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Abstract

The canonical method is invoked to quantize dissipative systems
using the WKB approximation. The wave function is constructed such that
its phase factor is simply Hamilton’s principal function. The energy
eigenvalue is found to be in exact agreement with the classical case. To
demonstrate our approach, the three examples considered in our previous
work (ESJ 9(30), 70-81, 2013) are quantized in detail: the damped harmonic
oscillator, a system with a variable mass, and a charged particle in a
magnetic field.
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1. Introduction

Many advanced methods of classical mechanics deal with only
conservative systems, although all natural processes in the physical world are
nonconservative. Whether treated classically or quantum-mechanically, and
whether viewed macroscopically or microscopically, the physical world
manifests different kinds of dissipation and irreversibility. Mostly ignored in
analytic techniques, dissipation appears in friction, Brownian motion,
inelastic scattering, electric resistance, and many other processes in nature.

Several attempts have been made to incorporate nonconservative
forces into Lagrangian and Hamiltonian formulations; but those attempts
could not give a completely consistent physical framework for these forces.
The Rayleigh dissipation function, invoked when the frictional force is
proportional to the velocity (Goldstein,1980), was the first to describe
frictional forces in the Lagrangian formulation. However, in that case,
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another scalar function was needed, in addition to the Lagrangian, to specify
the equations of motion. At the same time, this function did not appear in the
Hamiltonian. Accordingly, the whole process was of no use when it was
attempted to quantize nonconservative systems.

The most substantive work in this context was that of (Riewe,
1996,1997), who used fractional derivatives to study nonconservative
systems and was able to generalize the Lagrangian and other classical
functions to take into account nonconservative effects.

As a sequel to Riewe's work, (Rabei,2004) used Laplace transforms
of fractional integrals and fractional derivatives to develop a general formula
for the potential of an arbitrary force, conservative or nonconservative. This
led directly to the consideration of dissipative effects in Lagrangian and
Hamiltonian formulations.

Most recently, dissipative systems were investigated using the
Hamilton-Jacobi equation (HJE) (Jarab’ah,2013). This equation was solved
using the separation-of-variables technique. The corresponding principal
function was found. The equation of motion could then be derived from this
function, which represented the energy of the system, in terms of the
generalized coordinates and momenta. This, in turn, could constitute a basis
for the so-called canonical quantization using the WKB approximation,
thereby obtaining the corresponding Hamiltonian and Schrddinger's equation
(Das,2005).

The purpose of the present work is indeed to quantize dissipative
systems using the WKB approximation. The paper is organized as follows.
In Section 2, our Hamilton-Jacobi method for dissipative systems is
reviewed briefly. In Section 3, the quantization of such systems using the
WKB approximation is outlined. In Section 4, the three dissipative systems
examined in our previous work (Jaraba’ah,2005) -- namely, the damped
harmonic oscillator (together with the RLC circuit and a viscous liquid); a
system with a variable mass; and a charged particle in a magnetic field — are
quantized within this approximation. Finally, in Section 5, the work closes
with some concluding remarks.

2. Brief Review of the Hamilton-Jacobi Formalism
We start with the Lagrangian
LO = L(q’q) elt,
1)

ﬂ: being some constant.
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As usual, the generalized momentum, defined by [7]
o ok
i T A !
aq;

gives the corresponding Hamiltonian H, in terms of the generalized
coordinates g and generalized momenta p as

Ho = piGi — Lo = Ho(a;, ;).
()
Therefore, the corresponding HJE of Eq. (2) will be of the form

0,

oS OS oS oS
Ho(Qszv-qu;aq 'aq [RREE aq ;t)"'_ =
1 2 N
3)
where

oS

P —a—qi-

Here the generalized momenta do not appear in Eq. (3), except as derivatives
of Hamilton's principal function S, which is a function of the N generalized

coordinates (;,0,,...,(y and the time t.

Since L =T —V is the physical Lagrangian of the system, T being the
kinetic energy and V the potential energy, it follows that H0 is the physical
Hamiltonian representing the system's total energy: T+V (Goldstein,1980).

The resulting action S is

s = [e*Ldt = [ (pg—H,)dt.
(4)

134



Now, if S(Qy,0ysees Oy Qs Oypseny Oy ) is a complete integral of

HJE, the integrals of Hamilton's equations of motion will be given by
(Goldstein,1980)

0S _
8aj _'Bj’
in addition to
i
J aqj !

