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Abstract 

This paper conducts a comparative analysis of portfolio optimization 

methods with a focus on Bayesian approaches, applying them to a dataset of 

AI-related stocks from the U.S. market. While the classical Markowitz 

model relies on fixed estimates of return and risk, the Bayesian framework 

incorporates parameter uncertainty, allowing for more adaptive decision-

making. In addition to portfolio construction, the study applies conditional 

volatility and beta dynamics as a supplementary tool for Bayesian models’ 

performance analysis, by using the Conditional CAPM model and the DCC-

GARCH approach. The performance is evaluated in terms of risk-adjusted 

returns, particularly the Sharpe ratio, demonstrating the potential advantages 

of Bayesian optimization in fast-evolving sectors like artificial intelligence. 

The research finds that although the Markowitz model achieved the highest 

Sharpe ratio, it also involved the highest concentration risk. Furthermore, the 

more advanced the Bayesian model, the higher the Sharpe ratio, while 

conditional volatility and beta levels were simultaneously reduced. 

 
Keywords: Bayesian portfolio optimization; Markowitz Mean-Variance 

Optimization; AI Stocks; Conditional beta; DCC GARCH 

 

Introduction 

1.1.  Background 

For a long time, the idea of artificial intelligence was imaginable, and 

a number of people suggested it unachievable. In recent years, artificial 
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intelligence (AI) has undergone rapid development, transformed industries 

and redefined the way we process information. The emergence of the first 

generative AI resulted in the boom among companies and a new industry 

emerged. A new race has started, where the goal is the construction of 

Artificial Generative Intelligence (AGI). Thus, a number of IT companies 

started to test new models and create new AI products.  

In the field of finance, this evolution has led to the emergence of new 

tools and methods, including the integration of machine learning models into 

portfolio management and asset pricing. According to the World Economic 

Forum (2018), the integration of AI into financial services can significantly 

accelerate data analysis and lead to more comprehensive decision-making 

processes. 

This research aims to compare different portfolio optimization 

models, including Bayesian and Markowitz as well, which involve the 

machine learning in its basis. For these purposes the AI portfolio, which 

consist of 10 large-cap US AI companies will be constructed by using daily 

returns. The study’s objective is the examination on the model’s 

performances. Additionally, the study will investigate the conditional 

volatility and market risk exposure of all models by applying the conditional 

CAPM as the theoretical framework and DCC-GARCH as a supplementary 

tool. This could bring some significant insights, while it’s crucial to consider 

not only the performance, but the time-varying risk of each model. 

 

1.2  Objective 

While the primary objective of this study is the comparative analysis 

on different Bayesian optimal weight models on the example of USA AI 

companies, the analysis also aims to examine the AI company index 

performance, volatility and market risk exposure, by applying conditional 

CAPM model.  

 

1.3  Significance  

This study primarily will help institutional and retail investors, as 

long it discloses the artificial intelligence topic in the basis of its theoretical 

framework, by applying machine learning mechanisms for the financial data 

analysis. Additionally, the conditional CAPM model and DCC-GARCH 

were implemented into the analysis, while making it more significant for a 

variety stakeholders who concern about the volatility an market risk 

exposure under time-varying framework.  

 

1.4  Innovation 

This research is innovative in its integration of Bayesian portfolio 

optimization with machine learning techniques to evaluate AI-related stocks. 
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While previous studies have explored Bayesian frameworks in finance, the 

application to AI-sector assets remains underexplored. By combining 

statistical rigor with a sector-specific focus, the study offers new insights into 

portfolio construction under uncertainty. The use of updated macro-financial 

data and AI-driven fundamentals further enhances the novelty of the 

approach. 

 

2.1  Literature Review 

To begin with, the Modern Portfolio Theory (MPT) was initially 

introduced by Harry Markowitz in his article "Portfolio Selection", which 

was published in the Journal of Finance in 1952. The theory advocates for a 

portfolio that is diversified by incorporating assets that are poorly correlated, 

meaning that they behave differently in different market conditions. 

