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Abstract

This paper presents the design and implementation of a detection and
diagnostic system for anomalies in a photovoltaic installation connected to
the national EEC grid in Congo Brazzaville, within the framework of Denis
SASSOU NGUESSO University. The main objective is to reduce
maintenance costs and improve the energy productivity of the plant,
considering that photovoltaic systems are inherently subject to operational
failures. The study focuses on faults affecting the PV generator and proposes
a method for detecting and locating anomalies that lead to reduced
production. The approach is based on the analysis of the I-V characteristics
of the PV generator under different operating modes. The results show that
the Lambert W/numerical model accurately reproduces the electrical
behavior of the module, with low and unbiased errors. This model provides a
solid foundation for supervision applications, enabling performance drift
detection, loss identification, and operating point optimization, thereby
ensuring reliability and efficiency in photovoltaic system monitoring.

Keywords: Photovoltaic generator, modeling, diagnostic, real-time
simulation
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Introduction

In an effort to provide a scientific contribution to the challenges of
photovoltaic (PV) systems in Africa in general, and in Congo Brazzaville in
particular, this work focuses on the prevention of failures, malfunctions, and
maintenance, whose costs remain particularly high. While several
researchers are already engaged in this research area, our approach aims to
provide a specific contribution anchored in the African context.

Over the past decade, the photovoltaic sector has experienced
remarkable growth, driven by the progressive reduction in production costs
and public policies promoting renewable energy (IRENA,2024),
(Photovoltaique.info,). These developments have made PV installations
increasingly attractive to both investors and end-users, due to a more
favorable return on investment (Mikael,2025, April).

However, like any industrial system, PV installations remain exposed
to various faults and anomalies that can degrade performance or even cause
complete system downtime (Benzagmout, 2021). Such malfunctions directly
impact energy productivity, economic profitability, and associated
maintenance costs (Djallel,and al,2020) In response to these challenges, the
implementation of reliable and efficient diagnostic systems has become both
an operational and strategic necessity (AQC, 2024).

An effective diagnostic system must not only detect faults quickly but
also locate them precisely, thereby reducing downtime and intervention costs
(Achour, 2025). It is within this context that the DLDPV project (Detection
and Localization of Faults in a Photovoltaic System) was initiated, and the
work presented in this thesis constitutes a direct contribution (ANR,2021).
The primary objective is to design an integrated system capable of
supervising, diagnosing, and optimizing the operation of PV installations,
while remaining transparent to the end-user (Alosmani, 2023).

This research specifically focuses on the detection and localization of
faults on the direct current (DC) side of the system, i.e., at the level of the PV
generator. The adopted approach aims to minimize the number of required
measurements, thereby respecting economic constraints while ensuring
maximum efficiency (Benzagmout,2021), (Tahraoui,2023). Currently,
several monitoring systems measure power and energy output using voltage
and current sensors (Guide Photovoltaique,2025). Some services go further
by correlating production with meteorological data, such as satellite-
measured solar irradiance (PVGIS,2025). Although useful, these tools
present notable limitations: they neither allow rapid detection nor precise
localization of faults at their onset (Axiome Energie,2025).

In this context, we propose a methodology based on system modeling
to characterize the current—voltage (I-V) and power—voltage (P—V) curves of
the PV generator under different operating modes. Subsequently, a PV panel
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is simulated by integrating power failures, i.e., operational errors, and a
corrective measure is proposed using the Lambert W model. This approach
aims to strengthen diagnostic robustness and improve the overall reliability
of the supervision system.

II. Literature Review

In the current context of energy transition, photovoltaic (PV) systems
play a central role in renewable electricity generation. Their large-scale
deployment is driven by undeniable advantages such as low operating cost,
durability, modularity, and reduced environmental impact. However, despite
their apparent reliability, PV installations remain vulnerable to various faults
that can degrade performance. If not detected in time, these anomalies may
lead to significant energy losses, service interruptions, or irreversible
component damage. Consequently, research has intensified on advanced
diagnostic methods aimed at improving supervision, maintenance, and
resilience of PV systems.

Several studies have proposed approaches based on electrical analysis
of the PV generator, particularly through the current—voltage (I-V)
characteristic. (Benzagmout and al,2021) developed a knowledge base
linking each fault type to a specific I-V signature. Their discrete inference
algorithm achieved more than 90% accuracy in anomaly detection and
localization, which is highly relevant for grid-connected plants. However, the
reliability of this method depends heavily on measurement quality, which
can be difficult to obtain in real time without specialized instrumentation.

