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Abstract 
 In this work, we use the Nonlinear-Open-Plus-Closed-Loop (NOPCL) method to 
control a nonlinear model: the Hindmarsh-Rose model in which we can exhibit regular and 
chaotic dynamics. The aim of the NOPCL method is to entrain complex dynamics to arbitrary 
given goal dynamics, by adding a suitable control term to the system. We use this method to 
suppress chaos, by entraining chaotic dynamics to a periodic one for the Hindmarsh-Rose 
model. 
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Introduction: 
 There have been a great number of studies related to the control of nonlinear 
dynamical systems (For review see Refs.(1,2,3,4,5,6). These methods have been applied in a 
wide number of domains including physical and biological systems, robotics, avionics and 
many other.   
 Particularly there was a great deal of research to modeling and control mechanism of 
excitable biological media such as activity of neurons which exhibit chaotic behavior (e.g. 
Refs.(7,8,9).  
 The Hindmarsh-Rose model (HRM), which models a neuronal electrical activity, is a 
three-dimensional model capable of complex dynamics such as bursting oscillations and 
chaos. Neurons react on injection of a current by a quick, short depolarization of their 
membrane potential, which is negative in rest.  
 The activity of neurons consists of series of pulses, alternated by long periods of low 
activity around rest potential. This is known as an action potential, or spike. 
 Bursting oscillation is a time evolution consisting of bursts of rapid spikes, alternated 
by phases of relative quiescence. These series of pulses are considered to carry the 
information transmitted by neurons. 
 We use the NOPCL method to show how the Hindmarsh-Rose model can be 
controlled by driving its output to the desired pattern. The aim of this method is to add a 
control term, a driving term, to the initial system in order to drive its dynamics from one 
trajectory into another one. In particular, this method is able to switch chaotic dynamics into a 
periodic one and vice versa. 
 
Entrainment Control 
 Let us recall the Entrainment Control as explained in Refs.2. 
 We denote by u  the additive control term, the controlled dynamical system is then 
given by: 

                                                   )(),( tutxF
dt
dx

+=                                                         (1) 
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 The control problem is to find a control function ∈u nR , such that the system state x  
is entrained to arbitrary given goal dynamics g for which the error between x  and g  satisfies: 

                                                0)(lim)()(lim ==−
∞→∞→

tetgtx
tt

                                           (2) 

The basin of entrainment associated with an appropriate time st  and g  is defined by: 
                                               { }0)(lim/)(),( ==

∞→
tetxtgBE

tss                                          (3) 

     The goal is to show that the basin of entrainment is not an empty set, that is the error 0=e  
is asymptotically stable for the error equation, and is independent on the goal dynamics g . 
 
Open-Plus-Closed-Loop control (OPCL) 
 An (OPCL) strategy was first be proposed by Hubler and Luscher Refs.3 and extended 
by Jackson and Grosu Refs.2 to control the system (1). The proposed control term u  is of the 
following form:  
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dt
dgtStu ,                                         (4) 

where the first term of u  is called the Huble's open-loop interaction and )(tS  is a suitable 
scalar switching function on time st  satisfying: 
                                    0)( =tS  for  stt < ;         1)(0 ≤< tS   for   stt ≥ .                              (5) 
 The linear closed-loop interaction ),( tgC  is given by: 

                                     A
dg

tgdFtgC −=
),(),( ,                                                                        (6) 

where A  is an arbitrary matrix whose eigenvalues all have negative real parts. 
 Jackson and Grosu Refs.2 proved that if the function F  is everywhere Lipschitz, with 
respect of x , then for an arbitrary smooth goal function  g , the control u  is such that none of 
basins of entrainment associated to g  are empty sets.  
 Indeed, substituting equation (4) into the control system (1) and letting 1)( =tS  yields 
to the given equation: 
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Expanding ),( tgeF +  for small e , in the first order, yields the linear approximation 
equation: 

                                                                   Ae
dt
de

= .                                                               (8) 

 Since all eigenvalues of the matrix A  have negative real parts, the asymptotic stability 
of equation (8) is established.  
 However, it was shown by Y. Tian et al. Refs.4,  that for a certain class of systems the 
basin of entrainment is rather complicated; it is dependent on the goal dynamics  g . 
 
Nonlinear Open-Plus-Closed-Loop control (NOPCL) 
 The NOPCL control is based on the OPCL control. The control term u  is reconsidered 
as follows: 
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where C   is as defined in (6) and A  defined as previously. The nonlinear term ∈N  nR   is 
the closed-loop control action whose ith element ),,( txgNi  , is given  for sufficiently smooth 
F , by: 
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where m  is the order of derivative of F  called the order of parameter of the function N . 
 In this case, expanding  ),( tgeF + , for small e , one obtain: 
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                                                    ni ,...,2,1=  
 It is easily proven Refs.2 that the basins of entrainment are the whole phase space for 
systems for which the function F  is polynomial of degree  m , 2≥m . This is due to the fact 
that in this case, (11) will be reduced to (8), and e  solved from this last equation approaches 
zero for all initial condition   )( ste . 
 