Markowitz's most significant contribution lies in his ability to translate the 

concepts of "risk" and "profitability" into mathematical terms, and the 

development of the Markowitz Mean Variance Optimization (MVO) model, 

which is going to be tested in the current research as well.  

The foundation of the Bayesian framework can be traced back to the 

18th century with the work of Thomas Bayes, whose theorem was later 

formalized and extended by Pierre-Simon Laplace (Bayes, 1763; Laplace, 

1812). In the context of modern statistics and financial modeling, Bayesian 

methods have gained prominence due to their ability to incorporate prior 

beliefs and update them with new information. Zellner and Chetty (1965) 

were among the first to apply Bayesian techniques to econometric models, 

demonstrating their flexibility and robustness in estimating uncertain 

parameters. The Bayesian framework treats unknown parameters, such as 

expected returns and covariances in finance, as random variables with 

probability distributions. This approach enables analysts to formally 

incorporate uncertainty and derive posterior distributions that reflect both 

prior beliefs and observed data, offering a dynamic alternative to classical 

estimation methods. 

Recent advancements in machine learning have significantly 

expanded the toolkit available for financial data analysis, particularly 

through the integration of Bayesian methods. Bade, Frahm and Jaekel (2008) 

applied the portfolio optimization models under the Bayesian framework and 

compared this methodology with traditional portfolio optimization models, 

resulting in better performance and finding that prior investor’s information 

has a crucial role on the model’s outcomes. Mukeri, Shaikh, and Gaikwad 

(2020) apply an expert Bayesian framework for bankruptcy prediction, 

demonstrating that the incorporation of prior knowledge enhances 

interpretability and reduces false positives compared to traditional models. 

Pfarrhofer (2024) further advances this approach by using multivariate 
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Bayesian machine learning models for scenario analysis in macro-financial 

environments, emphasizing the importance of accounting for nonlinearities 

and asymmetries in the relationships between economic and financial 

indicators. In a related line of research, Gonzalvez et al. (2019) explore the 

application of Gaussian processes and Bayesian optimization in financial 

contexts, such as interest rate modeling and trend-based investment 

strategies, highlighting the ability of Bayesian methods to improve 

forecasting accuracy and decision-making under uncertainty. 

Subsequently, the capital asset pricing model (CAPM) developed by 

Sharpe (1964) and Lintner (1965), and their papers significantly contributed 

to financial analysis, by providing a simple yet powerful framework to 

understand the relationship between risk and expected return. The model 

introduced the concept of systematic risk, captured by the beta coefficient, 

and established that the expected return of an asset is determined by its 

sensitivity to the overall market return, as well as the risk-free rate. Black 

(1972) presents a model of capital market equilibrium with restricted 

borrowing, extending the traditional Capital Asset Pricing Model (CAPM) 

by incorporating constraints on investor borrowing and its impact on asset 

prices. Fabozzi and Francis (1978) introduce one of the major changes to the 

standard capital asset pricing model (CAPM) is the replacement of the 

constant beta by a time-varying beta, which can be named as the emergence 

of the conditional CAPM.  

Nevertheless, there are a various method to estimate the time-varying 

beta. Engle (2000) proposes the Dynamic Conditional Correlation model, a 

straightforward enhancement of multivariate GARCH models, which enables 

for the modeling of time-varying correlations between multiple financial 

time series, which could aid in the estimation of beta. Jain (2011) proposes 

the Heterogeneous Autoregressive Beta model to capture time-varying betas, 

providing a more adaptable approach to modeling dynamic risk exposures by 

incorporating diverse responses across various assets. Corradi, Distaso, and 

Fernandes (2013) investigate the connection between conditional alphas and 

realized betas, emphasizing the significance of time-varying risk measures in 

explaining asset returns and performance beyond conventional asset pricing 

models. Engle (2016) develops the Dynamic Conditional Beta model, which 

expands upon traditional asset pricing models by incorporating time-varying 

betas to capture dynamic risk exposures in financial markets. Zhang and 

Choudhry (2016) compare GARCH models and the Kalman Filter in 

forecasting the daily time-varying beta of European banks during the crisis 

period, highlighting the advantages and limitations of both approaches in 

capturing dynamic risk exposures. In conclusion, Aloy et al. (2020) 

