ETUDE D'UNE ADHESINE IDENTIFIEE CHEZ RUMINOCOCCUS GNAVUS E1

Radia Alatou

Faculté des Sciences de la Nature et de la Vie, Département de microbiologie, Université Constantine 1, Algérie *Gwenola Simon*

Michel Fons BiosCiences / ISM² UMR CNRS-6263, Université Paul Cézanne Aix Marseille III, France

Abstract

Ruminococcus gnavus E1 is a Gram positive strict anaerobic bacterium that was isolated from the dominant faecal microbiota of a healthy adult. A 6kb-long open reading fragment called *radA* was identified on the E1 chromosome, next to the genetic clusters involved in the biosynthesis of the RumA and RumC bacteriocins which are active against pathogenic *Clostridium perfringens. radA* shares a high sequence homology with genes of *Staphylococcus aureus*, *Bacillus cereus* and *C. perfingens* encoding adhesins of the MSCRAMMs family. RT-PCR experiments demonstrated that the *radA* gene was strongly expressed *in vivo*, when the E1 strain colonized the digestive tract of monoxenics animals, while little transcription occured *in vitro*. These results suggest that RadA could play an important role in the colonization of the digestive ecosystem.

Keywords: Faecal microbiot, adhesin, adhesion, factor for colonization

Resume

Ruminococcus gnavus E1, une bactérie à Gram positif, anaérobie stricte, isolée du microbiote dominant d'un homme sain. Un cadre ouvert de lecture (ORF) d'environ 6kb, nommé *radA*, a été identifié sur le chromosome de la souche E1, à proximité des clusters génétiques impliqués dans la biosynthèse des bactériocines RumA et RumC qui sont actives contre le pathogène *Clostridium perfringens. radA* présente de fortes homologies avec des gènes de *Staphylococcus aureus*, *Bacillus cereus* et *C. perfingens* codant pour des protéines d'adhésion de la famille des MSCRAMMs. Il a été montré par RT-PCR que le gène *radA* est fortement exprimé *in vivo*, quand

la souche E1 colonise le tube digestif d'animaux monoxéniques, et peu transcrit *in vitro*. Les résultats suggèrent que RadA pourrait jouer un rôle important dans la colonisation de l'écosystème digestif.

Motsclés: Microbiote intestinale, adhésine, adhésion, facteur de colonisation

Introduction

Introduction *Ruminococcus gnavus* est une espèce bactérienne à Gram positif, anaérobie stricte, qui appartient au cluster phylogénétique *Clostridium cocoides* regroupant différentes espèces du microbiote dominant de l'Homme (Fons *et al.*, 2000). *R. gnavus E1* a été isolée du microbiote fécal d'un adulte sain et a suscité *l'intérêt* des chercheurs en raison de sa capacité à produire les bactériocines Ruminococcine A (RumA) et Ruminococcine C (RumC) actives contre le pathogène *Clostridium perfringens*. RumA est produite *in vitro*, sous la dépendance de trypsine (Dabard *et al.*, 2001). RumC est produite *in vivo*, également sous la dépendance de trypsine (Crost, 2008). RumA et RumC semblent jouer un rôle dans la capacité de la souche E1 à coloniser le tube digestif et dans la protection de l'hôte contre certains pathogènes intestinaux. La colonisation de l'hôte peut faire intervenir plusieurs mécanismes comme la compétition pour un substrat ou une niche écologique, mais il existe d'autres stratégies de colonisation tel que l'adhésion bactérienne. Ce phénomène est dans la très grande majorité des cas, une étape obligatoire pour la bactérie : c'est le début du processus de colonisation chez les commensales comme chez les pathogènes (Charachon, 2007). II a été établi que la colonisation des muqueuses humaines par les bactéries à Gram positif était possible grâce à la présence de molécules d'adhésion spécifique nommée adhésines (Jett *et al.*, 2002). Ces quelques adhésines exprimées à la surface des bactéries à Gram positif sont classées dans un groupe à part comme étant une nouvelle famille de protéines d'adhésion nommée : Microbial Surface Components Recognizing Adhesives Matrix Molecules (MSCRAMMs) (Sillanpää *et al.*, 2008). Ces protéines d'adhésion sont retrouvées et caractérisés uniquement chez les bactéries à Gram positif (Zong *et al.*, 2005). Parmi les mieux caractérisées on peut citer la protéine modèle CNA de S *aureus* impliquée dans la liaison au bactéries à Gram positif (Zong *et al.*, 2005). Parmi les mieux caractérisées on peut citer la protéine modèle CNA de *S. aureus* impliquée dans la liaison au collagène (Ton-That *et al.*, 2000) ainsi que CNE de *Streptococcus equi* (Lannergård *et al.*, 2003). Les MSCRAMM_S ont été également identifiées chez d'autres bactéries comme *Enterococcus faecium* (Nallapareddy Sreedhar et al., 2003), Streptococcus mutans et Bacillus anthracis (Xu et al., 2004). Les adhésines matures partagent une organisation en plusieurs domaines fonctionnels (figure 1) : une séquence signal à l'éxtrémité N-términale, une région A riche en acides aminés hydrophobes et qui comprendrait un site spécifique de fixation aux constituants de la MEC (Xu

et al., 2004). Elle est suivie de domaines répétés B dont le nombre diffère d'une adhésine à une autre. En position C-terminale, une ancre caractérisée par un motif LPXTG ou NPQTN qui est clivé par une sortase ce qui permet l'ancrage de la protéine au niveau du peptidoglycane (Zong *et a l.*, 2005; Talay *et al.*, 2005)

Figure 1: Structure générale des adhésines. *S* : Séquence signal, *A* : Région A, *B1. B2. B3* : Domaines répétés, *W* : Ancre, *M* : partie membranaire, *C* : partie cytoplasmique

(Q73CV3) de *Bacillus cereus* et (Q93M90) *Clostridium perfringens*. L'analyse de la protéine putative déduite du gène *radA* montre une organisation en différents domaines identifiés chez les MSCRAMM_S: un peptide signale constitué de 32 acides aminés suivie d'une région A avec 414 acides aminés hydrophobes, huit domines Cna et à la fin une ancre qui comporte un motif **LPXTP** différents de ceux identifiés chez les autres adhésines (LPXTG), le LPXTP serait un nouveau motif d'ancrage. La protéine RadA pourrait jouer un rôle important dans la capacité de *R. gnavus* E1 à coloniser l'écosystème digestif. L'objectif du travail a été de réaliser des analyses bioinformatiques afin de déterminer la structure de la protéine RadA et contrôler les conditions d'expression du gène *radA*.

Materiel Et Methode

La souche E1 a été isolée du microbiote fécale dominant d'un homme adulte sain (Ramer *et a l.*, 1993) et identifié comme appartenant à l'espèce *Ruminococcus gnavus E1* (Dabard *et al.*, 2001. E1 est cultivée en anaérobiose, dans une chambre de type 'Freter' en atmosphère contrôlée (85% N₂, 10% H₂, 5% CO₂). Elles sont incubées à 37°C dans du milieu BHI supplémenté en extrait de levure et hémine (BHI-YH).