Control of Hindmarsh-Rose Model 
 The Hindmarsh-Rose Model was developed by Hindmarsh and Rose (1984) to 
describe an isolated triggered burst of action potentials observed in a brain cell of a pond 
snail.  The equations are given by: 

zxxy
dt
dx

−+−= 23 3  

                                                         yx
dt
dy

−−= 251  

            )4( zKx
dt
dz

−+= ε                                                         (12) 

where x  is the membrane potential, y  and z  represent empirical variables describing the 
activation and inactivation of the ionics conductance. They describe respectively some fast 
and slow gating variables for ionics. Slow activation of z  is due to the small parameter 

10 ≤< ε  . 
 These equations model the electrical activity of the membrane potential of a single 
neuron. The external current K  is viewed as a control parameter delaying and advancing the 
activation of the slow current in the model. 
 Notice that the system is autonome. 
 
Simulation results 
 In order to illustrate the effect of the driving term, we fix the parameter ε  of the HRM 
to 006.0=ε .  
 For this system all the fourth order partial derivatives are equal to zero since the 
function F  of HRM is a polynomial of degree 3 . Notice that it is easy to see that the function 
F  is everywhere Lipschitz. 
 The control parameter m  is thus taken to be 3  in the NOPCL control.  
 It follows that the closed-loop control action ),,( txgN  is given by: 
                                   ( )[ ]0,5),()(3)(3),,( 2

1
3
1

2
11 etetetgtxgN −−+−=                                    (13) 

 For convenience, the matrix A  is taken diagonal and the linear closed loop interaction 
is given by: 
                                   ( ) )()()()(6)(3)( 3211
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                                   )()1()()(10)( 222112 teatetggC ++−= ,                                               (15) 
                                   )()1()(4()( 33313 teategC +−= ε .                                                        (16) 
 In our case, the purpose of the control action is to steer the Hindmarsh-Rose model 
from one    of its trajectory to another one. Hence )(tg  is such that  

                                    tgF
dt

tdg
∀=− ,0)()(  .                                                                  (17) 

 The control term u  is then the sum of )(gC  and ),,( txgN . 
 The error equation is the same as in (8). Hence, for the Hindmarsh-Rose Model, the 
basin of entrainment )(gBE  is global for all values of g and  
                                        )exp()( iii ate =      for 3,2,1=i                                                        (18) 
 For numerical analysis, we choose the matrix A  as follows: 
                                            ( )01.0,1,1 −−−= diagA                                                                (19) 
 The goal trajectory )(tg  is a bursting periodic motion. Our aim is to steer the HRM 
from chaotic trajectory to bursting oscillating trajectory.  
 Numerical simulations shows that the solution turns out to be chaotic for the current 

3.15867947=K and   periodic for 1.5=K .  
 We depict, in respectively Figure1 and Figure2, the periodic bursting trajectory for 

1.5=K  and the chaotic trajectory for 3.15867947=K  and   initial conditions: 
( ) .02212644)5.809943,0(-1.1804,-)(),(),( 000 =tztytx . 

 
Figure1. Bursting oscillations of the membrane potential )(tx  for 1.5=K  and initial condition 

.02212644)5.809943,0(-1.1804,- . 
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Figure2.  Chaotic solution of the membrane potential )(tx  for 3.15867947=K  and initial condition 

.02212644)5.809943,0(-1.1804,- . 
 Lyapunov exponents are used to describe the periodic and chaotic dynamics of 
nonlinear dynamical system.  
 The time varying largest Liapunov exponent, showing, for 3.15867947=K the 
chaotic motion, is represented in Figure3. 

 
Figure3. The largest Lyapunov exponent for chaotic solution of HRM. 

 
In order to avoid the transition phase of the trajectory, we start control of the chaotic motion 
at sts 1300=  for the same initial condition as above. 
We observe in Figure4 that at this time st , the trajectory is driven to the bursting trajectory, 
thus removing chaos. 
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Figure4. The HRM driven from chaotic solution to bursting solution by adding the control term u . 

 
Conclusion: 

 We considered the Hindmarsh-Rose model. We have shown by using the NOPCL 
method that it is possible to switch from one trajectory of the system into another one and 
therefore changing the dynamics of the potential action.  
 The aim of this method is to add a suitable driving term to the HRM, which forces the 
controlled system to perform a motion which coincides with a target trajectory of the model.  
We showed that we can suppress the chaotic dynamics of the HRM. 
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