conducted a comparative analysis of various techniques for modeling time-

varying conditional betas, focusing on their application to Real Estate 
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Investment Trusts (REITs), demonstrating the advantages and limitations of 

different approaches in capturing dynamic risk exposures. 

 

III  Empirical analysis 

3.1  Methodology 

While this study aims to analyze the portfolio optimization 

approaches, it is crucial to start with the classical way, which is known as the 

Markowitz Mean-Variance Optimization (MVO), which was proposed by 

the Harry Markowitz in 1952. In MVO the portfolio is constructed using the 

sample mean and the sample covariance matrix and the main objective of 

this model can be expressed as follows:  

max (𝑤𝑇𝜇 −
𝜆

2
𝑤𝑇Σ𝑤) 

(1) 

Subject to: 

∑ 𝑤𝑖 = 1

𝑁

𝑖=1

 

Where 𝑤 = [𝑤1, … , 𝑤𝑁] is the weight vector, where each 𝑤𝑖 

corresponds to the percentage of the portfolio that is allocated to an asset, 𝜇 

is the sample mean, 𝜆 is investor’s risk aversion coefficient, Σ is the sample 

covariance matrix.  

In purpose of unification of objectives among all models, the current 

study aims to use MVO with developed objective, which requires to 

maximize the Sharpe ratio, a commonly used risk-adjusted performance 

measure. Hence, this condition can be explained as follows: 

max (
(𝑤𝑇𝜇 − 𝑟𝑓)

2

𝑤𝑇Σ𝑤
) 

(2) 

Subject to: 

∑ 𝑤𝑖 = 1

𝑁

𝑖=1

 

This formulation ensures that the resulting portfolio balances both 

expected return and volatility in a way that maximizes efficiency. In this 

study, this adjusted Markowitz model served as a benchmark to compare 

against Bayesian strategies. Additionally, the current study assumes that the 

risk-free rate equals zero, as long as it is constant among all models. 

Bayesian portfolio optimization extends the classical approach by 

incorporating parameter uncertainty into the model. Instead of relying on 

point estimates for expected returns and covariances, the Bayesian approach 

treats these quantities as random variables with prior distributions. Bayesian 
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statistics is a probabilistic framework that allows us to quantify and update 

uncertainty about unknown parameters using observed data. In this context, 

the unknown parameters of interest — such as expected returns (𝜇) or 

covariances (Σ) — are treated as random variables. The beliefs about these 

parameters before observing the data are expressed through prior 

distributions, and once new data becomes available, these beliefs are updated 

using Bayes’ rule, resulting in posterior distributions. Bayes’ rule can be 

written as: 

 

𝑃(𝜃|𝑋) =
𝑃(𝑋|𝜃)𝑃(𝜃)

𝑃(𝑋)
∝ 𝑃(𝑋|𝜃)𝑃(𝜃) 

(3) 

Where 𝜃 is model parameters, X is the observed data, 𝑃(𝜃|𝑋) is the 

posterior distribution of the parameters, 𝑃(𝑋|𝜃) is the likelihood function, 

𝑃(𝑋) is the prior distribution. 

In the Bayesian framework the, the analysis begins with the 

specification of a prior distribution, for example: 

𝜇~𝑁(𝜇0,
1

𝑘0
Σ) 

(4) 

Where 𝜇0 represents the investor’s subjective belief or prior estimate 

of the expected return for each asset, and 𝑘0 illustrates the prior precision, 

indicating the confidence level in the prior belief on 𝜇0. 