/3 being some constants.

To construct HJE, we may write S in a separable form
as(Goldstein,1980)

S(0,a,t) =W(q,a) + f (1),
(5)

Where the time-independent function W(q,a) is the so-called Hamilton's
characteristic function.

Differentiating Eq. (5) with respect to t, we find that

o _a
ot ot
(6) _
From Eq. (3), it follows that
oAy,
ot
(7)

The left-hand side of this equation depends on t alone; whereas the right-
hand side depends on g alone. Each side must then be equal to a constant
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independent of both g and t. Therefore, the time derivative 88/8t in HIE
must be a constant, usually denoted by (-a).

Thus,
S(g,a,t) =W(q,a) — at.
(8)

o)

3. Quantization Using the WKB Approximation

It is well known that HJE for dissipative systems leads naturally to
the semiclassical approximation, namely, WKB (Rabei,2002). This is a basic
technique for obtaining an approximate solution to Schrédinger's equation. It
has been used since the early days of quantum mechanics for determining the
approximate spectra of bound-state problems for certain potentials
(Landau,1958,Alonso,1973, Griffth,1995). The quantization of classical
systems can be achieved by the canonical method. Starting with the
Hamiltonian, one raises the coordinates and momenta to the status of
operators and carries out the quantization (Hasse,1975,Razavy,1977).

It follows that

For dissipative systems, the Hamiltonian operator H ,, corresponding

to the classical function H, , is found by using the conventional quantization

rule and replacing the canonical momentum withp:zi, The

I 0q
Schrodinger equation will then be
in V0D |2 v(g) ey
ot 2m 89° R

(9)

or, more explicitly,
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.. O A

In—y =Hyy;

atl// W4
Where

a hz 82
Ho=—2 v
° = T om o (a)-

The quantization procedure is realized as follows:

Using the familiar complex form of the wave function (Merzbacher,1961)
IS(q,t)
w(q,t) = exp( ,

the amplitude being set to unity for convenience, we have

S 1(es) in 8°S
——yv=\—=| ~————tV v
ot 2m\ oq 2m 0q
Since ¥ # 0, this leads to

as | 1(es) i 'S
— +V |
ot | 2m aq S 2m aq°

(10) In the limith —>0:
2
_ﬁz i @ _|_V
ot 2m\ oq '

The function S iswrittenas S(0,«,t) = S(q, @) — at.

1)

Differentiating this equation with respect to t and g, and inserting the result in Eq.
(11), we end up with
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2
a=| 2] +v|
2m\ oq

Rearranging and integrating Eq. (12), we finally obtain

S(q) = [2m(e -V (a))da.

(12)

This satisfies the canonical relation (H, + p,)w =0,

where f)o :TE; and our quantization is complete.
I

4. Examples

4.1 Damped Harmonic Oscillator

The following Lagrangian is suitable for this system in one dimension
(Bateman,1931):

L,(9,q,t) =(%mq2 _%ma)zqzj e/lt’

(13)
Where m is the mass, and @ the frequency.

The linear momentum is given by

oL
p=""=mqe".
oq

Using the standard form of the Hamiltonian:

Ho = pq_l—o’
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we find
2
H, P g +1ma)2q2 e™.
2m 2

If we make the substitution

At
y=q €2,

then Hg can be obtained as

2
Hy =L (3] Logeye
2m\ oy 2

(14)
The corresponding HJE takes the form
1(es) 1, , &8

E(EJ +§ma) y +§:0.

(15)

It is possible to propose that [1]
S(y,a,t)=W(y,a)—at.

(16)

Differentiating Eg. (16), first with respect to time and then with respect to the
coordinate y, and substituting the results into Eq. (15), we get

2
LW +£ma)2y2—a=0;
oml oy | 2

(17)
so that
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W = j\/Zma —m*w’y*dy.

