI/ML services, Alexa
GOOGL 2.1T USD Leaders in machine learning (DeepMind, Gemini, Bard)
META 1.61T USD Al Research, LLaMA
ORCL 454.03B USD Al integration into cloud products
PLTR 291.19B USD Big data analytics and military Al
IBM 244.65B USD Watson, enterprise Al solutions
AMD 185.75B USD NVIDIA alternative: chips for Al
Al 3.09B USD Pure-play Al company: enterprise Al solutions

Source: TradingView
Furthermore, as long as the main objective of this study is the

comparison of different Bayesian portfolio optimization models on the
example of AI portfolio, then there are five generations with different
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approaches and one MVO model as a benchmark were develop. The

description on them presented in the Table 3.2.
Table 3.2 All models’ description

Generation Description

Bayesian 1 The initial model with a mean equal sample mean, sigma is 0.01, and weights
follow the Dirichlet distribution. All weights almost equally distributed.

Bayesian 2 The developed Bayesian 1 model with increased sigma to 0.05.

Bayesian3 A model with sigma equals 0.02, the single asset limitation to 0.2 and
implementation a penalty multiplied by 1000.

Bayesian4 A developed Bayesian 3 model with the same sigma, but with asset limitation
0.25 and a penalty multiplied by 10000.

Bayesian 5 A grid search model, with weight limitation = 0.25; sigma = 0.01, 0.02, 0.05;
penalty multiplied by 1000, 10000, 100000.

Markowitz ~ The Markowitz Mean-Variance Optimization model with Sharpe ratio
maximization.

Source: Calculated by the Author

33 Descriptive Statistics

As the main objective of the study is to compare different Bayesian
portfolio optimization models, it is essential to calculate the optimal
weighting for securities in the Al portfolio based on the training period. The
Table 3.3 shows the share of each stock in the portfolio according to each
generation decision. Interestingly, while the first generation used an equally
weighted portfolio, subsequent generations preferred to increase the shares of
certain companies due to their high profitability. However, the greatest
concentration can be seen in the Markowitz (MVO) model, which allocates
only three out of the ten companies. While this may be mathematically

sound, the lack of diversity is still a risky decision.
Table 3.3 Assets’ allocation in the portfolio

Generation Al ORCL AMZN MSFT AMD NVDA IBM GOOGL META PLTR
Bayesian1 9,89% 9,92%  9,95% 10,13% 9,95% 10,01% 10,14% 10,04%  9,93% 10,05%
Bayesian2  8,69% 11,50% 7,68% 11,47% 9,37% 8,63% 16,18%  7,64% 9,70%  9,12%
Bayesian3  2,84% 22,12% 2,25% 21,32% 5,75% 291% 23,41% 2,10% 13,41% 3,90%
Bayesian4  2,27% 24,51% 1,80% 24,09% 4,61% 2,47% 25,08% 1,72%  10,21%  3,24%
Bayesian5 0,15% 0,32%  0,20% 33,46% 0,17% 0,19% 64,96%  0,15% 0,22%  0,19%
Markowitz  0,00% 32,04%  0,00% 47,38% 0,00% 0,00% 20,58%  0,00% 0,00%  0,00%

Source: Calculated by the Author

The Table 3.4 provides a summary of the descriptive statistics for six
custom-built Al indexes (B1 to B5 and M), each created using different
Bayesian portfolio optimization models, compared to the Nasdaq-100
(NDX). The data spans from 2021 to 2024.
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Table 3.4 Descriptive statistics of models’ performance

2021-2024 Mean Median Sd Min Max Sharpe  Skewness  Kurtosis
Index B1 -0,07% 0,09% 2,57%  -30,11%  9,04%  -0,026 -4,15 48,80
Index B2 -0,04% 0,09% 2,24%  -23,03% 838%  -0,019 -2,86 30,43
Index B3 0,03% 0,06% 1,52% -6,69% 6,38% 0,017 -0,30 4,78
Index B4 0,03% 0,05% 1,44% -5,70% 5,96% 0,022 -0,22 4,42
Index BS5 0,05% 0,06% 1,18% -6,59%  4,58% 0,038 -0,44 6,01
Index M 0,07% 0,10% 1,33% -5,81% 6,06% 0,049 -0,03 4,58

