
 

ESI Preprints             Not Peer-reviewed 
 

www.esipreprints.org                                                                                                                   455 

Design and Implementation of a Detection and Diagnostic 

System for Anomalies in a Grid-Connected Photovoltaic 

System 
 

Ursula Vanelie Kani Mboyo, MSc, Engineer 

Dr. Aristide Mankiti Fati 

Rene Samba, MSc, Engineer 

Marien Ngouabi University, Brazzaville, Congo 

 
Doi: 10.19044/esipreprint.1.2026.p455

Approved: 22 January 2026 

Posted: 24 January 2026 

 

Copyright 2026 Author(s)  

Under Creative Commons CC-BY 4.0 

OPEN ACCESS

 
Cite As:  

Kani Mboyo, U.V., Mankiti Fati, A. & Samba, R. (2026). Design and Implementation of a 

Detection and Diagnostic System for Anomalies in a Grid-Connected Photovoltaic System. 

ESI Preprints. https://doi.org/10.19044/esipreprint.1.2026.p455 

 
Abstract 

This paper presents the design and implementation of a detection and 

diagnostic system for anomalies in a photovoltaic installation connected to 

the national EEC grid in Congo Brazzaville, within the framework of Denis 

SASSOU NGUESSO University. The main objective is to reduce 

maintenance costs and improve the energy productivity of the plant, 

considering that photovoltaic systems are inherently subject to operational 

failures. The study focuses on faults affecting the PV generator and proposes 

a method for detecting and locating anomalies that lead to reduced 

production. The approach is based on the analysis of the I–V characteristics 

of the PV generator under different operating modes. The results show that 

the Lambert W/numerical model accurately reproduces the electrical 

behavior of the module, with low and unbiased errors. This model provides a 

solid foundation for supervision applications, enabling performance drift 

detection, loss identification, and operating point optimization, thereby 

ensuring reliability and efficiency in photovoltaic system monitoring. 

 
Keywords: Photovoltaic generator, modeling, diagnostic, real-time 
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Introduction 

In an effort to provide a scientific contribution to the challenges of 

photovoltaic (PV) systems in Africa in general, and in Congo Brazzaville in 

particular, this work focuses on the prevention of failures, malfunctions, and 

maintenance, whose costs remain particularly high. While several 

researchers are already engaged in this research area, our approach aims to 

provide a specific contribution anchored in the African context. 

Over the past decade, the photovoltaic sector has experienced 

remarkable growth, driven by the progressive reduction in production costs 

and public policies promoting renewable energy (IRENA,2024), 

(Photovoltaique.info,). These developments have made PV installations 

increasingly attractive to both investors and end-users, due to a more 

favorable return on investment (Mikael,2025, April). 

However, like any industrial system, PV installations remain exposed 

to various faults and anomalies that can degrade performance or even cause 

complete system downtime (Benzagmout, 2021). Such malfunctions directly 

impact energy productivity, economic profitability, and associated 

maintenance costs (Djallel,and al,2020) In response to these challenges, the 

implementation of reliable and efficient diagnostic systems has become both 

an operational and strategic necessity (AQC, 2024). 

An effective diagnostic system must not only detect faults quickly but 

also locate them precisely, thereby reducing downtime and intervention costs 

(Achour, 2025). It is within this context that the DLDPV project (Detection 

and Localization of Faults in a Photovoltaic System) was initiated, and the 

work presented in this thesis constitutes a direct contribution (ANR,2021). 

The primary objective is to design an integrated system capable of 

supervising, diagnosing, and optimizing the operation of PV installations, 

while remaining transparent to the end-user (Alosmani, 2023). 

This research specifically focuses on the detection and localization of 

faults on the direct current (DC) side of the system, i.e., at the level of the PV 

generator. The adopted approach aims to minimize the number of required 

measurements, thereby respecting economic constraints while ensuring 

maximum efficiency (Benzagmout,2021), (Tahraoui,2023). Currently, 

several monitoring systems measure power and energy output using voltage 

and current sensors (Guide Photovoltaïque,2025). Some services go further 

by correlating production with meteorological data, such as satellite-

measured solar irradiance (PVGIS,2025). Although useful, these tools 

present notable limitations: they neither allow rapid detection nor precise 

localization of faults at their onset (Axiome Énergie,2025). 

In this context, we propose a methodology based on system modeling 

to characterize the current–voltage (I–V) and power–voltage (P–V) curves of 

the PV generator under different operating modes. Subsequently, a PV panel 
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is simulated by integrating power failures, i.e., operational errors, and a 

corrective measure is proposed using the Lambert W model. This approach 

aims to strengthen diagnostic robustness and improve the overall reliability 

of the supervision system. 

 

II.  Literature Review 

        In the current context of energy transition, photovoltaic (PV) systems 

play a central role in renewable electricity generation. Their large-scale 

deployment is driven by undeniable advantages such as low operating cost, 

durability, modularity, and reduced environmental impact. However, despite 

their apparent reliability, PV installations remain vulnerable to various faults 

that can degrade performance. If not detected in time, these anomalies may 

lead to significant energy losses, service interruptions, or irreversible 

component damage. Consequently, research has intensified on advanced 

diagnostic methods aimed at improving supervision, maintenance, and 

resilience of PV systems. 