Extraction des ARNm

<u>In vitro</u>

Les ARNm ont été extraits à partir d'une culture de *R. gnavus* E1 sur milieu liquide. Le culot a été traité avec les solutions suivante : TES (Tris 10 mM, EDTA 1 mM, pH8, NaCl 0,1 M), 20 μ g/ μ L de lysozyme. Des billes de zirconium soumis 5 min d'agitation à l'amalgamateur à billes mini beadbeater8[®] au Fast Preps ont été utilisé pour faciliter la lyse cellulaire. Les ARN ont été purifiés à l'aide du RNeasy Mini Kit (Qiagen) selon le protocole adéquat (RNeasy Mini Protocol for isolation of total RNA from bacteria).

In vivo

Les ARN *in vivo* ont été préparés à partir de contenu caecal de rats monoxéniques inoculés avec *R. gnavus*.

Techniques de Gnotoxenie:

Les rats Fisher sont issus de l'élevage axénique de l'UEPSD (INRA Jouy-en-Josas) et sont élevés dans des isolateurs de type Trexler (La Calhène). Ils sont nourris *ad libitum* par une nourriture commerciale stérilisée par irradiation gamma (40 kGy) et boivent de l'eau stérilisée par autoclave (20 min, 120°C). Les animaux sont ensuite inoculés par voie orale, à l'aide d'une sonde intra-gastrique, avec 0,5 mL de suspension bactérienne. L'extraction est réalisée sur des échantillons de 200 mg congelés (Dabard *et al.*, 2001) Le matériel ainsi obtenu est purifié avec le kit RNeasy Mini Kit® (QIAGEN).

Extraction de l'ADN génomique à partir de culture en milieu liquide

Des cultures de 50mL ont été utilisées. Le culot cellulaire est lavé avec $20\mu g/\mu L$ de lysozyme et $200\mu L$ de TES (Tris 10 mM, EDTA 1 mM, pH8, NaCl 0,1 M). La lyse est effectuée par l'ajout d'une solution de SDS à 20%. L'ajout de phénol, agent dénaturant des protéines, permet une séparation des phases. La phase aqueuse est récupérée puis traitée avec un mélange phénol/chloroforme/alcool isoamylique (25/24/1), puis un mélange chloroforme/alcool isoamylique (24/1). L'ADN est précipité à froid (-20°C) par ajout d'éthanol absolu. Le précipité est récupéré par centrifugation. Le culot d'ADN est ensuite lavé avec de l'éthanol à 70%. Le culot est repris dans du tampon TE (Tris 10 mM, EDTA 1 mM, pH8) contenant de la RNase ($20\mu g/mL$). La concentration et la pureté de l'ADN sont estimées par spectrophotométrie (BioPhotometer[®] Eppendorf, Hamburg, ALLEMAGNE) et sa qualité par électrophorèse sur gel d'agarose dans du TBE 0,5X (Tris 50 mM, acide borique 45 mM, EDTA 0,5 mM).

PCR

Les PCR ont été réalisé sur l'ADN génomique purifié ou le produit RT. 2µM d'amorces spécifiques : C1L-C1R, C2L-C2R, C3L-C3R, C4L-C4R, C5L-C5R, C6L-C6R, C7L-C7R, C8L-C8R (tableau 1), 2.5mM de dNTP, 5U de l'Ampli Taq Gold^R (Applied Biosystems) dans le tampon adéquat. Les réactions de PCR ont été effectuées dans un thermocycleur Master cycler personal (Eppendorf) dans les conditions suivantes : Une étape d'activation de l'Ampli Taq (10min à 94°C), une étape de dénaturation (30 sec à 94°C), une étape d'hybridation (30 sec) des amorces avec la matrice. Les températures d'hybridations différentes selon la nature des amorces, une étape d'élongation à 72°C dont le temps diffère selon la taille du fragment à amplifier (1 min par 1kb à amplifier). Ces cycles ont été suivis d'une étape de poste élongation (10 min à 72°C).

Amorces	Séquences (5'-3')		
C1L	5'-GGTTTTGAATGTCCCCAAA-3'.		
C1R	5'-GCAGACAGATTCCCGAAAAA-3'		
C2L	5'-GGGAAGAAGATGCAGAACCC-3'		
C2R	5'-AGTAGGCGGCATCCAGTA-3'		
C3L	5'-TGAAGAGCCAAGTGCAAAG-3'		
C3R	5'-ATTTCCCCCAGACTGCTT-3'		
C4L	5'-GGTGTCTGTGGAAGTGCTGA-3'		
C4R	5'-AAGTTCCGGGGGAACACAAAT-3'		
C5L	5'-CATGAGGAACAGGCTCCAAT-3'		
C5R	5'-TTTTCTGCATCCCAAAGTCC-3'		
C6L	5'-GAGTTTGTAAAGAATGTGAGGATAAGAGAG-3'		
C6R	5'-GTAATCCCTTTAAAATCAGAAGCCG-3'		
C7L	5'-AGTTATGTGGACGCGAAAACCAA-3'		
C7R	5'-TCTGTCATGCCGCCAAGTCTTA-3'		
C8L	5'-AATCGGCTTCCATATGCGGT-3'		
C8R	5'-CTGCCGTCATCGCTCTTAA		

Tableau 1 : Amorces utilisées pour les PCR

RT-PCR

La RT-PCR est réalisée avec $30\mu g/\mu l$ de Random Primer. Le mélange est incubé à 70°C pendant 5 minutes, puis ajouté à un mélange qui contient : 100U de RNase inhibitor, avec son tampon adéquat (5X Buffer), et 2.5mM de dNTP ; le mélange réactionnel est incubé à 37°C pendant 5 minutes. La Transcriptase Réverse (10 000U) est ajoutée, puis le mélange est incubé pendant une heure à 42°C afin de synthétiser les ADNc. La PCR est ensuite effectuée sur l'ADN_C. Les résultats de la PCR ainsi que la RT-PCR ont été analysés sur gel d'agarose. Les fragments d'ADN sont soumis à un courant continu 100V dans une cuve éléctrophorétique (Mupid-ex-Advance Eurogentec).

Analyse bioinformatique

Recherche de cadres ouverts de lecture sur les séquences nucléotidiques a été réalisée à l'aide du programme ORF Finder: http://www.ncbi.nlm.nih.gov/gorf/gorf.html

- Les homologies des séquences peptidiques et nucléotidiques ont étés réalisées avec les séquences présentes: http://www.ncbi.nlm.nih. gov/BLAST/
- Les amorces pour les différentes PCR ont été choisies grâce au programme : http://biotools.umassmed.edu/bioapps/primer3_www.cgi ; et vérifiées par simulation grâce au logiciel AmplifX téléchargeable à l'adresse suivante : http://crn2m.univ-mrs.fr/AmplifX