(Djallel and al, 2020) adopted a comparative approach, evaluating
different detection techniques through fault simulations. Neural network—
based methods proved particularly effective for complex and nonlinear
faults. Artificial intelligence enables automatic classification of symptoms
and offers adaptability in dynamic environments, though it requires training
on representative datasets, limiting applicability in poorly instrumented
contexts.

(Alosmani and al, 2023) proposed a hybrid approach combining
thermal and electrical modeling with inference techniques. Their method
improved energy yield by an average of 12% on tested sites, confirming the
value of integrating physical data for refined diagnostics. Nevertheless,
implementation remains complex and resource-intensive, which may hinder
adoption in low-infrastructure settings.

Spectral analysis of power curves was explored by (Kouadri and
al,2022) to detect partial shading faults common in urban environments. This
method achieved rapid detection with less than 5% error, useful for rooftop
or dense-area installations. However, it is less effective for internal defects
such as microcracks or cell degradation.
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(Achour and al, 20024) developed low-cost monitoring systems using
microcontrollers such as Arduino. These devices enable real-time data
acquisition and local processing, reducing supervision costs. Pilot sites
reported a 30% reduction in maintenance costs, demonstrating effectiveness
for rural or domestic micro-installations. Yet, limited computational and
storage capacity restricts their use in complex analyses or large-scale
systems.

(Tahraoui and al,2022) analyzed transient responses of PV systems
using MATLAB/Simulink simulations to localize faults with an error margin
below two meters. This approach is relevant for large plants with extensive
cabling but is sensitive to electromagnetic disturbances.

(Khan et al,2023) applied convolutional neural networks to thermal
images, achieving fault recognition rates above 95%. This method is well-
suited for drone-based inspections, enabling fast and non-intrusive
monitoring. However, its effectiveness depends on image quality and
lighting conditions.

(Mikael and al,2025) studied correlations between PV production and
satellite meteorological data. By analyzing monthly deviations between
expected irradiation and actual production, they identified hidden anomalies.
This approach supports remote supervision of isolated installations, though
limited temporal resolution of satellite data restricts real-time diagnostics.

Overall, the reviewed studies highlight the diversity of approaches
developed to enhance PV system reliability, ranging from electrical analysis
and image processing to thermal modeling and artificial intelligence. Most
methods face limitations related to implementation complexity, data
dependency, or environmental conditions. Current trends point toward hybrid
systems that combine multiple information sources and integrate intelligent
algorithms capable of adapting diagnostics to real-world conditions. These
works provide a solid foundation for advanced supervision solutions such as
the DLDPV system presented in this thesis, which aims to deliver rapid,
localized, and economically viable fault detection on the DC side.

III. Methodology
Lii.1. Review of Fundamental Concepts
Lii.1.1. Structure of a Photovoltaic System

A photovoltaic (PV) system is responsible for converting solar
photon energy into usable electrical energy for various applications. The
system consists of a PV generator that produces direct current (DC),
converters for adapting and conditioning the power, batteries for energy
storage, and charge controllers to regulate and protect the system.
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Figure 1: Structure of a Photovoltaic (PV) System

I11.1.2. Photovoltaic Generator

The photovoltaic (PV) generator is the unit responsible for producing
electrical energy in the form of direct current (DC). The fundamental
component that converts solar energy into electrical energy is the
photovoltaic cell (Photovoltaique.info,2025).

I11.3.1.2.1. Photovoltaic Cell

The photovoltaic cell is a semiconductor device, generally silicon
based, formed from two layers, one N doped and the other P doped, creating
a PN junction (AQC,2025). It is the smallest constituent of a photovoltaic
system, responsible for producing electricity from solar energy based on the
principle of the photovoltaic effect.

I11.3.1.2.2. Photovoltaic Module

A single PV cell generates low power, insufficient for common
applications. To produce usable power, multiple cells are interconnected
either in series (to increase voltage at constant current) or in parallel (to
increase current at constant voltage). A series grouping of these elementary
components forms a PV module, which must be mechanically protected to
withstand outdoor conditions. Since PV cells are fragile and sensitive to
corrosion, the module ensures durability against humidity and temperature
variations (Khaled Alosmani, 2023).
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I11.3.2.2. Batteries

A solar battery stores electrical energy and releases it when demand
exceeds PV production (e.g., at night or during insufficient sunlight). It
ensures a quasi-continuous energy supply.