Several studies have proposed approaches based on electrical analysis 

of the PV generator, particularly through the current–voltage (I–V) 

characteristic. (Benzagmout and al,2021) developed a knowledge base 

linking each fault type to a specific I–V signature. Their discrete inference 

algorithm achieved more than 90% accuracy in anomaly detection and 

localization, which is highly relevant for grid-connected plants. However, the 

reliability of this method depends heavily on measurement quality, which 

can be difficult to obtain in real time without specialized instrumentation. 

(Djallel and al, 2020) adopted a comparative approach, evaluating 

different detection techniques through fault simulations. Neural network–

based methods proved particularly effective for complex and nonlinear 

faults. Artificial intelligence enables automatic classification of symptoms 

and offers adaptability in dynamic environments, though it requires training 

on representative datasets, limiting applicability in poorly instrumented 

contexts.  

(Alosmani and al, 2023) proposed a hybrid approach combining 

thermal and electrical modeling with inference techniques. Their method 

improved energy yield by an average of 12% on tested sites, confirming the 

value of integrating physical data for refined diagnostics. Nevertheless, 

implementation remains complex and resource-intensive, which may hinder 

adoption in low-infrastructure settings. 

Spectral analysis of power curves was explored by (Kouadri and 

al,2022) to detect partial shading faults common in urban environments. This 

method achieved rapid detection with less than 5% error, useful for rooftop 

or dense-area installations. However, it is less effective for internal defects 

such as microcracks or cell degradation. 
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(Achour and al, 20024) developed low-cost monitoring systems using 

microcontrollers such as Arduino. These devices enable real-time data 

acquisition and local processing, reducing supervision costs. Pilot sites 

reported a 30% reduction in maintenance costs, demonstrating effectiveness 

for rural or domestic micro-installations. Yet, limited computational and 

storage capacity restricts their use in complex analyses or large-scale 

systems. 

(Tahraoui and al,2022) analyzed transient responses of PV systems 

using MATLAB/Simulink simulations to localize faults with an error margin 

below two meters. This approach is relevant for large plants with extensive 

cabling but is sensitive to electromagnetic disturbances. 

(Khan et al,2023) applied convolutional neural networks to thermal 

images, achieving fault recognition rates above 95%. This method is well-

suited for drone-based inspections, enabling fast and non-intrusive 

monitoring. However, its effectiveness depends on image quality and 

lighting conditions. 

(Mikael and al,2025) studied correlations between PV production and 

satellite meteorological data. By analyzing monthly deviations between 

expected irradiation and actual production, they identified hidden anomalies. 

This approach supports remote supervision of isolated installations, though 

limited temporal resolution of satellite data restricts real-time diagnostics. 

Overall, the reviewed studies highlight the diversity of approaches 

developed to enhance PV system reliability, ranging from electrical analysis 

and image processing to thermal modeling and artificial intelligence. Most 

methods face limitations related to implementation complexity, data 

dependency, or environmental conditions. Current trends point toward hybrid 

systems that combine multiple information sources and integrate intelligent 

algorithms capable of adapting diagnostics to real-world conditions. These 

works provide a solid foundation for advanced supervision solutions such as 

the DLDPV system presented in this thesis, which aims to deliver rapid, 

localized, and economically viable fault detection on the DC side. 

 

 

III.  Methodology 

Iii.1.  Review of Fundamental Concepts 

Iii.1.1. Structure of a Photovoltaic System 

A photovoltaic (PV) system is responsible for converting solar 

photon energy into usable electrical energy for various applications. The 

system consists of a PV generator that produces direct current (DC), 

converters for adapting and conditioning the power, batteries for energy 

storage, and charge controllers to regulate and protect the system. 
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Figure 1: Structure of a Photovoltaic (PV) System 

 

III.1.2. Photovoltaic Generator 

The photovoltaic (PV) generator is the unit responsible for producing 

electrical energy in the form of direct current (DC). The fundamental 

component that converts solar energy into electrical energy is the 

photovoltaic cell (Photovoltaique.info,2025). 

 

III.3.1.2.1. Photovoltaic Cell 

The photovoltaic cell is a semiconductor device, generally silicon 

based, formed from two layers, one N doped and the other P doped, creating 

a PN junction (AQC,2025). It is the smallest constituent of a photovoltaic 

system, responsible for producing electricity from solar energy based on the 

principle of the photovoltaic effect. 

 

III.3.1.2.2. Photovoltaic Module 

A single PV cell generates low power, insufficient for common 

applications. To produce usable power, multiple cells are interconnected 

either in series (to increase voltage at constant current) or in parallel (to 

increase current at constant voltage). A series grouping of these elementary 

components forms a PV module, which must be mechanically protected to 

withstand outdoor conditions. Since PV cells are fragile and sensitive to 

corrosion, the module ensures durability against humidity and temperature 

variations (Khaled Alosmani, 2023). 
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III.3.2.2. Batteries 

A solar battery stores electrical energy and releases it when demand 

exceeds PV production (e.g., at night or during insufficient sunlight). It 

ensures a quasi-continuous energy supply. 