- Les alignements nucléotidiques et peptidiques: http://www.ebi.ac.uk/ Tools/clustalw2/, http://www.ebi.ac.uk/Tools/emboss/align/index.html/
- L'identification des hélices transmembranaires a été réalisée avec le programme TMHMM Serverv.2.0: http://www.cbs.dtu.dk/services /TMHMM/
- La recherche des peptides signaux a été effectuée avec le programme SignalP Server 3.0 disponible à l'adresse suivante: http://www.cbs.dtu. dk/services/SignalP/
- La prédiction des terminateurs de transcription grâce au logiciel RNAfold (http://rna.tbi.univie.ac.at/cgi bin/RNAfold.cgi). Ce logiciel permet de déterminer les structures secondaires possibles de l'ARN tels que les structures tigeboucles caractéristiques d'un stop de transcription rho-indépendant. Cette méthode est basée sur le calcul de l'énergie associée à la formation et à la stabilité thermodynamique des structures secondaire. Plus l'énergie calculé est faible plus la structure est possible et plus la probabilité d'être en présence d'un terminateur est élevée.
- La recherche des structures particulière: http://coot.embl-heidelberg. de/SMART/
- L'identification des hélices transmembranaires a été réalisée avec le programme TMHMM Serverv.2.0: http://www.cbs.dtu.dk/services /TMHMM/
- La recherche des peptides signaux a été effectuée avec le programme SignalP Server 3.0 disponible à l'adresse suivante : http://www.cbs.dtu.dk/services/SignalP/

Resultats Et Discussion

Vérification de la séquence:

Une panoplie d'oligonucléotides spécifiques qui recouvrent l'ensemble de la séquence de *radA* a été choisie pour amplifier des fragments chevauchants (tableau 1). Après amplification du gène radA avec le couple d'amorce C1L-C7R, la séquence a été vérifiée par séquençage des deux brins. Un ORF de 5217 nucléotides a été confirmé, correspondant à une séquence protéique déduite de 1739 acides aminés.

Après confirmation de la séquence, une analyse bioinformatique a été réalisée. En réalisant des recherches dans des banques de donnée (NCBI Blastp), 20% d'identités et 48% d'homologies ont été observées entre RadA et CNA 'figure 2', la protéine modèle d'adhésion au collagène de *S. aureus*. 41% d'homologies et 24% d'identités avec des protéines putatives d'adhésion au collagène de *Bacillus cereus* (Q73CV3) et de *Clostridium perfringens* (Q93M90) ont aussi été identifiés 'figure 3, 4'

CNA	MNKNVLKFMVFIMLLNIITPLFNKNEAFAARDISSTNVTDLTVSPS 46	ز
RadA	KEQTNERRERLLRKTWKKRCTAGFLAVLLGCSSLFVGTGSAMAAPLEQSENKAETQAEDI 60 : :** : *: *: * * :)
CNA	KIEDGGKTTVKMTEDDKNGKIONGDTIKVAWDTSGTV 83	2
RadA	TIOOGEMEDPASDEKGITVKDGEKISEVLSADKEGKLEDADRPGTYDCIYOVOKPSGETY 12	, 20
	······································	
CNA	KIEGVSKTUSITUKGEO	12
RadA	ETTRETIVERGEGESPREDKKOKKEOKNGEEDAEPDGAHLDTSALKEEEGVLESVVPS 18	30
Radin	* *	/0
CNA		- 1
Rada		10
liuuri		
CNA	NKSTNVTVHKSEAGT 16	59
RadA	NLNLQKVLYYGYGGPGDLTGEYLKNYSNDVKYVLTHLAASYCYGGAEVAFVGCTQDGLKR 30	0
	: ..	
CNA	SSVFYYKTGDMLP 19	99
RadA	YGVMEYINYLCGQEAPPSAAISLSSTKETAFLEGAVQKTKNITLNGDHRNYITLPLPEGV 36	50
	. : * *: * :.: : ::*.::.	
CNA	21	L4
RadA	TYHDTAGKEQKGGSIQIYGGTTFYFTAEKTVHGTWNSGDLGGQVGAQWKTLVVSTGSGNQ 42	20
	:.: *: :.*	
CNA	OOLDISTININVTGTHSNYYSGPNAITDFEKAFPGSKITVD 25	55
RadA	DVGYGDFYEEPSAKVSFSIQWMDISWIEVIKEDAKSSVKLAGAVFGIYRDPACTDLILEM 48	30
	* :*:* ::: . : : : *	
CNA	NTKNTIDUTIPOGYGSLNSESINYKTKITNFOOKEEUNNSODWYOEHGKEEUNGKD 31	(1
RadA	PPTDEKGATKAELTKTODTIYIKEITAPKGYKLNTTAYNVNLEVAETOTVTVKNEEOKGK 54	10
	· · · ···· · · · · · · · · · · · · ·	
CNA		50
RadA	IVVHKOGEKLTGVSGEEGNLOFLYTNTAFAGAKYKIYAAEDIYSODKOTKIYOAGDLAAE 60	00
	·· · ·· · · · · · · · · · · · · · · ·	
CNA		a
RadA	LETKEDGSCSSDMLYLGTYKVVEQQAPDSLTIGKTEEERTHMVTLSYAGQTVEVVEEE 65	58
CNA	EKTKDVS&OKVWEGTOKVKDTIVEKI.VKODDNONTTDVDK&EIKKI.EDGTTKVTWSNI.DE 48	29
RadA	TQYENARPKVSVEVLKQSSNDDAALKGAIFGLYANEDITGADGSVLVTKGTLIQKAESGG 71	8
CNA	NDKNGKTTKYLVKEVNAOGKDTTPEGYTKKEDGLVVTNTEKPTETTSTSGEKVWDDKDNO 54	19
RadA	NGKALFTADIPIGFHYAVKEIQAPSLYFKGNDSYEFFYEYKNDTTYTYTFTHTFQNKEVR 77	78
	: : : :::*: :	
CNA	DGKRPEKVSVNLLANGEKV-ETVDV 57	73
RadA	GEVHIKKIDKDTQDSVSQGDGDLNGAVYGLYAAEDIQHPNGKTGLLYKKDQLVVQGTIEK 83	38
	* ::*: : * :.: * *::	
CNA		22
RadA	GVLNFEDLYLGKYYVOEISPPPSNAYLLDOTKYPVELAYEGODVEIVOKNVTVVETIKKO 89	98
	: . :	
CNA	DDNNNODCKPDTFTKVFLVODC	74
RadA	AFOLIKISDDGSOTETELLEGAGFKVYLIRELSKVKDGSLKPSNGTEYTPODFIGYDFSK 95	58
CNIA		2.1
RadA	IGLDERARGQQVKIIVEELIKVKGILIHVDNNDMGNLIVINKITPETTSISGEKVWDDKD 73 EKTASYYENGEKIOTEEMFTDKKGYLCSPELPYGKVVCTESTIPENVEGIOPELVTIDED 10	,4)18
	· · · · · · · · · · · · · · · · · · ·	
(1)13		
CNA	NUDGRRPEKVSVNLLANGEKVKTLDVTS76	גע 170
naun	SKELQVNKVFNDKFNQFIFKIKKDKQIEDFIEKNOANIKIIDVEKKKIVKNKVKIPKPE 10 *: : : * *	,,0
CNA	ETN-WKYEFKDLPKYDEGKKIEYTV 78	36