II1.3.2.3. Charge Controllers

The charge controller links the PV generator (GPV) to the battery. It
protects the battery against overcharging or deep discharging, making it
essential for preserving battery lifetime (AQC,2025)..

I11.3.2.4. Conversion Systems

An energy converter is installed either between the PV panel and the
load (in systems without storage, using DC/DC converters), or between the
battery and the load (using inverters or DC/AC converters) (AQC,2025).

A) DC/DC Converter

The DC/DC converter controls energy flow between the solar panel
and the load. It adapts the apparent load impedance to the PV array
impedance at the maximum power point. This adaptation system is

commonly known as Maximum Power Point Tracking (MPPT)
(AQC,2025)..

B) DC/AC Converter (Inverter)

The inverter is a key component of PV installations. It converts DC
energy from PV modules into AC energy, either for local use or grid
injection. In standalone systems (not connected to the public grid), inverters
generate a 220 V, 50 Hz AC signal to create a local network. They can be
combined with charge controllers and batteries to store energy for later use
when PV production decreases (AQC,2025).

I11.4.3. Grid-Connected PV Installation With Surplus Injection

This configuration allows users to produce their own electricity
during sunny periods and feed surplus energy into the public grid, from
which they can draw power when needed (Souaad Tahraoui,2023).
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Figure 2: Grid-Connected Photovoltaic Installation with Surplus Energy Injection (Souaad
Tahraoui, 2023)

Figure 2. illustrates the schematic of a grid-connected photovoltaic
installation integrating a surplus injection mechanism. The system includes
two distinct meters: the first records the amount of electricity purchased by
the photovoltaic panel (PV) owner from the energy supplier, while the
second measures the energy reinjected into the grid when production exceeds
local consumption (Souaad Tahraoui,2023).

111.4.4. Defects In Photovoltaic Panels
During operation, a photovoltaic installation may be subject to
various faults or abnormal operating conditions (Photovoltaique.info,2025).
These anomalies can affect the overall performance of the system and
compromise its energy reliability.
The most common and significant defects are classified according to
the affected PV system component(Photovoltaique.info,2025):
v generator: defects related to PV cells, such as microcracks, hot
spots, or surface degradation;
v junction Box: anomalies affecting protection devices, particularly
when multiple strings are connected in parallel;
v cabling and Connectors: insulation, connection, or continuity faults
that may disrupt the series association of modules;
v protection Diodes: failures of bypass or blocking diodes, leading to
power losses or overheating risks.
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Table 1 : Origin of Faults and Anomalies in a Photovoltaic System

PV System Element

Origin of Faults and Anomalies

PV Generator

- Tree leaves, bird droppings, pollution, sand, snow, etc.

- Cell deterioration, cracks, cell overheating

- Moisture penetration, interconnection degradation,
corrosion of cell links

- Modules with different performance levels

- Torn or broken module

- Short-circuited or reversed modules

Junction Box

- Electrical circuit break

- Electrical short circuit

- Connection destruction

- Corrosion of connections

Cabling and Connectors

- Open circuit

- Short circuit

- Incorrect wiring (reversed module)
- Contact corrosion

- Electrical circuit break

Protection Diodes (Bypass and
Blocking Diodes)

- Diode destruction
- Absence or malfunction of diodes

- Incorrect polarity during installation, poorly connected

diode

(Photovoltaique.info, 2025)

Table 2: Defects of PV Field Components

PV Field | Nature of Defects Defect
Component Classification
Cell - Torn or broken module Mismatch and

- Cracks

- Corrosion of cell links

- Modules with different performance levels
- Cell deterioration

- Moisture penetration

- Shading from pylons, chimneys, sand, snow, etc. | shading defect
- Cell overheating
- Interconnection degradation

Cell Groups - Diode destruction
- Absence of diodes

(Photovoltaique.info,2025)

This table highlights the main defects observed in photovoltaic
modules, particularly at the cell and cell-group levels. Most anomalies
originate from environmental factors (sand, snow, humidity, shading) or
physical degradation (cracks, corrosion, overheating). These defects lead to
performance losses, mismatches between cells, and failures in protection
diodes, which can significantly affect the overall energy production of the