 

III.3.2.3. Charge Controllers 

The charge controller links the PV generator (GPV) to the battery. It 

protects the battery against overcharging or deep discharging, making it 

essential for preserving battery lifetime (AQC,2025).. 

 

III.3.2.4. Conversion Systems 

An energy converter is installed either between the PV panel and the 

load (in systems without storage, using DC/DC converters), or between the 

battery and the load (using inverters or DC/AC converters) (AQC,2025). 

 

A)  DC/DC Converter 

The DC/DC converter controls energy flow between the solar panel 

and the load. It adapts the apparent load impedance to the PV array 

impedance at the maximum power point. This adaptation system is 

commonly known as Maximum Power Point Tracking (MPPT) 

(AQC,2025).. 

 

B)  DC/AC Converter (Inverter) 

The inverter is a key component of PV installations. It converts DC 

energy from PV modules into AC energy, either for local use or grid 

injection. In standalone systems (not connected to the public grid), inverters 

generate a 220 V, 50 Hz AC signal to create a local network. They can be 

combined with charge controllers and batteries to store energy for later use 

when PV production decreases (AQC,2025). 

 

III.4.3. Grid-Connected PV Installation With Surplus Injection 

This configuration allows users to produce their own electricity 

during sunny periods and feed surplus energy into the public grid, from 

which they can draw power when needed (Souaad Tahraoui,2023). 
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Figure 2: Grid-Connected Photovoltaic Installation with Surplus Energy Injection (Souaad 

Tahraoui, 2023) 

 

Figure 2. illustrates the schematic of a grid-connected photovoltaic 

installation integrating a surplus injection mechanism. The system includes 

two distinct meters: the first records the amount of electricity purchased by 

the photovoltaic panel (PV) owner from the energy supplier, while the 

second measures the energy reinjected into the grid when production exceeds 

local consumption (Souaad Tahraoui,2023). 

 

III.4.4. Defects In Photovoltaic Panels 

During operation, a photovoltaic installation may be subject to 

various faults or abnormal operating conditions (Photovoltaique.info,2025). 

These anomalies can affect the overall performance of the system and 

compromise its energy reliability. 

The most common and significant defects are classified according to 

the affected PV system component(Photovoltaique.info,2025): 

✓ generator: defects related to PV cells, such as microcracks, hot 

spots, or surface degradation; 

✓ junction Box: anomalies affecting protection devices, particularly 

when multiple strings are connected in parallel; 

✓ cabling and Connectors: insulation, connection, or continuity faults 

that may disrupt the series association of modules; 

✓ protection Diodes: failures of bypass or blocking diodes, leading to 

power losses or overheating risks. 
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Table 1 : Origin of Faults and Anomalies in a Photovoltaic System  

PV System Element Origin of Faults and Anomalies 

PV Generator - Tree leaves, bird droppings, pollution, sand, snow, etc.  

- Cell deterioration, cracks, cell overheating  

- Moisture penetration, interconnection degradation, 

corrosion of cell links  

- Modules with different performance levels  

- Torn or broken module  

- Short-circuited or reversed modules 

Junction Box - Electrical circuit break  

- Electrical short circuit  

- Connection destruction  

- Corrosion of connections 

Cabling and Connectors - Open circuit  

- Short circuit  

- Incorrect wiring (reversed module)  

- Contact corrosion  

- Electrical circuit break 

Protection Diodes (Bypass and 

Blocking Diodes) 

- Diode destruction  

- Absence or malfunction of diodes  

- Incorrect polarity during installation, poorly connected 

diode 

(Photovoltaique.info, 2025) 

 
Table 2: Defects of PV Field Components  

PV Field 

Component 

Nature of Defects Defect 

Classification 

Cell - Torn or broken module  

- Shading from pylons, chimneys, sand, snow, etc.  

- Cell overheating  

- Interconnection degradation  

- Cracks  

- Corrosion of cell links  

- Modules with different performance levels  

- Cell deterioration  

- Moisture penetration 

Mismatch and 

shading defect 

Cell Groups - Diode destruction  

- Absence of diodes 

Bypass diode defect 

(Photovoltaique.info,2025) 

 

       This table highlights the main defects observed in photovoltaic 

modules, particularly at the cell and cell-group levels. Most anomalies 

originate from environmental factors (sand, snow, humidity, shading) or 

physical degradation (cracks, corrosion, overheating). These defects lead to 

performance losses, mismatches between cells, and failures in protection 

diodes, which can significantly affect the overall energy production of the 

PV system. 
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Table 3: Classification of Defects in a Photovoltaic Field 

PV System Component Identified Defects Defect Category 

Diodes - Polarity inversion  

- Incorrect connection  

- Short-circuited diode 

Diode defect 

Modules - Short-circuited modules  

- Module polarity inversion  

- Shunted modules 

Module defect 

Strings - Electrical circuit break  

- Connection destruction  

- Connection corrosion  

- Contact corrosion  

- Circuit short circuit  

- Disconnected module 

Connectivity defect 

PV Field - Diode destruction  

- Absence of diodes  

- Diode inversion  

- Incorrect connection  

- Short-circuited diode 

Anti-return diode defect 

(Photovoltaique.info, 2025) 

 

This table presents the main defects observed in a photovoltaic field 

according to system components: diodes, modules, strings, and the PV field. 