Furthermore, in purpose to examine the conditional volatility and 

market risk exposure under the time-varying concept, the conditional CAPM 

model was implemented. Recall, that the beta coefficient drivers from the 

classical CAPM where it reflects the stock’s exposure to the market risk. The 

CAPM formula presented below: 

𝐸(𝑅𝑒) = 𝑅𝑓 + 𝛽(𝑅𝑚 − 𝑅𝑓), 

(5) 

Where, 𝐸(𝑅𝑒) is the expected return on the equity, 𝑅𝑓 – risk-free rate, 

𝑅𝑚 – return on the market portfolio. 𝛽 – beta coefficient, which can be 

calculate as its written below: 

𝛽 =
𝑐𝑜𝑣(𝑅𝑚,𝑅𝑖)

𝑣𝑎𝑟(𝑅𝑚)
, 

(6) 

The CAPM is a remarkable framework, crafted by a diverse group of 

scholars. However, it has a significant drawback — it relies on static 

variables, which often leads to unrealistic outcomes. To address this issue, a 

subsequent version of the model was developed, giving rise to the 

Conditional CAPM. This version incorporates the dynamic nature of 
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financial data, incorporating it into the formula. The model adopts a different 

perspective: 

𝐸𝑡(𝑅𝑖,𝑡+1) − 𝑅𝑓 = 𝛽𝑖,𝑡[𝐸𝑡(𝑅𝑚,𝑡+1) − 𝑅𝑓], 

(7) 

Sometimes, the equation (7) can be expressed more conveniently in 

the following form: 

𝐸𝑡(𝑟̃𝑖,𝑡+1) = 𝛽𝑖,𝑡𝐸𝑡(𝑟̃𝑀,𝑡+1), 

(8) 

Where 𝐸𝑡(𝑟̃𝑖,𝑡+1) = 𝐸𝑡(𝑅𝑖,𝑡+1) − 𝑅𝑓 ,  𝐸𝑡(𝑟̃𝑀,𝑡+1) = 𝐸𝑡(𝑅𝑚,𝑡+1) − 𝑅𝑓, 

meaning conditional expectation of the net excess return of asset i and of the 

market. Here, it is important to say, that the new return is calculated as 

follows: 

𝑟 = ln (
𝑃𝑟𝑖𝑐𝑒𝑡+1

𝑃𝑟𝑖𝑐𝑒𝑡
), 

(9) 

Thus, the return is calculated as the log division of price change. 

Furthermore, in the context of a conditional CAPM model based on time-

series data, the beta coefficient also becomes time-varying and can be 

expressed as follows: 

𝛽𝑖,𝑡 =
𝑐𝑜𝑣𝑡(𝑅𝑚,𝑡+1,𝑅𝑖,𝑡+1)

𝑣𝑎𝑟𝑡(𝑅𝑚,𝑡+1)
,  

          (10) 

There are various methods for calculating the conditional variance 

and conditional beta, however, the current study will apply GARCH(1,1) and 

Dynamic Conditional Correlation GARCH (DCC-GARCH) model 

respectively. The DCC-GARCH model was developed by Engle and 

Sheppard (2001) and Engle (2002) in order to estimate large, time-varying 

covariance matrices. It combines dynamic correlation with the GARCH 

model, allowing it to handle heteroscedasticity as well as large, dynamic 

covariance matrices. Recall, that the GARCH(1,1) takes the following view: 

𝜎𝑡
2 = 𝜔 + 𝑎𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2 , 

(11) 

Where 𝜎𝑡
2 is the conditional variance at time t; 𝜔 is the constant term; 

𝑎 is the coefficient of the autoregressive term; 𝜀𝑡−1
2   is the squared residual at 

time t-1; 𝛽 is the coefficient of the moving average of squared shocks term; 

𝜎𝑡−1
2  is the conditional variance at time t-1. Regarding the DCC-GARCH 

formula, although it is quite complicated, the current study sill aims to 

briefly explain it.  
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There is the following set of formulas: 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 