PV system.
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Table 3: Classification of Defects in a Photovoltaic Field
PV System Component | Identified Defects Defect Category
Diodes - Polarity inversion Diode defect
- Incorrect connection
- Short-circuited diode
Modules - Short-circuited modules Module defect
- Module polarity inversion
- Shunted modules
Strings - Electrical circuit break Connectivity defect
- Connection destruction
- Connection corrosion
- Contact corrosion
- Circuit short circuit
- Disconnected module
PV Field - Diode destruction Anti-return diode defect
- Absence of diodes
- Diode inversion
- Incorrect connection
- Short-circuited diode

(Photovoltaique.info, 2025)

This table presents the main defects observed in a photovoltaic field
according to system components: diodes, modules, strings, and the PV field.
The identified failures mainly involve polarity inversions, short circuits, poor
connections, and corrosion. These defects can lead to performance
degradation, loss of electrical continuity, or material damage. Such
classification facilitates detection, diagnosis, and preventive maintenance of
PV installations.

ITII.S. Diagnostic Methods

In the analysis of photovoltaic (PV) installations, two essential
diagnostic functions must be distinguished: fault detection and fault
localization. Some methods are limited to identifying the presence of
anomalies, while others allow precise localization of their origin. This
distinction is fundamental for guiding maintenance interventions and
optimizing system reliability. This section presents the main diagnostic
methods used in the PV industry, as well as those proposed in scientific
literature (Photovoltaique.info,2025).

IIL5.1. Infrared Imaging Method

Among diagnostic techniques applied to PV cells, several approaches
identify defects such as cracks or internal degradation. Mechanical bending
tests, photoluminescence imaging, and electroluminescence provide fine
visualization of structural alterations. For PV modules, infrared imaging
(thermal camera) is widely used. This method relies on the principle that all
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materials emit infrared radiation proportional to their temperature. By
analyzing the thermal distribution on the module surface, localized
anomalies can be detected. Defects identified through this technique
include(Mikael,,2025):

v Leakage currents in cells;

v Increased resistance of cell interconnections;

v Abnormal heating due to internal defects;

v Unintended conduction of bypass diodes.

These results confirm the effectiveness of thermal imaging for rapid

and non-intrusive localization of PV module defects.

IIL.5.2. Reflectometry

Reflectometry is a non-intrusive diagnostic method that injects a
signal into a circuit and analyzes reflections caused by discontinuities or
impedance variations. Applied to PV strings, it detects faults such as open
circuits, short circuits, or impedance anomalies. Its experimental efficiency
makes it a precise and rapid tool for fault localization, particularly useful in
large-scale PV systems(Mikael,,2025).

II1.5.3. Power and Energy Analysis

Analyzing the power and energy produced by a PV field enables fault
detection and localization. The principle is to compare measured values with
expected ones: significant deviations indicate anomalies. To refine
localization, attributes of power or energy drops, such as duration, amplitude,
frequency, and occurrence time ,are studied. The defect whose calculated
attributes best match observed ones is identified as the probable cause of
failure(Mikael,,2025):.

I11.5.4. Operating Point Analysis

Comparing measured maximum power points (current and voltage)
with expected values provides additional information on PV system status.
This binary analysis of currents and voltages identifies problems classified
into four categories: defective modules within a string, defective strings,
non-discriminable faults (shading, MPPT error, aging), and false alarms.

IIL.5.5. Static Characteristic Analysis

A PV field is characterized by its static current—voltage (I-V) curve
under normal operation. Any modification of this characteristic may indicate
a change in system state, either due to operating conditions (irradiance,
temperature) or the appearance of one or more faults in the PV system
(Mikael,,2025):.
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Figure 3: Characteristic current—voltage (I-V) (Mikael,,2025)

I11.6. Modeling of Photovoltaic Generators
The modeling of photovoltaic (PV) cells involves two principal
approaches:
v" Single-diode model (simple exponential);
v' Two-diode model (double exponential).

I11.6.1. Modeling of the Single-Diode Photovoltaic Generator

The single-diode model provides a simplified representation of the
electrical behavior of a photovoltaic cell. It is an empirical model that
employs an ideal diode, parasitic resistances, and a current source to
reproduce the current—voltage (I-V) characteristics of the cell. This approach
captures the essential performance of PV devices while maintaining
computational efficiency, making it widely adopted in both academic
research and practical applications (A. Benzagmout,2021).