The identified failures mainly involve polarity inversions, short circuits, poor 

connections, and corrosion. These defects can lead to performance 

degradation, loss of electrical continuity, or material damage. Such 

classification facilitates detection, diagnosis, and preventive maintenance of 

PV installations. 

 

III.5.  Diagnostic Methods 

In the analysis of photovoltaic (PV) installations, two essential 

diagnostic functions must be distinguished: fault detection and fault 

localization. Some methods are limited to identifying the presence of 

anomalies, while others allow precise localization of their origin. This 

distinction is fundamental for guiding maintenance interventions and 

optimizing system reliability. This section presents the main diagnostic 

methods used in the PV industry, as well as those proposed in scientific 

literature (Photovoltaique.info,2025). 

 

III.5.1. Infrared Imaging Method 

Among diagnostic techniques applied to PV cells, several approaches 

identify defects such as cracks or internal degradation. Mechanical bending 

tests, photoluminescence imaging, and electroluminescence provide fine 

visualization of structural alterations. For PV modules, infrared imaging 

(thermal camera) is widely used. This method relies on the principle that all 
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materials emit infrared radiation proportional to their temperature. By 

analyzing the thermal distribution on the module surface, localized 

anomalies can be detected. Defects identified through this technique 

include(Mikael,,2025): 

✓ Leakage currents in cells; 

✓ Increased resistance of cell interconnections; 

✓ Abnormal heating due to internal defects; 

✓ Unintended conduction of bypass diodes. 

These results confirm the effectiveness of thermal imaging for rapid 

and non-intrusive localization of PV module defects. 

 

III.5.2. Reflectometry 

Reflectometry is a non-intrusive diagnostic method that injects a 

signal into a circuit and analyzes reflections caused by discontinuities or 

impedance variations. Applied to PV strings, it detects faults such as open 

circuits, short circuits, or impedance anomalies. Its experimental efficiency 

makes it a precise and rapid tool for fault localization, particularly useful in 

large-scale PV systems(Mikael,,2025). 

 

III.5.3. Power and Energy Analysis 

Analyzing the power and energy produced by a PV field enables fault 

detection and localization. The principle is to compare measured values with 

expected ones: significant deviations indicate anomalies. To refine 

localization, attributes of power or energy drops, such as duration, amplitude, 

frequency, and occurrence time ,are studied. The defect whose calculated 

attributes best match observed ones is identified as the probable cause of 

failure(Mikael,,2025):. 

 

III.5.4. Operating Point Analysis 

Comparing measured maximum power points (current and voltage) 

with expected values provides additional information on PV system status. 

This binary analysis of currents and voltages identifies problems classified 

into four categories: defective modules within a string, defective strings, 

non-discriminable faults (shading, MPPT error, aging), and false alarms. 

 

III.5.5. Static Characteristic Analysis 

A PV field is characterized by its static current–voltage (I–V) curve 

under normal operation. Any modification of this characteristic may indicate 

a change in system state, either due to operating conditions (irradiance, 

temperature) or the appearance of one or more faults in the PV system 

(Mikael,,2025):. 
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Figure 3: Characteristic current–voltage (I–V) (Mikael,,2025) 

 

III.6.  Modeling of Photovoltaic Generators 

The modeling of photovoltaic (PV) cells involves two principal 

approaches: 

✓ Single-diode model (simple exponential); 

✓ Two-diode model (double exponential). 

 

III.6.1. Modeling of the Single-Diode Photovoltaic Generator 

The single-diode model provides a simplified representation of the 

electrical behavior of a photovoltaic cell. It is an empirical model that 

employs an ideal diode, parasitic resistances, and a current source to 

reproduce the current–voltage (I–V) characteristics of the cell. This approach 

captures the essential performance of PV devices while maintaining 

computational efficiency, making it widely adopted in both academic 

research and practical applications (A. Benzagmout,2021). 

 
Figure 4: single-diode model schematic (A. Benzagmout, 2021) 
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III.6.2. Single-Diode Model Circuit Representation 

The schematic of the single-diode model (Figure 4) consists of the 

following elements (A. Benzagmout, 2021): 

Photocurrent Source (𝐼𝑃ℎ): Represents the current generated by the 

photovoltaic effect within the cell. Its magnitude depends on the incident 

irradiance and the intrinsic characteristics of the cell. 

Series Resistance (𝑅𝑆): Accounts for internal Ohmic losses in the cell due to 

the resistivity of semiconductor materials and metallic contacts. 

Shunt Resistance (𝑅𝑆ℎ): Models parasitic leakage currents within the cell. 