𝐷𝑡 = 𝑑𝑖𝑎𝑔(√ℎ11𝑡 , … , √ℎ𝑁𝑁𝑡) 

𝑄𝑡 = (1 − 𝑎 − 𝛽)𝑄̅ + 𝑎𝜀𝑡−1𝜀𝑡−1
′ + 𝛽𝑄𝑡−1 

(12) 

𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑄𝑡)−1𝑄𝑡𝑑𝑖𝑎𝑔(𝑄𝑡)−1 

Where 𝐻𝑡 is the conditional covariance matrix; 𝐷𝑡 is a diagonal 

matrix of time-varying standard deviations from univariate GARCH models; 

ℎ𝑁𝑁𝑡 is the conditional variance of asset, which was calculated via GARCH 

before, 𝑅𝑡 is he time-varying correlation matrix; 𝑄𝑡 is an intermediate 

correlation matrix; 𝑄𝑡−1 is the long-run unconditional correlation matrix of 

standardized residuals; a and 𝛽 are parameters controlling the dynamics of 

correlation. 

 

3.2   Research Design 

To starts with, the USA AI companies index was constructed, 

including 10 large-cap stocks, which are connected with AI industry. The 

index uses daily returns starting from the 10th December of 2020, to the 1st 

January of 2025. The Nasdaq-100 was chosen as the market representative 

and as a benchmark. All data were divided into two sections: the first 

includes the training model period, which is from 10/12/2020 to 1/1/2024, 

and the second is out-of-sample data, especially for testing models. It starts 

from 1/1/2024 to 1/1/2025. The Table 3.1 summaries general information 

regarding the stocks included in AI index constructed for this research and 

the data were obtained in the middle of May 2025 from the informational 

platform TradingView for free access. 
Table 3.1  The structure of the US AI Index 

Company Capitalization Main AI Involvement 

MSFT 3.42T USD Investments in OpenAI, Azure AI 

NVDA 3.3T USD GPUs and architecture for AI training 

AMZN 2.19T USD AWS AI/ML services, Alexa 

GOOGL 2.1T USD Leaders in machine learning (DeepMind, Gemini, Bard) 

META 1.61T USD AI Research, LLaMA 

ORCL 454.03B USD AI integration into cloud products 

PLTR 291.19B USD Big data analytics and military AI 

IBM 244.65B USD Watson, enterprise AI solutions 

AMD 185.75B USD NVIDIA alternative: chips for AI 

AI 3.09B USD Pure-play AI company: enterprise AI solutions 

Source: TradingView 

 

Furthermore, as long as the main objective of this study is the 

comparison of different Bayesian portfolio optimization models on the 

example of AI portfolio, then there are five generations with different 
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approaches and one MVO model as a benchmark were develop. The 

description on them presented in the Table 3.2. 
Table 3.2  All models’ description 

Generation Description 

Bayesian 1 The initial model with a mean equal sample mean, sigma is 0.01, and weights 

follow the Dirichlet distribution. All weights almost equally distributed. 

Bayesian 2 The developed Bayesian 1 model with increased sigma to 0.05. 

Bayesian 3 A model with sigma equals 0.02, the single asset limitation to 0.2 and 

implementation a penalty multiplied by 1000. 

Bayesian 4 A developed Bayesian 3 model with the same sigma, but with asset limitation 

0.25 and a penalty multiplied by 10000. 

Bayesian 5 A grid search model, with weight limitation = 0.25; sigma = 0.01, 0.02, 0.05; 

penalty multiplied by 1000, 10000, 100000.  

Markowitz The Markowitz Mean-Variance Optimization model with Sharpe ratio 

maximization.  