We finally obtain for the function S:

S= I\/Zma —m’w’y*dy - at.
(18)

We are now ready to obtain the equations of motion. Making use of the
canonical transformation, we find

Then

Finally,
200 . :2‘11
q= ~sin((B+tw)e 2,
(19)
and
At
p:\/Zmoc—mZa)zy2 e?.
(20)
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We are now ready to quantize our example. Treating H ; as an operator,
we have
a2
Py

H =—Y + ~“ma?y?,
° 2m 2 y

The Schrédinger equation for a damped harmonic oscillator reads

(HAo + ﬁo)‘// =0;
(21) or

A2
[RLITRE

2m
(22)
with
5 _ho.
N
5 o,
y = | ay’
iS
W = eh .

Thus, the Hamiltonian becomes
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(24)

and the partial derivative with respect to y is

ielS(hy,t) _l elSh,t @ZL(Q}//
oy h oy nloy)
(25)

so that the second derivative is

iIS(y,t IS(y,t)
0° 0|1 0S o 1(0S

or

(26)

With Eq. (25), this becomes

_iesies i o' -1 (@) i o’
noynhoy ol oy wl\ay) n eyr 37
Putting Egs. (24) and (27) into (23), we get
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1(asY imos 1., .,
| = +=Mao
2m\ oy

(28) Since ¥ # 0, this leads to

+— -+ >mw’y’ =0.
2m\ oy

1(es) ino®s 1
2m oy 2

(29)

Taking the formal 1limit h—0, and recalling that

Sz_[\/Zma—mza)zyzdy—at, we obtain the classical HJE:
1 2 2.2y, 1 2,2 _
—a+—2ma-mo°y)+—mo°y° =0.
2m 2
This satisfies Eq. (21). The quantization of the damped harmonic oscillator is

now complete.

One can follow the same steps outlined in this example
to study other dissipative systems, such as the RLC circuit

and a viscous liquid, as follows:

For the RLC circuit, an appropriate Lagrangian is

(Pain,2005)

sz exlt

LO (Q’Q’t) = (% LQ2 - 2C
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It follows that
2 2
HO :i @ +y__
2L\ oy 2C
The HJ function can be obtained as

y°L
dy — at.
c Ve

S:j Lo —

The equations of motion are

1 =At
Q:Asin((ﬂﬂ) /EJ e ?;
5 At
p= 2La -7 Le2,
\ C

Using the same steps for quantization, we have the following

result:

which satisfies the quantization condition.

For a viscous liquid in a tube, we have the following Lagrangian(Pain,2005):
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. 1
Lo(9,6,t) =(§Iq2 - ngje“,

where |is the length of the liquid column, g is the gravitational acceleration

taken here as constant, and q represents the variations in the liquid height.

Its Hamiltonian is given by

2
1(6S )
Hy=—| 2 .
0 2|(5J+gy

The HJ function can be obtained as

S = j1/2|a —2gly?dy —at.

Finally, the equations of motion are

a . 29 =
q—\/gsm{(ﬂﬂ)\/I:Je 2.

at
p=+2la-2gly’e 2,

The quantization result is

—a+%(2la—2gly2)+ gy’ =0.
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4.2 System with a Variable Mass

A suitable Lagrangian for this system is(Razavy,2005):

. 1 .
L(g,q,t) =(§qu —mgq)-

(30)

Suppose that the mass changes with time according to

m=m, €

Then

. 1
I—o(q’ q’t) = (E moq2 - mogqj e/lt.

(31)

Clearly, the damping factor here arises from the variation of the mass with time.

The linear momentum is given by
. AAt
p=myq €.
The usual treatment gives

—At

p° at
H0=me +mogqe ,

(32)

and HJE is

P> it it 0S
P et 42 g
om, © 1 Tedd ot

Further, the principal function takes the form
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S(q,t) =gN(t) + D(t).
(33)

S0 one gets

%: gN’(t) + D'(1).

(34)

0S

With P =——, we have
oq

2
2 [0S 2
=|— 1| =(N(t))".
p ( % (N(t))
(35)

The corresponding HJE takes the form

1
2m,
(36)

(N®)Y e +m,gq €™ +gN'(t)+ D'(t) = 0.

Matching powers of q then integrating, we get

e/?,t
N(t) = —m097+ No;

at -
D(t) = -m,g? S+ N2 £ ot
227 °2mga A

+D,.
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From Eqg. (33), it follows that

At At — At
e , € , € gN,t
S=-m ——+N.,g—m + N + +D,.
099 P 0od 09 YE °2m0ﬂ, p) 0
(37)
Then
- At
e gt
d=4—N -
o “mA A
(38)
and
At
0S e
=—=—m,0——+ N.,.
P 20 09 7 0
(39)

Now, using H o and p as operators, we have the Schrédinger equation

is
ho R At 0? At h
RO 1 o MI \mggett|eh.