Ideal Diode (𝐷): Represents the p–n junction of the cell. The current flowing 

through the diode (𝐼𝑑) is expressed by the Shockley equation(A. 

Benzagmout,2021).: 

𝑰𝒅 = 𝑰𝟎 [𝒆𝒙𝒑 (
𝒒(𝑽𝑷𝑽+𝑹𝑺.𝑰𝑷𝑽 )

𝒏𝑲𝑻
)] 

(1)                                            

𝑰𝒅 = 𝑰𝑺𝑪 [𝒆𝒙𝒑 (
𝑽𝑷𝑽

𝑽𝒕
) − 𝟏] 

(2)                                         

The single-diode photovoltaic model incorporates the following parameters: 

✓ Short-Circuit Current (𝐼𝑆𝐶): Represents the current delivered by the cell 

when the output terminals are short-circuited. 

✓ Photovoltaic Voltage (𝑉𝑃𝑉): Denotes the voltage across the terminals of 

the cell. 

✓ Thermal Voltage (𝑉𝑡): Defined as the thermal potential of the cell, 

approximately 26 mV under ambient temperature conditions. 

✓ Parasitic Series Resistance (𝑅𝑃): Models the internal resistive losses 

due to semiconductor material properties and contact resistances. 

✓ Parasitic Shunt Resistance (𝑅𝑆ℎ): Represents leakage paths within the 

cell that contribute to parasitic current losses. 

 

7.2. I–V Relation of The Single-Diode Model 

The total current (𝐼) flowing through the photovoltaic cell is given by 

the sum of the photocurrent source (𝐼𝑃ℎ) and the diode current (𝐼𝑑)( Z. Djallel 

et al,2020): 

𝐼 = 𝐼𝑃ℎ − 𝐼𝑑  

(3) 

By substituting 𝐼𝑑with its expression from the Shockley equation, the I–V 

relation of the single-diode model becomes: 

𝐼 = 𝐼𝑃ℎ − 𝐼𝑆𝐶 [exp (
𝑉𝑃𝑉

𝑉𝑡
) − 1] +

𝑉

𝑅𝑃
−

𝑉𝑃𝑉

𝑅𝑆ℎ
 

                               (4) 
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This equation enables the simulation of the I–V curve of the photovoltaic cell 

under varying irradiance and temperature conditions. 

The diode current (𝐼𝑑) is expressed by the Shockley equation as: 

𝐼𝑑 = 𝐼0 [exp (
𝑞(𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉)

𝑛𝑘𝑇
) − 1]  

                                            (5) 

where: 

✓ 𝑘 = 1.380662 × 10−23 J/(K)is Boltzmann’s constant, 

✓ 𝑛is the diode ideality factor (typically between 1 and 2), 

✓ 𝑞 = 1.602 × 10−19 Cis the electron charge. 

The current through the parallel shunt resistance (𝑅𝑆ℎ) is given by: 

𝐼𝑠ℎ =
𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝑅𝑆ℎ
 

                                                                              (6) 

where: 

✓ 𝑅𝑆is the series resistance of the cell, 

✓ 𝑅𝑆ℎis the shunt resistance of the cell, 

✓ 𝑉𝑃𝑉is the output voltage of the cell. 

Finally, the four-parameter model of the photovoltaic cell is expressed as: 

𝐼𝑃𝑉 = 𝐼𝑃ℎ − 𝐼0 [exp (
𝑞(𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉)

𝑛𝑘𝑇
) − 1] −

𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝑅𝑆ℎ
 

(7) 

7.2.1 Four-Parameter Model  

Figure II.3 represents a four-parameter model. 

 
Figure 5: Four-Parameter Model 

 

The series resistance 𝑅𝑆is added as the fourth parameter [14]. 

✓ 𝑅𝑆: Represents the resistance of the connections. 

✓ The diode voltage is expressed as: 
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𝑉𝑑 − 𝑉 + 𝑅𝑆𝐼𝑟𝑠 = 0  

(8) 

Thus, the current is given by: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡 [exp (
𝑉 + 𝐼𝑅𝑆

𝑛𝑘𝑇
) − 1]   

             (9) 

Under standard test conditions (irradiance of 1000 W/m² and temperature of 

25 °C): 
𝑘𝑇

𝑞
≈ 26 mV 

with: 

✓ 𝑘 = 1.38 × 10−23 J\pK
−1

(Boltzmann constant), 

✓ 𝑇 = 25 + 273 = 298 K, 

✓ 𝑞 = 1.16 × 10−19 C(electron charge). 