Source: Calculated by the Author 

 

3.3   Descriptive Statistics  

As the main objective of the study is to compare different Bayesian 

portfolio optimization models, it is essential to calculate the optimal 

weighting for securities in the AI portfolio based on the training period. The 

Table 3.3 shows the share of each stock in the portfolio according to each 

generation decision. Interestingly, while the first generation used an equally 

weighted portfolio, subsequent generations preferred to increase the shares of 

certain companies due to their high profitability. However, the greatest 

concentration can be seen in the Markowitz (MVO) model, which allocates 

only three out of the ten companies. While this may be mathematically 

sound, the lack of diversity is still a risky decision. 
Table 3.3  Assets’ allocation in the portfolio 

Generation AI ORCL AMZN MSFT AMD NVDA IBM GOOGL META PLTR 

Bayesian 1 9,89% 9,92% 9,95% 10,13% 9,95% 10,01% 10,14% 10,04% 9,93% 10,05% 

Bayesian 2 8,69% 11,50% 7,68% 11,47% 9,37% 8,63% 16,18% 7,64% 9,70% 9,12% 

Bayesian 3 2,84% 22,12% 2,25% 21,32% 5,75% 2,91% 23,41% 2,10% 13,41% 3,90% 

Bayesian 4 2,27% 24,51% 1,80% 24,09% 4,61% 2,47% 25,08% 1,72% 10,21% 3,24% 

Bayesian 5 0,15% 0,32% 0,20% 33,46% 0,17% 0,19% 64,96% 0,15% 0,22% 0,19% 

Markowitz 0,00% 32,04% 0,00% 47,38% 0,00% 0,00% 20,58% 0,00% 0,00% 0,00% 

Source: Calculated by the Author 

 

The Table 3.4 provides a summary of the descriptive statistics for six 

custom-built AI indexes (B1 to B5 and M), each created using different 

Bayesian portfolio optimization models, compared to the Nasdaq-100 

(NDX). The data spans from 2021 to 2024. 
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Table 3.4  Descriptive statistics of models’ performance 

2021-2024 Mean Median Sd Min Max Sharpe Skewness Kurtosis  

Index B1 -0,07% 0,09% 2,57% -30,11% 9,04% -0,026 -4,15 48,80 

Index B2 -0,04% 0,09% 2,24% -23,03% 8,38% -0,019 -2,86 30,43 

Index B3 0,03% 0,06% 1,52% -6,69% 6,38% 0,017 -0,30 4,78 

Index B4 0,03% 0,05% 1,44% -5,70% 5,96% 0,022 -0,22 4,42 

Index B5 0,05% 0,06% 1,18% -6,59% 4,58% 0,038 -0,44 6,01 

Index M 0,07% 0,10% 1,33% -5,81% 6,06% 0,049 -0,03 4,58 

NDX 0,04% 0,09% 1,50% -5,70% 7,22% 0,027 -0,18 4,28 

Source: Calculated by the Author 

 

Indexes B1 and B2 have negative mean returns (-0.07% and -0.04%, 

respectively) and highly negative skewness (-4.15 and -2.86), indicating a 

significant risk of extreme left-sided events. Their very high kurtosis values 

(48.80 and 30.43) suggest non-normal distributions with heavy tails. Indexes 

B3 through B5 demonstrate improved performance, with increasing average 

returns (up to 0.05%), decreasing standard deviations, and lower skewness 

and kurtosis values, indicating more stable and symmetric return behavior. 

The index M, which was created using the traditional Markowitz 

optimization approach, exhibits the highest average return (0.07%) and the 

best Sharpe ratio (0.049) among all custom indices. It also demonstrates 

relatively low-risk characteristics, with a standard deviation of 1.33% and a 

minimal skewness of -0.03. In contrast, the Nasdaq-100 (NDX) achieved a 

mean return of 0.04%, with a Sharpe ratio of 0.027 — higher than most 

Bayesian models, except for B5 and M. This makes B5 and M the most 

promising models during the training period, with M standing out in terms of 

overall risk-adjusted performance. 