(i ot 2m, aqz | o9 0.
(40)

But
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e
iS(agt ] _mogqeﬂ“t_mog2 >
0 e 21 v
EEe h e—ﬂl gN |
N; + =20
2m,
and
P S O 020 R i)
oq° 2" oq) k' aq°

Putting the above equations into Eq. (40), it is easy to show that in the limit h—0,
we will satisfy the canonical relation; and our quantization is complete.

4.3 A Charged Particle in a Magnetic Field

As a final example, consider the motion in two dimensions of a charged
particle under the influence of a central force potential, VV=kr?/2, as well as an
external constant magnetic field perpendicular to the plane of motion:

B =B,k

The vector potential is

~ 15 1 & 2
A=—Bxr =—B,(—YyiI + X]).
> > o (=Y J)

The Lagrangian is (Goldstein,1980)

Letmez 499+ 3@ R Kz +y?)
2 C 2
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In the presence of damping effects, the Lagrangian becomes

Ly =%m(>‘<2 +y?) e +%(\7.A) e’ —g(x2 +y?) e,

(41)

WithV = Xi +Yj :

L, =%m(>‘<2 +y?) e +%(xy—y>'<) e’ —g(x2 +y?) e

(42)
To simplify, polar coordinates are used:

X =1rcosé;
y=rsind.

Then Eq. (42) becomes
L, =1m(r'2+r20'2) et 4 BBo2g it _Kp2g
2 2C 2

The conjugate momenta are

. :a—L_O_mr' e‘t,
or

, ~ Lo _nrzg et 4 BBop2 g2t
00 2C

The final form of the Lagrangian is

p 2
L. =——¢@
° 2m 2mr? 8mc?

-—r°e
2

2 2
S VPN q°B,r? okt kK %
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The Hamiltonian is

P, it 1 _T/u qB,r” % 2 At
o= om " omr * 2 - | T &
(43)
or, with

() %)
" \or ) o0/

the corresponding HJE is

- At
2 2
1 _/u(@) L1 B2 _9B,r g2 +k 2 At

—~ e —r-e
2m or 2mr? | 00 2C
0S
+—=0.
ot
Since@ is a cyclic coordinate, the conjugate momentum must be constant:
oS
P, = % = 7 To simplify, we choose y = 0.

The corresponding HJE then reduces to

=0;

ie_ﬂ(@S) L 9B *Byr? ei‘+5 2 At 83

r-e
2m or 8mc? 2 at
(44)

or
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1 as}2 a 6S
— e "= 2" +—=0,
2m (8 e ot

c_ [Zquj +8mczk}
(45)where 16mc?

-

At
2

Now, using a change of variables Y = €, we find HJE:

oS C(es) 1
Loy 2] =
ot oy 2m

The principal function is

S(y,a,t) :I\/Zm(a—Cyz)dy—at. (46)

_at
Finally, r = € 2 \/%Sm((ﬂﬂ) %J

At
(47)and P =\/2m(a—Cy2) e 2 .

We can quantize the above system by applying the usual rules of canonical

quantization. Specifically, we may construct Schrddinger's equation from the

Hamiltonian:
322 A2 is
ia—+Cy2 +Eﬁ en_,
2m ay2 I ot '
(48) Using
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1IS(y,t
h

[
_e - (— :
p - ay (49)
P S ) i)
ayZ _hZW ay hwayZ’ (50)

so after some algebra and cancellation, taking the semiclassical limit h—0,we get

(Ho + ﬁo)‘/’ =0.
5. Conclusion

This work has focused on quantizing dissipative systems using the
WKB approximation. The Hamilton-Jacobi function is used to construct a
suitable wave function for such systems.

To test our proposed method, and to get a somewhat deeper
understanding, we have examined three examples: the damped harmonic
oscillator (together with two "variants": the RLC circuit and a viscous
liquid); a system with a variable mass; and a charged particle in a magnetic
field. Our formalism may shed further light on such systems as two
interacting particles moving in a viscous medium, and the classical radiating
electron, among others.
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