)+

Ipn I -
Rs Iyy

Ipn () \VA4 Ry Vey

Figure 4: single-diode model schematic (A. Benzagmout, 2021)

WWW.esipreprints.org 465



http://www.eujournal.org/

ESI Preprints January 2026

I11.6.2. Single-Diode Model Circuit Representation

The schematic of the single-diode model (Figure 4) consists of the
following elements (A. Benzagmout, 2021):
Photocurrent Source (Ip,): Represents the current generated by the
photovoltaic effect within the cell. Its magnitude depends on the incident
irradiance and the intrinsic characteristics of the cell.
Series Resistance (Rs): Accounts for internal Ohmic losses in the cell due to
the resistivity of semiconductor materials and metallic contacts.
Shunt Resistance (Rs;,): Models parasitic leakage currents within the cell.
Ideal Diode (D): Represents the p—n junction of the cell. The current flowing
through the diode (I;) is expressed by the Shockley equation(A.

Benzagmout,2021).:
q(va+RS.IpV )
Igs=1 —_—
v (0))
— PV _
= tafen(2)
2

The single-diode photovoltaic model incorporates the following parameters:

v Short-Circuit Current (/5-): Represents the current delivered by the cell
when the output terminals are short-circuited.

v Photovoltaic Voltage (I/p,): Denotes the voltage across the terminals of
the cell.

v Thermal Voltage (V;): Defined as the thermal potential of the cell,
approximately 26 mV under ambient temperature conditions.

v Parasitic Series Resistance (Rp): Models the internal resistive losses
due to semiconductor material properties and contact resistances.

v Parasitic Shunt Resistance (Rs;): Represents leakage paths within the
cell that contribute to parasitic current losses.

7.2. I-V Relation of The Single-Diode Model
The total current (I) flowing through the photovoltaic cell is given by
the sum of the photocurrent source (Ip,) and the diode current (I;)( Z. Djallel
et al,2020):
I'=1Ipp—1Iqg
3)
By substituting I;with its expression from the Shockley equation, the -V
relation of the single-diode model becomes:
_ VPV) ] V. Vpy
I = Ipy — ¢ [exp ( v 1|+ B> Ry
4
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This equation enables the simulation of the -V curve of the photovoltaic cell
under varying irradiance and temperature conditions.
The diode current (I;) is expressed by the Shockley equation as:

Voy + R¢l
I, = I, [exp (Q( PV s Pv)) _ 1]

nkT
()
where:
vk =1.380662 x 10723 J/(K)is Boltzmann’s constant,
v nis the diode ideality factor (typically between 1 and 2),
v q = 1.602 x 1071 Cis the electron charge.
The current through the parallel shunt resistance (Rgy) is given by:
_ Vpy + Rslpy
sh RSh
(6)
where:
v Rgis the series resistance of the cell,
v Rgpis the shunt resistance of the cell,
v Vpyis the output voltage of the cell.
Finally, the four-parameter model of the photovoltaic cell is expressed as:
I _] [ex (q(VPV + RSIPV)> _ 1] _ Vey + Rslpy
pv = Ipn — 1o |€XP kT —R.S‘h
(7)

7.2.1 Four-Parameter Model
Figure I1.3 represents a four-parameter model.

vd V

o \/

Figure 5: Four-Parameter Model

The series resistance Rgis added as the fourth parameter [14].
v Rg: Represents the resistance of the connections.
v The diode voltage is expressed as:
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Vy—V +Rsls =0
)]

Thus, the current is given by:

V + IR
1= = b [0 () =1
)

Under standard test conditions (irradiance of 1000 W/m? and temperature of
25°C):
kT
— =~ 26 mV
q
with:
vk =1.38 x 10723 J\pK~*(Boltzmann constant),
v T =125+273 =298K,
v g =1.16 X 10712 C(electron charge).
Therefore, the relation becomes:
V + IR
1= Ton = Lsar [eXp (n - 0.026) - 1]
(10)
7.3. Two-Diode Model
We present the two-diode model to study the effect of partial shading
on the energy production of photovoltaic (PV) panels. For this purpose, a
comprehensive analysis of all available PV module configurations is carried
out. The two-diode model is introduced as follows (A. Benzagmout and al
2021):

Figure 5: Equivalent Electrical Circuit of a Crystalline Silicon Cell — Two-Diode Model (2-
D Rs)

The following equation describes the output current of the photovoltaic cell
for the two-diode model:
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_ Vpey + Rs. IPV)]
el e
pv T Itg. Ipy pv T Itg. Ipy
102[ 1+ eXp( A, Ve )] R,
(11)
where:
v 141: Reverse saturation current of diode D1.
14,: Reverse saturation current of diode D2.
V,1: Thermodynamic potential of diode D1.
V,»: Thermodynamic potential of diode D2.
A;: Ideality factor of the junction of diode D1.
A,: Ideality factor of the junction of diode D2.