Figure 3.1 illustrates the dynamic of all Bayesian models indexes, 

based on the USA AI companies portfolio during the training period.  
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Figure 3.1 Index performances during the training period 

 
Source: Calculated by the Author 

 

The Table 3.5 assesses the out-of-sample performance of the AI-

powered indices over the timeframe of 2024 to 2025, using fixed portfolio 

weights that were determined during the preceding training period. This 

stage serves to test the models' practicality and their ability to generalize 

beyond the data they were trained on. 
Table 3.5  Descriptive statistics of models’ performance 

2024-2025 Mean Median Sd Min Max Sharpe Skewness Kurtosis 

Index B1 0,10% 0,16% 2,11% -22,70% 4,65% 0,046 -5,03 56,22 

Index B2 0,10% 0,13% 1,92% -19,59% 4,43% 0,053 -4,28 45,77 

Index B3 0,12% 0,18% 1,35% -6,54% 4,45% 0,091 -0,49 5,66 

Index B4 0,12% 0,16% 1,30% -5,57% 4,69% 0,093 -0,32 5,05 

Index B5 0,10% 0,16% 1,17% -6,45% 6,08% 0,084 -0,52 9,42 

Index M 0,11% 0,16% 1,23% -4,03% 5,44% 0,089 0,13 6,11 

NDX 0,10% 0,15% 1,15% -3,72% 3,01% 0,083 -0,45 3,95 

Source: Calculated by the Author 

 

Remarkably, all six indices (B1 through B5 and M) achieved positive 

average returns ranging from 0.10% to 0.12%, outperforming their 

performance during the training period. Notably, Indexes B3, B4, and M 

continued to exhibit strong Sharpe ratios (0.091, 0.093, and 0.089, 

respectively), indicating attractive returns adjusted for risk. These findings 

reinforce the earlier conclusion that Bayesian models with lower variance 

(such as B3 and B4) and the Markowitz-based Index M remain resilient 
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when applied to new data. Despite the positive mean returns, indexes B1 and 

B2 continue to exhibit extreme skewness (-5.03 and -4.28) and high kurtosis 

(56.22 and 45.77), indicating persistent left-tail risk and non-normal 

distributions. Their Sharpe ratios (0.046 and 0.053) remain the lowest, 

suggesting that these models may not be suitable for real-world application, 

despite their improved returns. The Nasdaq-100 (NDX) achieved a mean 

return of 0.10% and a Sharpe ratio of 0.083, performing similarly to indexes 

B5 and slightly below M, B3, and B4. This suggests that some of the custom 

Bayesian and Markowitz-weighted indexes may outperform the benchmark, 

particularly in terms of risk-adjusted returns. 

A Figure 3.2 represents the dynamic of all indexes on the AI 

company’ portfolio during the out-of-sample period, with respect to different 

optimal weights allocations. 
Figure 3.2 Index performances during the out-of-sample period 

 
Source: Calculated by the Author 

 

3.4   Time-varying beta 

This part aims to analyze the market risk exposure for the out-of-

sample period. While all generations already made their allocation decision, 

it is essential to examine how risky their strategies on another data sample. 

The following Table 3.6 presents the results of conditional volatility and 

market beta estimates for each AI index, calculated using the DCC-GARCH 

model under the conditional CAPM theory. This approach allows us to 

analyze the time-varying exposure to market risk (beta) and dynamically 
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estimate portfolio risk (volatility), providing a more accurate picture of 

portfolio behavior in changing market conditions. 
Table 3.6  Descriptive statistics of models’ volatility 