NDX 0,04% 0,09% 1,50% -5,70% 7,22% 0,027 -0,18 4,28

Source: Calculated by the Author

Indexes B1 and B2 have negative mean returns (-0.07% and -0.04%,
respectively) and highly negative skewness (-4.15 and -2.86), indicating a
significant risk of extreme left-sided events. Their very high kurtosis values
(48.80 and 30.43) suggest non-normal distributions with heavy tails. Indexes
B3 through B5 demonstrate improved performance, with increasing average
returns (up to 0.05%), decreasing standard deviations, and lower skewness
and kurtosis values, indicating more stable and symmetric return behavior.
The index M, which was created using the traditional Markowitz
optimization approach, exhibits the highest average return (0.07%) and the
best Sharpe ratio (0.049) among all custom indices. It also demonstrates
relatively low-risk characteristics, with a standard deviation of 1.33% and a
minimal skewness of -0.03. In contrast, the Nasdag-100 (NDX) achieved a
mean return of 0.04%, with a Sharpe ratio of 0.027 — higher than most
Bayesian models, except for B5 and M. This makes B5S and M the most
promising models during the training period, with M standing out in terms of
overall risk-adjusted performance.

Figure 3.1 illustrates the dynamic of all Bayesian models indexes,
based on the USA Al companies portfolio during the training period.
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Figure 3.1 Index performances during the training period
Al indexes comparison
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Source: Calculated by the Author

The Table 3.5 assesses the out-of-sample performance of the Al-
powered indices over the timeframe of 2024 to 2025, using fixed portfolio
weights that were determined during the preceding training period. This
stage serves to test the models' practicality and their ability to generalize

beyond the data they were trained on.
Table 3.5 Descriptive statistics of models’ performance

2024-2025 Mean Median Sd Min Max  Sharpe Skewness Kurtosis
Index BI ~ 0,10%  0,16%  2,11% -22,70% 4,65% 0,046 -5,03 56,22
Index B2  0,10% 0,13%  1,92% -19,59% 4,43% 0,053 -4,28 45,77
Index B3 0,12% 0,18%  1,35% -6,54% 4,45% 0,091 -0,49 5,66
Index B4  0,12%  0,16%  1,30%  -5,57% 4,69% 0,093 -0,32 5,05
IndexBS  0,10% 0,16% 1,17% -6,45% 6,08% 0,084 -0,52 9,42
IndexM  0,11% 0,16% 1,23% -4,03% 5,44% 0,089 0,13 6,11

NDX 0,10% 0,15% 1,15% -3,72% 3,01% 0,083 -0,45 3,95

Source: Calculated by the Author

Remarkably, all six indices (B1 through B5 and M) achieved positive
average returns ranging from 0.10% to 0.12%, outperforming their
performance during the training period. Notably, Indexes B3, B4, and M
continued to exhibit strong Sharpe ratios (0.091, 0.093, and 0.089,
respectively), indicating attractive returns adjusted for risk. These findings
reinforce the earlier conclusion that Bayesian models with lower variance
(such as B3 and B4) and the Markowitz-based Index M remain resilient
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when applied to new data. Despite the positive mean returns, indexes B1 and
B2 continue to exhibit extreme skewness (-5.03 and -4.28) and high kurtosis
(56.22 and 45.77), indicating persistent left-tail risk and non-normal
distributions. Their Sharpe ratios (0.046 and 0.053) remain the lowest,
suggesting that these models may not be suitable for real-world application,
despite their improved returns. The Nasdag-100 (NDX) achieved a mean
return of 0.10% and a Sharpe ratio of 0.083, performing similarly to indexes
BS5 and slightly below M, B3, and B4. This suggests that some of the custom
Bayesian and Markowitz-weighted indexes may outperform the benchmark,
particularly in terms of risk-adjusted returns.

A Figure 3.2 represents the dynamic of all indexes on the Al
company’ portfolio during the out-of-sample period, with respect to different
optimal weights allocations.

Figure 3.2 Index performances during the out-of-sample period
Al indexes comparison New

140

130 —— Bayesian 1 New
Bayesian 2 New
Bayesian 3 New

—— Bayesian 4 New
Bayesian 5 New

110 ;

= Markowitz New

= NDX New
100

Source: Calculated by the Author

34 Time-varying beta

This part aims to analyze the market risk exposure for the out-of-
sample period. While all generations already made their allocation decision,
it is essential to examine how risky their strategies on another data sample.
The following Table 3.6 presents the results of conditional volatility and
market beta estimates for each Al index, calculated using the DCC-GARCH
model under the conditional CAPM theory. This approach allows us to
analyze the time-varying exposure to market risk (beta) and dynamically