AR N NN

I11.10. Modeling and Simulation of PV Cells Using Single- and Two-
Diode Models
I11.10.1. Parameter Estimation Methods for PV Modules
Several techniques have been developed to extract the characteristic
parameters of photovoltaic modules. These can be grouped into three main
categories(A. Benzagmout and al 2021),( K. Alosmani and al, 2023):
v"Analytical methods ;
v Iterative methods ;
v" Intelligent methods.

These approaches provide varying levels of accuracy depending on
the models and application conditions. One example is the simple
conductance method.

The optimization of solar panel model parameters is a complex
problem, with the objective of determining the optimal combination of
parameters to achieve the best possible performance. Different optimization
approaches, such as Genetic Algorithms (GA), Particle Swarm Optimization
(PSO), and Artificial Neural Networks (ANN), can be employed to solve this
type of problem.

In this study, we analyze the effectiveness of these three approaches
by comparing them according to several criteria: their ability to converge to
an optimal solution, their convergence speed, and their robustness under
different experimental conditions. The results of this comparative analysis
provide valuable insights for researchers and engineers seeking to optimize
solar panel model parameters(Guide Photovoltaique,2025),( Z. Djallel,2020).

In the continuation of this work, each of these methods will be
presented in detail, applied to the determination of the predicted current
obtained from solving the nonlinear equation of the photovoltaic (PV) cell
current.
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Since the -V characteristic equation is inherently nonlinear, its
resolution requires the application of numerical methods capable of
providing either an exact solution vector or an approximate solution vector.
Several methods have been developed in recent years to solve this nonlinear
equation, including (Guide Photovoltaique,2025):

v Lambert-W function method ;
v Newton—Raphson method ;
v Simple conductance method.

In this study, we restrict ourselves to the application of the analytical
method based on the Lambert-W function, which is used to determine the
predictive current by explicitly solving the nonlinear equation characterizing
the current delivered by the photovoltaic (PV) cell (Guide Photovoltaique
,2025).

Rs

Figure 5: Real Photovoltaic Cell Model (Guide Photovoltaique,2025)

11.9.4. Analytical Method — Lambert-W Function
The Lambert-W function is defined as the function that satisfies the
following relation:
Z=W(X) e"®
(12)
where:
v Zrepresents the argument of the function W
v edenotes the exponential function;
v Xis areal or complex vector.
Consequently, the vector Xis obtained in the following form:
X=W(2)
The application of the Lambert-W function to the equation used to
calculate the predicted current Ipycan be simplified as follows (Guide
Photovoltaique, 2025):
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Vpy + Rslpy
(Rp + Rs)Ipy = Rpli — Rplpexp (—) = Vpy

AV,
(13)
where [ is defined as:
Ik = IPV + IO
By multiplying both sides of (13) by the term RR%, we obtain:
ptRs
Rs Vpy + Rslpy
Rslpy = R—-I-RS (RPIk Rply exp (A—Vt) - VPV)
(14)
Equation (14) is further simplified, yielding:
Vpy + Rslpy RsRply ox (VPV + RSIPV>
AV, AV,(Rp + Rs) P\ 4y,
R RpV,
__ K ( Rpl, + P PV)
(15)
RsRply ox [ Vpy + RSIPV] ox RsRply ox (VPV + RSIPV>]
AV,(Rp + Ry) AV, P AVt(RP +Rs) AV,
RsRpl R,V
_ siiplp p[ ](Rplk+ pPV)
AV (Rp + Rs) AVt(RP + Rs) Rs
(16)
Equation (17) is further simplified, yielding:
RsRply [ Vpy + RSIPV] _
exp =
AV,(Rp + Rg) AV,
RsRpl, Rs R,Vpy
LambertW (Rer )
mbert Gy iy + By <Avt(Rp TR Pt TR
(17)
Equation (17) is further simplified, yielding:
Rl ex (VPV + RSIPV)
plo €Xp —AVt
AVi(Rp + Ry) RsRply Rs
= ———=ambertW (R I
Ry PR, + Ry TP\ AViR, + Re) P
LR va))
Rs
(18)