 Mean Median Sd Min Max Skewness Kurtosis 

Vol_B1 2,02% 2,02% 0,05% 1,94% 2,10% 0,06 1,80 

Vol_B2 1,85% 1,84% 0,04% 1,78% 1,91% 0,06 1,80 

Vol_B3 1,31% 1,31% 0,02% 1,28% 1,34% 0,07 1,81 

Vol_B4 1,28% 1,28% 0,01% 1,26% 1,30% 0,08 1,81 

Vol_B5 1,13% 1,13% 0,02% 1,09% 1,17% 0,06 1,80 

Vol_M 1,22% 1,22% 0,00% 1,22% 1,22% -0,09 1,81 

Vol_NDX 1,14% 1,10% 0,14% 0,96% 1,67% 1,41 4,84 

Beta_B1 1,31 1,35 0,35 -0,85 1,85 -2,10 11,24 

Beta_B2 1,22 1,27 0,32 -0,77 1,70 -2,13 11,33 

Beta_B3 0,94 0,96 0,13 0,08 1,16 -1,81 10,62 

Beta_B4 0,91 0,93 0,12 0,21 1,10 -1,50 7,87 

Beta_B5 0,58 0,59 0,07 0,38 0,68 -0,82 3,02 

Beta_M 0,82 0,84 0,09 0,58 0,95 -0,90 3,12 

Source: Calculated by the Author 

 

The levels of conditional volatility reveal a clear trend: indexes B3, 

B4, and B5 consistently exhibit the lowest risk levels (1.31%, 1.28%, and 

1.13%, respectively), while indexes B1 and B2 display higher volatility 

(2.02% and 1.85%). The Markowitz-optimized portfolio (Index M) achieves 

both low volatility (1.22%) and extremely low dispersion (SD ≈ 0.00%), 

indicating exceptional stability. Interestingly, while the Nasdaq-100 has a 

relatively low mean volatility (1.14%), it also has the highest variability (SD 

= 0.14%) and skewness (1.41), suggesting occasional spikes in risk 

exposure. Examining the conditional betas, the study notices that B1 and B2 

have the highest average market exposure (1.31 and 1.22), accompanied by 

strong negative skewness and extreme kurtosis, indicating their susceptibility 

to asymmetric market shocks. In contrast, B5 and M have the lowest average 

betas (0.58 and 0.82), suggesting limited market dependence and greater 

potential for diversification benefits. Moreover, the low volatility–low beta 

profiles of B3, B4, B5, and M support the notion that these indexes can 

provide more stable performance with reduced exposure to systemic risk. 

Overall, the DCC-GARCH results reinforce the findings from 

previous observations: indexes derived from Bayesian models with lower 

variance (B3–B5) and the Markowitz-optimized index (M) not only offer 

favorable return–risk ratios but also exhibit desirable conditional 

characteristics, such as low volatility and reduced sensitivity to market-wide 

fluctuations. 

A Figure 3.3 illustrates the dynamic of the conditional bets (market 

risk exposure) of all indexes during the out-of-sample period.  
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Figure 3.3 Index betas during the out-of-sample period 

 
Source: Calculated by the Author 

 

Conclusion 

Current researched aimed to examine different Bayesian portfolio 

optimization models on the example of AI index of the United States. For 

this purpose, the AI portfolio was formed consisting form 10 large-cap 

companies which are connected with AI development. The whole analysis 

period took last 4 years, including 3 years for training models, and one year 

for the out-of-sample performance. The study includes 5 generations of 

Bayesian portfolio optimization models, which started with equally-weighted 

allocations and ended with models that provide a larger concentration. 

According to the results, Markowitz Mean Variance Optimization 

showed the highest Sharpe ratio and the best performance among other 

models, however it exhibits high concentration among 3 companies, thus the 

lack of diversification leads to the increase of unsystematic risk. The first 

and second generations showed a poor performance, even compared with 

Nasdaq 100, while being the riskiest models. The models with penalties 

approach showed a better performance, while exhibit high rate of return 

under a small risk and relatively small beta (market risk exposure). The last 

generation, which uses the grid search in its basis showed a great 

performance during the training period, while during the out-of-sample 

testing period the model showed performance slightly below Markowitz and 

B4, but it exhibits the smallest conditional volatility and beta. To sum up, 
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Bayesian portfolio optimization model is a great choice for the allocation 

shares in the portfolio task, while more complex model exhibits a better 

performance.  
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