Therefore, the relation becomes: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡 [exp (
𝑉 + 𝐼𝑅𝑆

𝑛 ⋅ 0.026
) − 1]  

(10) 

7.3.  Two-Diode Model 

We present the two-diode model to study the effect of partial shading 

on the energy production of photovoltaic (PV) panels. For this purpose, a 

comprehensive analysis of all available PV module configurations is carried 

out. The two-diode model is introduced as follows (A. Benzagmout and al 

2021): 

 
Figure 5: Equivalent Electrical Circuit of a Crystalline Silicon Cell – Two-Diode Model (2-

D Rs) 

 

The following equation describes the output current of the photovoltaic cell 

for the two-diode model: 
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𝐼𝑃𝑉 = 𝐼𝑃ℎ − 𝐼01 [−1 + exp (
𝑉𝑃𝑉 + 𝑅𝑆. 𝐼𝑃𝑉

𝐴1. 𝑉𝑡1
)] 

−𝐼02 [−1 + exp (
𝑉𝑃𝑉 + 𝑅𝑆. 𝐼𝑃𝑉

𝐴1. 𝑉𝑡2
)] −

𝑉𝑃𝑉 + 𝑅𝑆. 𝐼𝑃𝑉

𝑅𝑃
 

(11) 

where: 

✓ 𝐼𝑑1: Reverse saturation current of diode D1. 

✓ 𝐼𝑑2: Reverse saturation current of diode D2. 

✓ 𝑉𝑟1: Thermodynamic potential of diode D1. 

✓ 𝑉𝑟2: Thermodynamic potential of diode D2. 

✓ 𝐴1: Ideality factor of the junction of diode D1. 

✓ 𝐴2: Ideality factor of the junction of diode D2. 

 

III.10. Modeling and Simulation of PV Cells Using Single- and Two-

Diode Models 

III.10.1. Parameter Estimation Methods for PV Modules 

Several techniques have been developed to extract the characteristic 

parameters of photovoltaic modules. These can be grouped into three main 

categories(A. Benzagmout and al 2021),( K. Alosmani and al, 2023): 

✓ Analytical methods ; 

✓ Iterative methods ; 

✓ Intelligent methods. 

These approaches provide varying levels of accuracy depending on 

the models and application conditions. One example is the simple 

conductance method. 

The optimization of solar panel model parameters is a complex 

problem, with the objective of determining the optimal combination of 

parameters to achieve the best possible performance. Different optimization 

approaches, such as Genetic Algorithms (GA), Particle Swarm Optimization 

(PSO), and Artificial Neural Networks (ANN), can be employed to solve this 

type of problem. 

In this study, we analyze the effectiveness of these three approaches 

by comparing them according to several criteria: their ability to converge to 

an optimal solution, their convergence speed, and their robustness under 

different experimental conditions. The results of this comparative analysis 

provide valuable insights for researchers and engineers seeking to optimize 

solar panel model parameters(Guide Photovoltaïque,2025),( Z. Djallel,2020). 

In the continuation of this work, each of these methods will be 

presented in detail, applied to the determination of the predicted current 

obtained from solving the nonlinear equation of the photovoltaic (PV) cell 

current. 
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Since the I–V characteristic equation is inherently nonlinear, its 

resolution requires the application of numerical methods capable of 

providing either an exact solution vector or an approximate solution vector. 

Several methods have been developed in recent years to solve this nonlinear 

equation, including (Guide Photovoltaïque,2025): 

✓ Lambert-W function method ; 

✓ Newton–Raphson method ; 

✓ Simple conductance method. 

In this study, we restrict ourselves to the application of the analytical 

method based on the Lambert-W function, which is used to determine the 

predictive current by explicitly solving the nonlinear equation characterizing 

the current delivered by the photovoltaic (PV) cell (Guide Photovoltaïque 

,2025). 

 
Figure 5: Real Photovoltaic Cell Model (Guide Photovoltaïque,2025) 

 

II.9.4. Analytical Method – Lambert-W Function 

The Lambert-W function is defined as the function that satisfies the 

following relation: 

𝑍 = 𝑊(𝑋) ⋅ 𝑒𝑊(𝑋)   

                                          (12) 

where: 

✓ 𝑍represents the argument of the function 𝑊; 

✓ 𝑒denotes the exponential function; 

✓ 𝑋is a real or complex vector. 

Consequently, the vector 𝑋is obtained in the following form: 

𝑋 = 𝑊(𝑍) 

The application of the Lambert-W function to the equation used to 

calculate the predicted current 𝐼𝑃𝑉can be simplified as follows (Guide 

Photovoltaïque, 2025): 
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(𝑅𝑃 + 𝑅𝑆)𝐼𝑃𝑉 = 𝑅𝑃𝐼𝑘 − 𝑅𝑃𝐼0exp (
𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝐴𝑉𝑡
) − 𝑉𝑃𝑉   

  (13) 

where 𝐼𝑘is defined as: 

𝐼𝑘 = 𝐼𝑃𝑉 + 𝐼0 

By multiplying both sides of (13) by the term 
𝑅𝑆

𝑅𝑃+𝑅𝑆
, we obtain: 

𝑅𝑆𝐼𝑃𝑉 =
𝑅𝑆

𝑅𝑃 + 𝑅𝑆
(𝑅𝑃𝐼𝑘 − 𝑅𝑃𝐼0 exp (

𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝐴𝑉𝑡
) − 𝑉𝑃𝑉) 

(14) 

Equation (14) is further simplified, yielding: 
𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝐴𝑉𝑡
+

𝑅𝑆𝑅𝑃𝐼0

𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)
exp (

𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝐴𝑉𝑡
) 