According to Equation (18), the term

Voy + Rel
Rplexp ( PV s PV)

AV,
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is rewritten as:
VPV + RSIPV
Rl exp (oY) = Rl = (Rp + Rs) = Ve
t

(19)
Thus, the exact predicted output current is obtained by comparing Eq.
(II1.11) with Eq. (I11.9), giving:
_ RpUpp +1y) — Vpy _

pv =
Rp + Rs

L LambertW (—2E0__ oy L(RI +RpVPV) )

Rs AVi(Rp+Rs) p AV (Rp+Rs) \ Pk Rs

(20)
Equation (20) therefore represents the exact solution of the nonlinear
current equation of the photovoltaic cell.

IV.  Results and Discussion

The experimental study focused on analyzing the behavior of a
photovoltaic module of type ISOFOTON I-50 PV. This module, composed
of monocrystalline silicon cells, has a nominal power rating of 50 W and is
commonly used in residential and commercial applications due to its
reliability and stable performance.

The typical electrical characteristics of the ISOFOTON [-50 PV

module are summarized in Table 3.
Table 3: Typical Electrical Characteristics of the ISOFOTON I-50 PV Module
Parameter Value
Maximum Power B, | 39.10 W
Optimal Voltage V;, 149V
Optimal Current [, 2.62 A
Number of Cells 36

I.11.1. Influence of Different Parameters on Current and Power
Characteristics

The I-V and P—V curves of solar panels provide valuable information
about their electrical behavior and allow analysis of the influence of
irradiance and temperature on performance. These insights are essential for
the design, modeling, and optimization of photovoltaic systems.

1.11.2. Influence of Irradiance

Figures 6 and 7 present the I-V and P—V curves of a photovoltaic
module under different irradiance conditions. The analysis of these curves
shows that :
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v' The current generated by the solar panel increases proportionally
with irradiance. In other words, the higher the incident light, the
greater the current produced.

The output voltage of the panel is less sensitive to irradiance
variation compared to the current.

v However, a slight increase in voltage can be observed as irradiance
rises.

v' The delivered power, corresponding to the product P =V X I,
increases significantly with irradiance. This indicates an
improvement in module efficiency under higher sunlight intensity.

I-V CHARACTERISTIC AS A FUNCTION OF IRRADIANCE, T =25°C

3 . . . —

25+t

15 F [=6 =200 Wim?
L= =400 Wim’
r G =600 Wim* 1
el =G = 800 W/m’

ol —G=1(I)0W/m2 \
0 L L L A

0 5 10 15 20 25
Voltage V(V)

Current I(A)

Figure 6: I-V Characteristic As A Function Of Irradiance

CHARACTERISTIC AS AFUNCTION OF IRRADIANCE, T =25°C
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® G=400Wim?
=G =600 W/m?
10F| © G=800Wm? 1
G = 1000 W/m?
N ) )
0 5 10 15 20 25

Voltage V(V)
Figure 7: Characteristic P = f(V)as a Function of Irradiance

27

Power P(W)

Figures 8 and 9 present the -V and P—V curves of a solar panel
under different temperature conditions. It is observed that the short-circuit
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current increases slightly with temperature, while the open-circuit voltage
decreases significantly. This voltage drop is associated with the increase in
the saturation current of the panel’s internal diode, a phenomenon that is
accentuated by heat. Consequently, the shape of the [-V curves shifts toward
lower voltages as temperature rises.

As a result, the maximum power produced by the solar panel
decreases with increasing temperature. The optimal operating point (MPP)
shifts toward lower voltages, indicating a loss of energy efficiency. In other
words, even though the current increases slightly, the voltage drop dominates
and leads to a reduction in the available power. Therefore, the solar panel
exhibits reduced performance under high-temperature conditions.

I-V CHARACTERISTIC AS A FUNCTION OF TEMPERATURE, G = 1000 W/m*

d |- — 1 f.

Current I(A)

i
Voltage V(V)

Figure 8: Characteristic P = f(V/)as a Function of Temperature

P-V CHARACTERISTIC AS A FUNCTION OF TEMPERATURE, G =1000 W/m?
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Figure 9: Characteristic I = f(V)as a Function of Temperature
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II.11. Simulation of Current-Voltage (I-V) and Power—Voltage (P-V)
Characteristics

Figures 10 and 11 illustrate the current—voltage (I-V) and power—
voltage (P—V) characteristic curves obtained from the numerical model of the
photovoltaic module, compared with noisy simulated measurements. These
results validate the consistency of the model and allow assessment of its
accuracy in the context of photovoltaic system monitoring.