RadA	TIDVFETNEEGYLLTPEPLKMGTYRIEEVKSPENFVQTGFEQALKNGEEFLPLNEVTAEG 1 . :: ::: :::	L138
CNA RadA	TEDHVKDYTTDINGTTITNKYTPGETSATVTKNWDDNNNQDGKRPTEIKVELYQDGKATV 8 TYEKAPRESITIKVDSNTAHEMEEETGKYIVVVEVKNDEAVGSLTIQKTGEMLVGAEKIT 1	346 L198
	: : *: *: *.: .:: ..: .:	
CNA	KTATLNESNNWTHTWTGLDEKAKGQQVKYTVE8	378
RadA	DQILTKLKNGLAKAVNQVSTLFTGEEVMETEKGYAFSYEEQGLAGAEFSIYARETIYSPD 1	1258
CNA	Eltkvkgytthv 8	390
RadA	GQMDSEGNRIIRFEKDALVGKIVTDEKGKGTLNNLPIGKFYIKETKTGTSFVLDPKEQDF 1	L318
CNA	DNNDMGNLIVTNKYTPETTSISGEKVWDDKDNQDGKRPEKVSVNLLANGEKVKTLDVTSE 9	950
RadA	EITYQGQEVAVDYVTKEIKNQRQKVEIEVLKKSEATKEPLEGVSFGLYAGEDIVNAAGNV 1 : : . * : .:	L378
CNA	TNWKYEFKNLPKYDEGKKIEYTVTEDHVKDYTTDINGTTITNKYTPGETSAT 1	L002
RadA	VVKKDELVAVEKTDKEGKLKYSDTIPHGKYYLELEGLPGYLPYEEKIEIDASYTDPKLE I : : : : *:.*: * :	1438
CNA	VTKNWDDNNNQDGKRPTEIKVELYQDGKATGKTATLNESNNWTHTWTGLDE1	L053
RadA	VISIQKEVENQPTKVEITKTDITGEKEIEGAKLQILDAEGNVVEEWTSAKESHLIYALKP 1 * . *: :	1498
CNA		
RadA	GKYILHEEQAPIENGYVKAEDVEFTVEETGEIQKVSMKDDHTKVEITKTDITGEQEIEGA 1	L558
CNA	KAKGQQVKYTVEELTKVNGYTTHVDNNDMGNLIVTNKYTPEKPNKPI 1	L100
RadA	KLQVLDEEGNIIEEWTSTKEPYRIEYLQPGKTYVLHEEAAPEGFLIAEDVEFTVEETGEI 1 * :* :*	L618
CNA	YPEKPKDKTPP 1	L111
RadA	QKVSMKDEVPMGQLVIKKTDAEDQTPLANVEFELKNKETEEVVGKLTTDKDGVATSELLP 1 :	L678
CNA	TKPDHSNKVKPTPPDKPSKVDKDDQPKDNKTKPE 1	L145
RadA	IATYKDGKPVAPITYVLSETKPLDGYEKSTETYEVTFSYVDAKTKVIEMVKEIQNKKLPQ 1 * *	1738
CNA	NPLKELPKTGMKIITSWITWVFIGILGLYLILRKRFNS 1183	

TPEKTEEVKTGDQTMLLLPIGIAVVAILGISIVLWRIRRTKR 1780

RadA

Figure 2 : Alignement des séquences peptidiques de l'adhésine CNA et Rad.(*) : identidées,(.) : homologies

B. cereus	MNFLRKSFNQKIKK <mark>LSSSFIVVLLVCMNFLIHLPYKA</mark> EAATTELKGLGDVSYYNA 55
C. perf.	MSKAKR <mark>FKLITTITLIFTFLFTNIKVF</mark> AVEITSTDAESYLNYDSPTWGKV 50
R.gnavus	LRKTWKKRCTA <mark>SFLAVLLGCSSLFVSTGSAMAA</mark> PLEQSENKAETQAEDI 60
Bc	IIFGDHSATSADIEGAMAVQKNMNASSYTVVAAATGANNLAGATWVDEGYPS 107
Cp	LPIGNHRYYVPGDLTTCYCLNTGALNPTGQDYTKEMQVDAGIET 94
Rg	TIQQGEMFDPASDFKGITVKDGEKISFVLSADKEGKLFDADRPGTYDCIYQVQKPSGETY 120
BC	LLLGGQFTKAG-TGQVIIQDGTVAMTKDGDPEGAMKSSYDRISYKEQAEIDAKFKEFRK 165
Cp	ILYWGYPAKDG-SDWGISADEYRYCTQLAIWAYQKEAGLSRGLVRERLQSGTVPLSKLK 152
Rg	EITRKIIVKEKGKEGESPRKDKKQKKEQKNGEEDAEPDGAHLDTSALKEEEGVLFSVVPS 180
BC	DINSVIEDAGQLHTDKPKPGMTFGIGEDVKNSNIYVSSGLKG 207
Cp	PVIDFLVDKAHNKEMPTFFEVSPNDIIAHQEGDYFVSEPIKI 194
Rg	SMEQAREKASLIKGDRIQYPSDLGSYSTCYFYVNDRIAYCLESNLQSPPSSDYVAEIYES 240
BC	QEPFNVKDVYLPNVNNKDFIVIHSDAEEVNFGGGAILYDTTDKGGFTL 255
Cp	KSNYTLSGVKVT-IKSASNPELTKDIVIKDMDGNVKDSGYKA 235
Rg	NLNLQKVLYYGYGGPGDLTGEYLKNYSNDVKYVLTHLAASYCYGGAEVAFVGCTQDGLKR 300