=
𝑅𝑆

𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)
(𝑅𝑃𝐼𝑘 +

𝑅𝑃𝑉𝑃𝑉

𝑅𝑆
) 

(15) 

 
𝑅𝑆𝑅𝑃𝐼0

𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)
exp [ 

𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝐴𝑉𝑡
] exp [

𝑅𝑆𝑅𝑃𝐼0

𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)
𝑒𝑥𝑝 (

𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝐴𝑉𝑡
)] 

=
𝑅𝑆𝑅𝑃𝐼0

𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)
exp [ 

𝑅𝑆

𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)
] (𝑅𝑃𝐼𝑘 +

𝑅𝑝𝑉𝑃𝑉

𝑅𝑆
) 

(16) 

Equation (17) is further simplified, yielding: 
𝑅𝑆𝑅𝑃𝐼0

𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)
exp [ 

𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝐴𝑉𝑡
] = 

𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊(
𝑅𝑆𝑅𝑃𝐼0

𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)
exp (

𝑅𝑆

𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)
(𝑅𝑃𝐼𝑘 +

𝑅𝑝𝑉𝑃𝑉

𝑅𝑆
)) 

(17) 

Equation (17) is further simplified, yielding: 

𝑅𝑃𝐼0 exp (
𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝐴𝑉𝑡
)

=
𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)

𝑅𝑆
𝑎𝑚𝑏𝑒𝑟𝑡𝑊(

𝑅𝑆𝑅𝑃𝐼0

𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)
exp (

𝑅𝑆

𝐴𝑉𝑡(𝑅𝑃 + 𝑅𝑆)
(𝑅𝑃𝐼𝑘

+
𝑅𝑝𝑉𝑃𝑉

𝑅𝑆
)) 

(18) 

According to Equation (18), the term 

𝑅𝑃𝐼0exp (
𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝐴𝑉𝑡
) 
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is rewritten as: 

𝑅𝑃𝐼0 exp (
𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝐴𝑉𝑡
) = 𝑅𝑃𝐼𝑘 − (𝑅𝑃 + 𝑅𝑆) − 𝑉𝑃𝑉  

(19) 

Thus, the exact predicted output current is obtained by comparing Eq. 

(III.11) with Eq. (III.9), giving: 

𝐼𝑃𝑉 =
𝑅𝑃(𝐼𝑃ℎ + 𝐼0) − 𝑉𝑃𝑉

𝑅𝑃 + 𝑅𝑆
− 

(
𝐴𝑉𝑡

𝑅𝑆
𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊(

𝑅𝑆𝑅𝑃𝐼0

𝐴𝑉𝑡(𝑅𝑃+𝑅𝑆)
exp (

𝑅𝑆

𝐴𝑉𝑡(𝑅𝑃+𝑅𝑆)
(𝑅𝑃𝐼𝑘 +

𝑅𝑝𝑉𝑃𝑉

𝑅𝑆
)) ) 

(20)                            

Equation (20) therefore represents the exact solution of the nonlinear 

current equation of the photovoltaic cell. 

 

IV.   Results and Discussion 

The experimental study focused on analyzing the behavior of a 

photovoltaic module of type ISOFOTON I-50 PV. This module, composed 

of monocrystalline silicon cells, has a nominal power rating of 50 W and is 

commonly used in residential and commercial applications due to its 

reliability and stable performance. 

The typical electrical characteristics of the ISOFOTON I-50 PV 

module are summarized in Table 3. 
Table 3: Typical Electrical Characteristics of the ISOFOTON I-50 PV Module 

Parameter Value 

Maximum Power 𝑃𝑚𝑎𝑥  39.10 W 

Optimal Voltage 𝑉𝑚 14.9 V 

Optimal Current 𝐼𝑚 2.62 A 

Number of Cells 36 

 

I.11.1. Influence of Different Parameters on Current and Power 

Characteristics 

The I–V and P–V curves of solar panels provide valuable information 

about their electrical behavior and allow analysis of the influence of 

irradiance and temperature on performance. These insights are essential for 

the design, modeling, and optimization of photovoltaic systems. 

 

I.11.2. Influence of Irradiance 

Figures 6 and 7 present the I–V and P–V curves of a photovoltaic 

module under different irradiance conditions. The analysis of these curves 

shows that : 
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✓ The current generated by the solar panel increases proportionally 

with irradiance. In other words, the higher the incident light, the 

greater the current produced. 

The output voltage of the panel is less sensitive to irradiance 

variation compared to the current. 

✓ However, a slight increase in voltage can be observed as irradiance 

rises. 

✓ The delivered power, corresponding to the product 𝑃 = 𝑉 × 𝐼, 

increases significantly with irradiance. This indicates an 

improvement in module efficiency under higher sunlight intensity. 

 
Figure 6: I–V Characteristic As A Function Of Irradiance 

 
Figure 7: Characteristic 𝑃 = 𝑓(𝑉)as a Function of Irradiance 

 

Figures 8 and 9 present the I–V and P–V curves of a solar panel 

under different temperature conditions. It is observed that the short-circuit 
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current increases slightly with temperature, while the open-circuit voltage 

decreases significantly. This voltage drop is associated with the increase in 

the saturation current of the panel’s internal diode, a phenomenon that is 

accentuated by heat. Consequently, the shape of the I–V curves shifts toward 

lower voltages as temperature rises. 