IV : Modeéle (LambertW si dispo) vs numérique vs mesure

86

84
S At SR it R
o ~

\
8 -
i Modele numerique
Mesure (bruitee)
7.6 L L I I 4 4 =
0 5 10 15 20 25 30 35 40

V(V)
Figure 10: Current—Voltage (I-V) Characteristics

P-V : Modéle vs Mesure

400 r

300 + '
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Figure 11: Caracteristique P-V
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Figure 10 shows that the numerical model curve (blue line) closely
follows the general trend of the noisy measurement points (gray). The
current remains nearly constant up to a voltage of approximately 35 V, after
which it drops abruptly a typical behavior of a photovoltaic generator. The
slight fluctuations around the modeled curve originate from the added
measurement noise, which simulates the inaccuracy of real sensors (thermal
noise, temperature variation, electronic tolerances, etc.).

The obtained RMSE of the current (= 0.1608 A) corresponds to a
relative error of less than 2% of the nominal current (= 8 A), indicating
excellent agreement between the theoretical model and the measurements.

Figure 11 demonstrates an evolution consistent with theory: the
power increases with voltage until reaching a maximum power point (MPP)
around 33-35 V, then decreases beyond this value. The near-perfect overlap
between the modeled curve and the noisy measurements confirms the
validity of the numerical model for predicting the energy behavior of the
module.

The obtained RMSE of the power (= 3.6860 W) is also very small
compared to the maximum power (= 300 W), corresponding to a relative
error of about 1.2%. This level of accuracy is more than sufficient for
intelligent supervision applications, particularly for detecting efficiency
drifts or operational faults.

1.12. Model Errors and Evaluation

Figures 12 and 13 respectively present the deviations between the
model and the measurements for current and power. The current error
oscillates randomly around zero without systematic drift, indicating an
unbiased and statistically reliable model.

The power deviations remain generally small but increase slightly in
the high-voltage region, where the operating point sensitivity is maximal.

These observations confirm the robustness of the model against

disturbances and parametric uncertainties (variations in R, Ry, Iy, etc.).
Erreur courant (RMSE = 0.1608 A)

0.5

Emeur| (A)
o

05 : : - : . - :
0 5 10 15 20 25 30 35 40
V (V)
Figure 12: Current Error (RMSE = 0.1608 A)

WWW.esipreprints.org 476



http://www.eujournal.org/

ESI Preprints January 2026

Erreur puissance (RMSE = 3.6860 W)

20

Emeur P (W)

-20 : ‘ ' ‘ : : ;
0 5 10 15 20 25 30 35 40
V (V)
Figure 13: Power Error (RMSE = 3.6860 W)

The overall results demonstrate that the implemented PV model
faithfully reproduces the electrical behavior of the photovoltaic module. The
low RMSE values confirm the excellent accuracy of the
Lambert-W/numerical model, enabling its use as a reliable reference for
supervision.

In a real supervision architecture (e.g., via Zabbix or MQTT), this
model can serve as a basis for:

v'automatically detecting performance drifts,
v 1dentifying losses due to soiling or interconnection faults, and
v'optimizing the operating point of the PV system.

This validation step therefore constitutes proof of the proper
functioning of the supervision model and ensures its reliability for
monitoring and predictive maintenance of the photovoltaic field.

Conclusion

This article aims to provide a scientific contribution to the issue of
reliability and maintenance of photovoltaic systems, particularly in the
African and Congolese context. The study has shown that photovoltaic
installations, despite their economic and energy attractiveness, remain
vulnerable to faults that may compromise their performance and availability.
In light of these challenges, the implementation of robust diagnostic systems
emerges as a strategic necessity.

The proposed methodology, based on modeling the I-V and P-V
characteristics of the photovoltaic generator and employing the Lambert-W
model, enables simulation and analysis of power failures while offering
appropriate corrective measures. The obtained results confirm the relevance
of this approach for rapid detection and precise localization of anomalies,
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thereby contributing to reduced maintenance costs and optimized energy
productivity.

Ultimately, this work provides a solid foundation for the development
of supervision and predictive maintenance systems for photovoltaic plants,
enhancing their reliability and efficiency in a context where energy transition
is a major challenge.
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