BC Cp Rg	VNTSQAYDPNSFFTELA <mark>S</mark> KVIWVFPNAKKITTK <mark>G</mark> YGVVGS295 NESFRVYIPS-NAETGDLKV <mark>S</mark> VKAKVDIPAML <mark>GY</mark> MTPEQ273 YGVMEYINYLCGQEAPP <mark>S</mark> AAISLSSTKETAFLEGAVQKTKNITLNGDHRNYITLPLPEGV 360
DC	
BC	VFAPNAVVELRGGSINGQAFVGGLhQRDGFEVHIF 550
Cp	GIQDMAVSSLDTHSMDKDN1 293
Rg	TYHDTAGKEQKGGSIQIYGGTTFYFTAEKTVHGTWNSGDLGGQVGAQWKTLVVSTGSGNQ 420
BC	KFNWPKWKKPAAE <mark>K</mark> GNLQIKKVDENDENIVLKD <mark>AK</mark> FD <mark>V</mark> IDKDNNVVAT 378
Cp	KVSWTGLNGAVQVIKKGDDGKLLTGAKFVLKNANDENVAE 333
Rg	DVGYGDFYEEPSAKVSFSIQWMDISWIEVIKEDAKSSVKLAGAVFGIYRDPACTDLILEM 480
BC	VTTNEKGIAEVKDLPFGD-YFVKEISAPEGYIKVDTPVKVTIDNTNIIEFVMKNTKKVEN 437
Ср	ATSQD-GKAVFNDIKPAE-YT <mark>IHEVEAPQGY</mark> LVTN- <mark>PVNVT</mark> VKPNKVSIAEMTDTQIK-388
Rg	PPTDEKGATKAELTKTQDTIYIKEITAPKGYKLNTTAYNVNLEVAETQTVTVKNEEQK-538
BC	GOFKLLKKDS 470
Cp	GKIOVI.KVDE ETNTPLOGAEFEITO-DGKHIET 420
Rg	GKIVVHKQGEKLTGVSGEEGNLQFLYTNTAFAGAKYKIYAAEDIYSQDKQTKIYQAGDLA 598
BC	IVTDDKGEALSKQLPVGSYTLKEVEAPKGYELSSSSVSVDVEVN-KVVTVDVVN 523
Cp	ITTGENGIATSSLLPFGNYLVKEIKAPSKYVLNGEEHPVTISENGKTIEITHTN 474
Rg	AELETKEDGSCSSDMLYLGTYKVVEQQAPDSLTIGKTEEERTHMVTLSYAGQTVEVVEEE 658
BC	KKI DEKVTGOFFI WKUDAFDKTKULSDAFFFUVKDGK-KUDTLETDKTGKUUSOKLFDG- 581
Cn	KITKCKVAVKKTOSFISDI II FOAFTYDNIKNIVATITTNIKOCVAFSFDI NVC_ 529
Cp Pa	TOVENDEDVISITE VACADALI AL CALLERI VALUATION VITA TOVENDEDVISITE SECONDA LI CALLERI VALUATION VITA TOVENDE VALUATION VALUATION VITA TOVENDE VALUATION VALUATI
BC	KYTLKETKAPQGYKLLKEEIEVVVEANKVVQVQVENAKEL 621
Cp	KTYTFDVSNDVIK 570
Rg	NGKALFTADIPIGFHYAVKEIQAPSLYFKGNDSYEFFYEYKNDTTYTYTFTHTFQNKEVR 778
BC	GSLOVTKKDAESG-KVLEGAEFRLKNENGOVVGETKTTN-KD 661
Cp	GKLOIVKVDSENEEKPVEGAGEDVIAVNVNGIKEGTVVDHVVTD-KN 616
Rg	GEVHIKKIDKDTQDSVSQGDGDLNGAVYGLYAAEDIQHPNGKTGLLYKKDQLVVQGTIEK 838
BC	GVVKFENI.VPGKYTI.EETKAPEG-YKAVEVTVEVNVVANEVVKOEVMNEK 710
Cn	GFAYTKDL RYGDYK FHETDTPKG-YWKSDK FYSFN LAENGKTYVKY I KNSP 666
Rg	GVLNFEDLYLGKYYVQEISPPPSNAYLLDQTKYPVELAYEGQDVEIVQKNVTVVETIKKQ 898
BC	LTGOFEI <mark>VKVD</mark> AEDKAKVLSDAEFEVYKDGKK- 742
Cp	IOAKVRVIKVDSKD-GKPLKGVKFOIRNADTKK 698
Rg	AFQLIKISDDGSQTETELLEGAGFKVYLIRELSKVKDGSLKPSNGTEYTPQDFIGYDFSK 958
BC	VETLRTDKTGKVIS-OKLEPGTYTLKETKAPOGYKLLK 779
Cp	LVEFTNFIGIIPMKTTTLETNKNGELVTPONLAYGNYLLEEVEPLEGYIKVNPIPFKIDE 758
Rg	EKTASYYENGEKIQTEEMFTDKKGYLCS-PELPYGKYVCIESTIPENVEGIQPFLVTIDE 1017
BC	EEIEVVVEANKVVEVQVENAKELGSLQVIKKDAESGKVLEGAEFKLKNETGQVVG 834
Ср	NSVLEEIKDLGTIYTQKVSNDRITANMELLKLDKETNKPLENIEFKVTALDGFMKG 814
Rg	DSREPQVWRVFNDRPMQFYFKIIKKDAQTELPILKNSAHYKIYDVEKKKYVKMKVRYPKP 1077
BC	ETKTTNKDGVVKFENLVPGKYTLEETKAPEGYKAVEVTVEVNVVAN-EVVKQEVMN 889
Cp	KTWNLKSDDK-GLVSLKGLEYGDYRVDEVKTLWNVYLNKEPIFFSVKENGKTIKLQMTN 872
Rg	ETIDVFETNEEGYLLTPEPLKMGTYRIEEVKSPENFVQTGFEQALKNGEEFLPLNEVTAE 1137
BC	EKVTGQFEIIKVDANDKAKVLSDAEFTVYKDGKKVAELKTDESGKVMSPKLPL 942
Cp	KKIRGSVELFKFDK-DTNRPLEGVKFDLLNGDKKVGTYTTDNTGKITVNNLEA 924
кg	GTYEKAPRESITIKVDSNTAHEMEEETGKYIVVVEVKNDEAVGSLTIQKTGEMLVGAEKI 1197

BC	GEYTVKETKAPEGYKLSNKEWKVTIQNEKEVVKVEAENERILGSLQIIKTDDKDQ 997
р	GNYTWVEVEAIDHYNKVDKKYDFNIYKDGQLEKIDVANTVKTGELDFSKT-DVTT 978
Rg	TDQILTKL <mark>K</mark> NGLAK <mark>A</mark> VNQVSTLFTGEEVMETEK <mark>G</mark> YAFSY <mark>E</mark> EQGLAGAEFSIYARETIYSP 1257
BC	AKRLSGAEFTLKDAQGNVVKEGITTDKSGIVKVDGLVPGEYTLEETKAPEGYELTKQVIH 1057
Ср	GDSIDGAKVKITGLEPQNKHINIEFTSSKEGNKFTLPEGKYTFEETLAPEGYRINKEVGT 1038
Rg	DGQMDSEGNRIIRFEKDALVGKIVTDEKGKGTLNNLPIGKFYIKETKTGTSFVLDPKEQD 1317
BC	VTVDGEK <mark>IV</mark> DVKVT <mark>NS</mark> KSL <mark>G</mark> QFEIVKVDAEDKAKVLSDAEFEVYKDGK 1105
Ср	FEIKDGQITKANLKDERKQGDLIFTKTDVTTGKVIEGAKIKITCTEGLS 1087
Rg	FEITYQGQEVAVDYVTKEIKNQRQKVEIEVLKKSEATKEPLEGVSFGLYAGEDIVNAAGN 1377
BC	KVETLRTDKTGKVISQKLEPGTYTLKETKAPQGYKLLKEEIEVVVEANK 1154
Ср	KGKVIDFTSSKDGNKFTLDEGKYTFEETSAPNGYRINKEVGTFEIKDGE 1136
Rg	VVVKKDELVAVEKTDKEGKLKYSDTIPHGKYYLRELEGLPGYLPYEEKIEIDASYTDPKL 1437
BC	-VVQVQVENAKELGSLQVIKKDAESGKVLEGAEFKLKNETGQVVGETKTTNKDGVVKFEN 1213
Ср	-ITKANLKDERKQGDLEFTKTDVTDGRIIEGAKIKIICVEGLSKGKVIEFTSFKDGNKFT 1195
Rg	EVISIQKEVENQPTKVEITKTDITGEKEIEGAKLQILDAEGNVVEEWTSAKES-HLIYA 1495
BC	LVPGKYTLEETKAPEGYKALEVTVEVNVVANTVIKQEVLNEKVKEKIKGQVEITKVDATD 1273
Cp	LDEGKYTFEEISAPNGYEINKEVGTFEIKDGEITKANLKDERTTGVLEFTKTDVATGEVL 1255
Rg	LKPGKYILHEEQAPIENGYVKAEDVEFTVEETGEIQKVSMKDDHTKVEITKTDITGEQEI 1555
BC	TNKKLAGAVFEILKDGTKIDTLTTDKNGKATSKELEPGDYILKEVQAPEGYELSDKGIEF 1333
Ср	EGAKIKIECLEGLDQGKVIEFTSSKEGNKFTLAKGKYRISETKAPEGYELTTETGEF 1312
Rg	EGAKLQVLDEEGNIIEEWTSTKEPYRIEYLQPGKTYVLHEEAAPEGFLIAED-VEF 1610
BC	TISNQKIEVVKLQITNEKETSKGPENPGGETETPGGETETPGGETETPGEETEKPGEETE 1393
Cp	EITNQ-GDIITCNLTNKK 1329
Rg	TVEET-GEIQKVSMKDEVPMGQLVIKKTDAEDQTPLANVEFELKNKETEEVV 1661
BC	KDGEETEKDGEETGKDGEETEKDGEETGKDGEETEKDGEETGTSGEETEKDGGETGTDSE 1453
Cp	IE IVKTG 1336
Rg	GKLTTDKDGVATSELLPIATYKDGKPVAPITYVLSETKPLDGYEKSTETYEVTFSYVDAK 1721
BC	GMENVDKEKPTLPEKGQGASHAQLPATGHDMNYLPFIGFALVLLGIRLRFMIKNS 1508
Cp	SRFDINSLIPLGILLVAGGIGGLFFTKKRKLS- 1368
Rg	TKVIEMVKEIQNKKLPQTPEKTEEVKTGDQ <mark>TMLLLPIGIAVVAILGISIVLWR</mark> IRRTKR 1780