As a result, the maximum power produced by the solar panel 

decreases with increasing temperature. The optimal operating point (MPP) 

shifts toward lower voltages, indicating a loss of energy efficiency. In other 

words, even though the current increases slightly, the voltage drop dominates 

and leads to a reduction in the available power. Therefore, the solar panel 

exhibits reduced performance under high-temperature conditions. 

 
Figure 8: Characteristic 𝑃 = 𝑓(𝑉)as a Function of Temperature 

 

 
Figure 9: Characteristic 𝐼 = 𝑓(𝑉)as a Function of Temperature 

http://www.eujournal.org/


ESI Preprints                                                                                                      January 2026 

www.esipreprints.org                                                                                                                          475 

II.11. Simulation of Current–Voltage (I–V) and Power–Voltage (P–V) 

Characteristics 

Figures 10 and 11 illustrate the current–voltage (I–V) and power–

voltage (P–V) characteristic curves obtained from the numerical model of the 

photovoltaic module, compared with noisy simulated measurements. These 

results validate the consistency of the model and allow assessment of its 

accuracy in the context of photovoltaic system monitoring. 

 
Figure 10: Current–Voltage (I–V) Characteristics 

 

 
Figure 11: Caracteristique P-V 
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Figure 10 shows that the numerical model curve (blue line) closely 

follows the general trend of the noisy measurement points (gray). The 

current remains nearly constant up to a voltage of approximately 35 V, after 

which it drops abruptly a typical behavior of a photovoltaic generator. The 

slight fluctuations around the modeled curve originate from the added 

measurement noise, which simulates the inaccuracy of real sensors (thermal 

noise, temperature variation, electronic tolerances, etc.). 

The obtained RMSE of the current (≈ 0.1608 A) corresponds to a 

relative error of less than 2% of the nominal current (≈ 8 A), indicating 

excellent agreement between the theoretical model and the measurements. 

Figure 11 demonstrates an evolution consistent with theory: the 

power increases with voltage until reaching a maximum power point (MPP) 

around 33–35 V, then decreases beyond this value. The near-perfect overlap 

between the modeled curve and the noisy measurements confirms the 

validity of the numerical model for predicting the energy behavior of the 

module. 

The obtained RMSE of the power (≈ 3.6860 W) is also very small 

compared to the maximum power (≈ 300 W), corresponding to a relative 

error of about 1.2%. This level of accuracy is more than sufficient for 

intelligent supervision applications, particularly for detecting efficiency 

drifts or operational faults. 

 

I.12.  Model Errors and Evaluation 

Figures 12 and 13 respectively present the deviations between the 

model and the measurements for current and power. The current error 

oscillates randomly around zero without systematic drift, indicating an 

unbiased and statistically reliable model. 

The power deviations remain generally small but increase slightly in 

the high-voltage region, where the operating point sensitivity is maximal. 

These observations confirm the robustness of the model against 

disturbances and parametric uncertainties (variations in 𝑅𝑠, 𝑅𝑝, 𝐼0, etc.). 

 
Figure 12: Current Error (RMSE = 0.1608 A) 
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Figure 13: Power Error (RMSE = 3.6860 W) 

 

The overall results demonstrate that the implemented PV model 

faithfully reproduces the electrical behavior of the photovoltaic module. The 

low RMSE values confirm the excellent accuracy of the 

Lambert-W/numerical model, enabling its use as a reliable reference for 

supervision. 

In a real supervision architecture (e.g., via Zabbix or MQTT), this 

model can serve as a basis for: 

✓ automatically detecting performance drifts, 

✓ identifying losses due to soiling or interconnection faults, and 

✓ optimizing the operating point of the PV system. 

This validation step therefore constitutes proof of the proper 

functioning of the supervision model and ensures its reliability for 

monitoring and predictive maintenance of the photovoltaic field. 

 

Conclusion 

This article aims to provide a scientific contribution to the issue of 

reliability and maintenance of photovoltaic systems, particularly in the 

African and Congolese context. The study has shown that photovoltaic 

installations, despite their economic and energy attractiveness, remain 

vulnerable to faults that may compromise their performance and availability. 

In light of these challenges, the implementation of robust diagnostic systems 

emerges as a strategic necessity. 

The proposed methodology, based on modeling the I–V and P–V 

characteristics of the photovoltaic generator and employing the Lambert-W 

model, enables simulation and analysis of power failures while offering 

appropriate corrective measures. The obtained results confirm the relevance 

of this approach for rapid detection and precise localization of anomalies, 
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thereby contributing to reduced maintenance costs and optimized energy 

productivity. 

Ultimately, this work provides a solid foundation for the development 

of supervision and predictive maintenance systems for photovoltaic plants, 

enhancing their reliability and efficiency in a context where energy transition 

is a major challenge. 
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