WWWw.esipreprints.org 381



http://www.eujournal.org/

ESI Preprints January 2026

estimate portfolio risk (volatility), providing a more accurate picture of

portfolio behavior in changing market conditions.
Table 3.6 Descriptive statistics of models’ volatility
Mean Median Sd Min  Max  Skewness Kurtosis

Vol B1  2,02% 2,02% 0,05% 1,94% 2,10% 0,06 1,80
Vol B2  1,85% 1,84% 0,04% 1,78% 191% 0,06 1,80
Vol B3 1,31% 1,31% 0,02% 1,28% 1,34% 0,07 1,81
Vol B4 1,28% 1,28% 0,01% 1,26% 1,30% 0,08 1,81
Vol B5 1,13% 1,13% 0,02% 1,09% 1,17% 0,06 1,80
Vol M 1,22%  1,22%  0,00% 1,22% 1,22% -0,09 1,81
Vol NDX 1,14% 1,10% 0,14% 0,96% 1,67% 1,41 4,84
Beta Bl 1,31 1,35 0,35 -0,85 1,85 -2,10 11,24
Beta B2 1,22 1,27 0,32  -0,77 1,70 -2,13 11,33
Beta B3 0,94 0,96 0,13 0,08 1,16 -1,81 10,62
Beta B4 0,91 0,93 0,12 0,21 1,10 -1,50 7,87
Beta B5 0,58 0,59 0,07 0,38 0,68 -0,82 3,02
Beta M 0,82 0,84 0,09 0,58 0,95 -0,90 3,12

Source: Calculated by the Author

The levels of conditional volatility reveal a clear trend: indexes B3,
B4, and B5 consistently exhibit the lowest risk levels (1.31%, 1.28%, and
1.13%, respectively), while indexes B1 and B2 display higher volatility
(2.02% and 1.85%). The Markowitz-optimized portfolio (Index M) achieves
both low volatility (1.22%) and extremely low dispersion (SD =~ 0.00%),
indicating exceptional stability. Interestingly, while the Nasdag-100 has a
relatively low mean volatility (1.14%), it also has the highest variability (SD
= 0.14%) and skewness (1.41), suggesting occasional spikes in risk
exposure. Examining the conditional betas, the study notices that B1 and B2
have the highest average market exposure (1.31 and 1.22), accompanied by
strong negative skewness and extreme kurtosis, indicating their susceptibility
to asymmetric market shocks. In contrast, B5 and M have the lowest average
betas (0.58 and 0.82), suggesting limited market dependence and greater
potential for diversification benefits. Moreover, the low volatility—low beta
profiles of B3, B4, B5, and M support the notion that these indexes can
provide more stable performance with reduced exposure to systemic risk.

Overall, the DCC-GARCH results reinforce the findings from
previous observations: indexes derived from Bayesian models with lower
variance (B3-B5) and the Markowitz-optimized index (M) not only offer
favorable return—risk ratios but also exhibit desirable conditional
characteristics, such as low volatility and reduced sensitivity to market-wide
fluctuations.

A Figure 3.3 illustrates the dynamic of the conditional bets (market
risk exposure) of all indexes during the out-of-sample period.
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Figure 3.3 Index betas during the out-of-sample period
Al Indexes Beta Comparison
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Conclusion

Current researched aimed to examine different Bayesian portfolio
optimization models on the example of Al index of the United States. For
this purpose, the Al portfolio was formed consisting form 10 large-cap
companies which are connected with Al development. The whole analysis
period took last 4 years, including 3 years for training models, and one year
for the out-of-sample performance. The study includes 5 generations of
Bayesian portfolio optimization models, which started with equally-weighted
allocations and ended with models that provide a larger concentration.

According to the results, Markowitz Mean Variance Optimization
showed the highest Sharpe ratio and the best performance among other
models, however it exhibits high concentration among 3 companies, thus the
lack of diversification leads to the increase of unsystematic risk. The first
and second generations showed a poor performance, even compared with
Nasdaq 100, while being the riskiest models. The models with penalties
approach showed a better performance, while exhibit high rate of return
under a small risk and relatively small beta (market risk exposure). The last
generation, which uses the grid search in its basis showed a great
performance during the training period, while during the out-of-sample
testing period the model showed performance slightly below Markowitz and
B4, but it exhibits the smallest conditional volatility and beta. To sum up,
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Bayesian portfolio optimization model is a great choice for the allocation
shares in the portfolio task, while more complex model exhibits a better
performance.
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