Figure 3 : Alignement des séquences peptidiques des adhésines putatives de Bacillus cereus (Bc), Clostridium perfringens (Cp) et R. gnavus E1 (Rg). Les hélices transmembranaires sont surlignées en jaune, les identidées sont représentées en rouge.

Figure 4 : Alignement schématique des quatre ORFs. Les parties en orange correspondent aux séquences présentant de fortes homologies. Les parties en jaune correspondent aux séquences codant pour des hélices transmembranaires

Peptide signal:

L'analyse du domaine N-terminal des trois régions correspondant au produit du gène Q73CV3 de *B. cereus*, Q93M90 de *C. perfringens* et RadA *de R. gnavus E1* avec le logiciel TMHMM Server v. 2. 0

Des analyses statistiques ont révélé une très faible conservation de la structure primaire des PS. Seule la région qui entoure le site de clivage est conservée chez toutes les bactéries. Ces études ont permis d'établir la règle du «-1, -3» (Ramer *et a l.*, 1993 ; Gunnar, 1984). Deux acides aminés sont conservés aux positions Ala-X-Ala. D'une façon plus générale, les précurseurs contenant soit Ala, Gly, Ser, Cys, ou Pro à la position -1 et Ala, Gly, Ser, Cys, Thr, Val, Ile, Leu ou Pro à la position -3, sont effectivement clivés par la SPase. Presque tous les résidus sont tolérés aux positions (-2) et (+1). En position (+2) les acides aminés sont généralement des résidus de petite taille.

La totalité de l'information nécessaire à l'activité de clivage de la SPase est contenue entre les résidus (-3) et (+2) du précurseur (Dev *et al.*, 1990). Ala est le résidu le plus fréquent, mais tous les autres sont tolérés, à l'exception de la Proline. La forme coudée de la Pro interdit le clivage de PS, probablement par une insertion incorrecte dans le site catalytique. La règle du (-3,-1) stipule qu'une région (Ala-X-Ala) est conservée chez tous les PS_s des bactéries à Gram positif (Gunnar, 1984). En effet, l'analyse bioinformatique avec le programme SignalP 3.0 Server du PS de RadA et de CNA confirme cette règle 'figure 5'

Site de clivage par la SPase

Figure 5: Mise en évidence du site de clivage chez RadA.

Le programme (Prédiction of transmembrane helices in proteins), révèle que les 30 résidus d'acides aminés observés seraient organisés en forme d'une hélice transmembranaire pouvant jouer le rôle du peptide signal. 31% d'identité ont été observés entre les trois régions. Cette hypothèse est confirmée par l'analyse réalisée avec le logiciel SignalP 3.0 Server qui révèle une répartition de charge similaire à celles des peptides signaux des bactéries à Gram positif.

Grâce au programme SMART (Simple Modular Architecture Research Tool), des domaines particuliers ont été découverts, nommés domaines Cna en référence à l'adhésine CNA de *S. aureus* (12). Ces domaines répétés dont le nombre varie d'une protéine à l'autre sont retrouvés chez toutes les adhésines de la famille des MSCRAMM_S des bactéries à Gram positif. Chez RadA, huit domaines Cna ont été identifiés 'figure 6'

Séquences des régions particulières de *radA* selon le programme SMART : Domaine cna B de la position 460 à 533:

LAGAVFGIYRDPACTDLILEMPPTDEKGATKAELTKTQDTIYIKEITAPKGYKLNTTY NVNLEVAETQTVTVK

Domaine cna B de la position 569 à 646:

FAGAKYKIYAAEDIYSQDKQTKIYQAGDLAAELETKEDGSCSSDMLYLGTYKVVE QQAPDSLTIGKTEEERTHMVTLS

Domaine cna B de la position 817 à 885 :

PNGKTGLLYKKDQLVVQGTIEKGVLNFEDLYLGKYYVQEISPPPSNAYLLDQTKYP VELAYEGQDVEIV

Domaine cna B de la position 1241 à 1332 :

LAGAEFSIYARETIYSPDGQMDSEGNRIIRFEKDALVGKIVTDEKGKGTLNNLPIGKF YIKETKTGTSFVLDPKEQDFEITYQGQEVAVDYV

Domaine cna B de la position 1358 à 1443 :

 $\label{eq:legvsfglyagedivnaagnvvvkkdelvavektdkegklkysdtiphgkyylre \\ \leglpgylpyeekieidasytdpklevisiq$

Domaine cna B de la position 1466 à 1536 :

IEGAKLQILDAEGNVVEEWTSAKESHLIYALKPGKYILHEEQAPIENGYVKAEDVEFTVEETGEIQKVSMK

Domaine cna B de la position 1555 à 1624 :

IEGAKLQVLDEEGNIIEEWTSTKEPYRIEYLQPGKTYVLHEEAAPEGFLIAEDVEFTV EETGEIQKVSMK

Domaine cna B de la position 1645 à 1725 : LANVEFELKNKETEEVVGKLTTDKDGVATSELLPIATYKDGKPVAPITYVLSETKPL DGYEKSTETYEVTFSYVDAKTKVI

Séquence transmembranaire du coté N-ter de la position 21 à 43: TAGFLAVLLGCSSLFVGTGSAMA

Séquence transmembranaire du coté C-terminal de la position : MLLLPIGIAVVAILGISIVLWRI

Parties répétées de la position 129 à 136: **KEKGKEGE** Parties répétées de la position 140 à 149 : **KDKKQKKEQK** Parties répétées de la position 652 à 658 : **VEVVEEE** Parties répétées de la position 762 à 772 : **TTYTYTFTHTF**

1 100 200 aa

Figure 6 : Représentation schématique de RadA et de ses domaines cna obtenus à partir du programme SMART.

Hélices transmembranaires Domaines cna Séqu

Séquences répétées

L'analyse bioinformatique suggère très fortement que *radA* coderait pour une protéine d'adhésion de la famille des $MSCRAMM_S$, qui pourrait jouer un rôle important dans la capacité de *R. gnavus* E1 à coloniser l'écosystème digestif. La masse moléculaire de la protéine RadA mature putative est de 198,9 KDa, son pHi est évalué à 4,7.

C-terminal:

Selon le programme TMHMM Server v. 2.0 (Prediction of transmembrane helices in proteins), la partie C-terminale se présente sous forme d'une hélice transmembranaire correspondant à la séquence qui jouerait un rôle dans l'ancrage de la protéine au niveau du peptidoglycane.

Chez les Gram positifs, toutes les ancres se caractérisent par la présence d'un Chez les Gram positifs, toutes les ancres se caracterisent par la presence d'un motif très conservé «LPXTG», ce motif est clivé par la sortase, une enzyme qui permet l'ancrage de la protéine au niveau du peptidoglycane. Chez *S. aureus*, deux types de sortases ont été identifiées : la transpeptidase sortase A (SrtA) et la transpeptidase sortase B (SrtB) (Bentley *et al.*, 2007) La différence entre les deux enzymes est que la SrtA reconnait spécifiquement le motif LPXTG, et la SrtB, le motif NPQTN. Les deux sortases coupent après la thréonine, ce qui entraine la formation d'une liaison amide avan la pentidoglycane. La collaboration avan la laboratoire de

amide avec le peptidoglycane. La collaboration avec le laboratoire de génomique comparative

(GENOSCOPE - Centre National de Séquençage - Evry) nous a permis d'avoir accès à la quasi-totalité du génome de *R. gnavus* E1 en septembre 2009, l'analyse a révélée la présence d'un gène codant pour une lyase 'hyal' (734pb) en aval de radA.

lyase '*hyal*' (734pb) en aval de *radA*. La lyase est l'une des principales protéines de surface identifiées chez le genre *Streptococcus*, sa présence a été également détectée chez le genre *Enterococcus*, *Staphylococcus et Streptomyces* (Rigden *et al.*, 2006). Elle a souvent été décrite comme un facteur de virulence (Berry *et al.*, 1994), son rôle principal est la dégradation des constituants de la MEC offrant une source d'énergie et de carbone aux bactéries. Elle dégrade principalement l'acide hyaluronique, largement réparti aux niveaux des tissus épithéliaux, le sulfate de chondroïtine présent dans les tissus conjonctifs. De ce fait, elle facilite la pénétration des bactéries dans les cellules hôtes (Rigden *et al.*, 2006). La Hyal est présente sous deux formes, la première forme qui est étroitement associée à la bactérie, et la deuxième est la forme libérée après action de la sortase (Ton-That *et al.*, 2000) action de la sortase (Ton-That et al., 2000)

Un cadre ouvert de lecture codant pour une sortase 'srtB' (700pb) de *S. aureus* a été identifiée en aval de *radA* **'figure 7**'. Afin de vérifier la présence d'une unité polycistronique, une analyse bioinformatique des séquences en utilisant le programme RNAfold a été réalisée.

Ce programme permet la détection des terminateurs de transcriptions. L'analyse révèle la présence de structure tige-boucle à la fin du gène lyase et du gène srtB. Il apparait donc très probable que les trois gènes ne soient pas organisés en structure opéronique.

Figure 7: Représentation schématique de la disposition de radA, srtB, hyal

Chez RadA, nous avons retrouvé un motif **LPXTP** au lieu de LPXTG/NPQTN, sachant que la sortase coupe après le résidu T, cela laisserait penser que RadA disposerait peut être d'un nouveau motif d'ancrage 'figure 8'

KEQTNERRERLLRKTWKKRCTAGFLAVLLGCSSLFVGTGSAMAAPLEQSENKAETQAEDITI QQGEMFDPASDFKGITVKDGEKISFVLSADKEGKLFDADRPGTYDCIYQVQKPSGETYEITRKI IVKEKGKEGESPRKDKKQKKEQKNGEEDAEPDGAHLDTSALKEEEGVLFSVVPSSMEQAREK ASLIKGDRIQYPSDLGSYSTCYFYVNDRIAYCLESNLQSPPSSDYVAEIYESNLNLQKVLYYGY GGPGDLTGEYLKNYSNDVKYVLTHLAASYCYGGAEVAFVGCTQDGLKRYGVMEYINYLCG QEAPPSAAISLSSTKETAFLEGAVQKTKNITLNGDHRNYITLPLPEGVTYHDTAGKEQKGGSIQ IYGGTTFYFTAEKTVHGTWNSGDLGGQVGAQWKTLVVSTGSGNQDVGYGDFYEEPSAKVSF SIQWMDISWIEVIKEDAKSSVKLAGAVFGIYRDPACTDLILEMPPTDEKGATKAELTKTQDTIY IKEITAPKGYKLNTTAYNVNLEVAETQTVTVKNEEQKGKIVVHKQGEKLTGVSGEEGNLQFL YTNTAFAGAKYKIYAAEDIYSQDKQTKIYQAGDLAAELETKEDGSCSSDMLYLGTYKVVEQ **OAPDSLTIGKTEEERTHMVTLSYAGOTVEVVEEETOYENARPKVSVEVLKOSSNDDAALKGA** IFGLYANEDITGADGSVLVTKGTLIQKAESGGNGKALFTADIPIGFHYAVKEIQAPSLYFKGND SYEFFYEYKNDTTYTYTFTHTFQNKEVRGEVHIKKIDKDTQDSVSQGDGDLNGAVYGLYAAE DIQHPNGKTGLLYKKDQLVVQGTIEKGVLNFEDLYLGKYYVQEISPPPSNAYLLDQTKYPVEL AYEGQDVEIVQKNVTVVETIKKQAFQLIKISDDGSQTETELLEGAGFKVYLIRELSKVKDGSL KPSNGTEYTPQDFIGYDFSKEKTASYYENGEKIQTEEMFTDKKGYLCSPELPYGKYVCIESTIP ENVEGIQPFLVTIDEDSREPQVWRVFNDRPMQFYFKIIKKDAQTELPILKNSAHYKIYDVEKKK **YVKMKVRYPKPETIDVFETNEEGYLLTPEPLKMGTYRIEEVKSPENFVQTGFEQALKNGEEFL** PLNEVTAEGTYEKAPRESITIKVDSNTAHEMEEETGKYIVVVEVKNDEAVGSLTIQKTGEMLV GAEKITDQILTKLKNGLAKAVNQVSTLFTGEEVMETEKGYAFSYEEQGLAGAEFSIYARETIY SPDGQMDSEGNRIIRFEKDALVGKIVTDEKGKGTLNNLPIGKFYIKETKTGTSFVLDPKEQDFE ITYOGOEVAVDYVTKEIKNOROKVEIEVLKKSEATKEPLEGVSFGLYAGEDIVNAAGNVVVK KDELVAVEKTDKEGKLKYSDTIPHGKYYLRELEGLPGYLPYEEKIEIDASYTDPKLEVISIQKE VENQPTKVEITKTDITGEKEIEGAKLQILDAEGNVVEEWTSAKESHLIYALKPGKYILHEEQAPI ENGYVKAEDVEFTVEETGEIQKVSMKDDHTKVEITKTDITGEQEIEGAKLQVLDEEGNIIEEW TSTKEPYRIEYLOPGKTYVLHEEAAPEGFLIAEDVEFTVEETGEIOKVSMKDEVPMGOLVIKKT DAEDQTPLANVEFELKNKETEEVVGKLTTDKDGVATSELLPIATYKDGKPVAPITYVLSETKP LDGYEKSTETYEVTFSYVDAKTKVIEMVKEIQNKKLPQTPEKTEEVKTGDQTMLLLPIGIAVV AILGISIVLWRIRRTKR

Figure 8 : Séquence peptidique de RadA

L'analyse bioinformatique suggère très fortement que *radA* coderait pour une protéine d'adhésion de la famille des MSCRAMM_S, qui pourrait jouer un rôle important dans la capacité de *R. gnavus* E1 à coloniser l'écosystème digestif. La masse moléculaire de la protéine RadA mature putative est de 198,9 KDa, son pHi est évalué à 4,7.

Détermination des conditions d'expression du gène *radA*

La RT a été réalisée avec des Random Primer (Invitrogen), suivie d'une PCR avec quatre couple d'amorces spécifiques de *radA*. Un fragment de 800pb a été observé après amplification avec C1L-C1R, et un fragment de 1Kb pour chaque couple d'amorce : (C3L-C3R (C5L-C5R) (C7L-C7R) 'figure 9' Les résultats montrent que le gène *radA* est exprimé quand la bactérie se développe dans des conditions *in vivo*, en revanche il ne semble pas être exprimé in vitro sur milieu BHY-YH lorsque E1 est en phase exponentielle

Figure 9 : Profil éléctrophorétique des produits RT-PCR. T+ : PCR sur l'ADN génomique de R. gnavus E1 ; 1(C1L-C1R), 2 (C3L-C3R), 3(C5L-C5R), 4(C7L-C7R).M : marqueur de taille moléculaire

Conclusion

L'ensemble des résultats démontrent que le gène *radA* existe et qu'il est exprimé dans des conditions spécifiques du tube digestif (*in vivo*). La protéine RadA pourrait donc avoir un rôle très important dans l'intestin. Le fait que le gène *radA* se trouve à proximité des groupes de gènes impliqués dans la production de substances antimicrobienne (cluster *rumA*, *rumC*) qui ont un rôle dans la colonisation peut faire penser à une organisation en groupe de gènes impliquées dans une fonction spécifique. Ce genre de regroupement de gènes intervenant dans la virulence a été mis en évidence chez les bactéries pathogènes et appelé "îlots de pathogénécité". Le cluster *rum* associé à *radA* pourrait donc faire partie d'un "îlot de colonisation". La fonction des gènes environnants reste encore à étudier. Par analogie avec les adhésine de la famille des MSCRAMM_S exprimée par des bactéries pathogènes à Gram positif, on peut penser que RadA serait une nouvelle protéine d'adhésion exprimée par une bactérie commensale et qui serait impliquée dans le pouvoir colonisateur de *R. gnavus E1*.

References:

Bentley, L. Mattew., Gaweska, Helena., M. Kielec, Joseph., McCafferty. G Dewey. Engineering the Substrat Specificity of *Staphylococcus aureus* Sortase A. J. Biol. Chem. 282, 6581-6571, 2007.

Berry, A.M., Lock, R.A., Thomas, S.M., Rajan, D.P., Hansman, D and Paton, J.C. Cloning and nucleotide sequence of the *Streptococcus pneumoniae*

hyaluronidase gene and purification of the enzyme from recombinant *Escherichia coli*, Infect. Immun. 62, 1101–1108, 1994.

Charachon, S. Relation hôte-bactéries. MB7: Bactériologie, 2007.

Crost, E. RumC peptides with antimicrobial activity, 2008.

Dabard, J., Bridonneau, C., Philip., Anglade, P., Molle, D., Nadir, M., Ladire, M., Girardin, H., Marcille, F., Gomez, A. Ruminococcin A, a new lantibiotic produced by *Ruminococcus gnavus* strain isolated from human feces. Appl Environ Microbiol. 67, 4111-8, 2001.

Dev, I.K., Ray, P.H., Novak, P. Minimum substrate sequence for signal peptidase I of *Escherichia coli*. J. Biol. Chem. 265, 20069-72, 1990.

Fons, M., Gomez, A., and Karjalainen, T. Mechanisms of colonization and colonization resistance of the digestive tract. Microb. Ecol. Health Dis.12, 240–246, 2000.

Gunnar, V.H. How signal sequences maintain cleavage specificity. J. Mol. Biol. 25, 173-243, 1984.

Jett, BD, Gilmore, MS. Internalization of *Staphylococcus aureus* by human corneal epithelial cells: role of bacterial fibronectin-binding protein and host cell factors. Infect Immun. 70, 4697-700, 2002.

Lannergård, J., Frykberg, L., and Guss, B. CNE, a collagen-binding protein of *Streptococcus equi*. FEMS Microbiol. Lett. 222, 69-74, 2003.

Nallapareddy Sreedhar, R., Weinstock George, M., and Murray Barbara, E.Clinical isolates of *Enterococcus faecium* exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family. Mol. Microbiol. 47,1733-1747, 2003.

Ramer, F., Nicoli, J., Dabard, J., Corrig, T., Laddire, M., Gueugneau, A.M. and Raibaud, P. Trypsin-dependent production of an antibacterial substance by a human *Peptostreptococcus* strain in gnobiotic rat *in vitro*. Appl. Environ. Microbiol. 59, 2876-83, 1993.

Rigden, J. Daniel ., Littlejohn, E. James ., Joshi, V. Harshad ., Groot, L. Bert and Jedrzejas. J. Mark J. Alternate Structural Conformations of *Streptococcus pneumoniae* Hyaluronan Lyase: Insights into Enzyme Flexibility and Underlying Molecular Mechanism of Action. JBM. 358, 1165-1178, 2006.

Sillanpää, J., Nallapareddy, S.R., Prakash, V.P., Qin, X., Höök, M., Weinstock, G.M., Murray, B.E. Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in *Enterococcus faecium*. Microbiol.154, 3199-211, 2008.

Talay, S. R. Gram-positive Adhesins. Contrib. Microbiol. 12, 90-113, 2005. Ton-That, H., Mazmanian, S.K., Faull K.F. and Schneewind, O. Anchoring of surface proteins to the cell wall of *Staphylococcus aureus*. Sortase catalyzed *in vitro* transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates.J. Biol. Chem. 275, 9876–9881, 2000.

Zong, Y., Xu, Y., Liang X., Keene, D. R., Hook, A., Gurusiddappa, S., Hook, M., and Narayana Sthanam, V.L. A 'Collagen Hug' Model for *Staphylococcus aureus* CNA binding to collagen. EMBO J. 24, 4224–4236, 2005.

Xu, Y., Liang, X., Chen, Y., Koehler, T.M., Hook, M. (2004). Identification and Biochemical Characterization of Two Novel collagen Binding MSCRAMMS of Bacillus anthracis. J. Biol. Chem. 279, 51760-51768.