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Abstract  
The Lagrangian with linear acceleration can be considered as a model 

of singular system. The constrained Hamiltonian systems with linear 
acceleration are investigated by using the Hamilton-Jacobi method. The 
Hamilton-Jacobi function is constructed by applying the integrability 
condition on this function to obtain the path integral quantization. It is shown 
that the equations of motion can be obtained from the action integral.  
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1. Introduction 

The efforts to quantize systems with constraints started with the work 
of Dirac (Dirac, 1950, 1964) who first set up a formalism for treating 
singular systems. In Dirac’s canonical quantization method, the Poisson 
brackets of classical mechanics are replaced with quantum commutators. 

The path integral quantization of constrained systems has been 
investigated using the canonical method (Rabei, 2000; Muslih, 2001, 2002). 
In this method the equation of motion are obtained as total differential 
equations and the set of Hamilton-Jacobi partial differential equations is 
determined. 

Recently, the quantization of constrained systems has been studied 
using the WKB approximation (Rabei et al., 2002; Rabei et al., 2005; Hasan 
et al.,  2004). The set of Hamilton-Jacobi partial differential equations for 
these systems has been determined using the canonical method. The 
Hamilton-Jacobi function has been obtained by solving these equations. By 
calculating the Hamilton-Jacobi function and constructing the wave function, 
the quantization has been carried out using this approximation.    

Some authors (Rabei et al., 2003) have investigated singular 
Lagrangians with linear velocities by using the Hamilton-Jacobi method and 
obtained the integrable action directly without considering the total variation 
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of constraints. We wish to extend the model for second-order linear 
Lagrangian.   

This paper is organized as follow. In Sec. 2, the canonical path 
integral formalism for second-order  Lagrangians is reviewed briefly. In Sec. 
3, a new model of singular Lagrangian with linear acceleration is proposed. 
In Sec. 4, several illustrative examples are examined. The work closes with 
some concluding remarks in Sec. 5. 
 
2. The canonical path integral formalism for second-order  Lagrangians 

The Lagrangian formulation of second-order theories requires the 
configuration space formed by N generalized coordinates iq , N generalized 

velocities iq , and N generalized accelerations iq : 
( )iii qqqLL  ,,≡ ,         Ni ,...,1= .     (2.1)        

The corresponding Euler-Lagrangian equations of motion are 
obtained from  
                      dtqqqLS iii ),,( ∫=                                               
using the Hamilton principle:   

02

2

=







∂
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−
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iii q
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dt
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q
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dt
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q
L


.     (2.2) 

This is a system of  N differential equations of fourth order; so we 
need 4N initial conditions to solve it. 

The Hamiltonian formulation for second-order derivatives, first 
developed by (Ostrogradski, 1850), treats iq  and iq  as coordinates. The 
transformation from the Lagrangian to the Hamiltonian approach is achieved 
by introducing the generalized momenta ip , iπ  conjugate to the generalized 

coordinates iq , iq , respectively: 
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;       (2.3)                              

i
i q

L
∂

∂
=π ,        (2.4) 

then writing the accelerations iq  as functions of the coordinates iq  and 

velocities iq  as well as of the momenta ip  and iπ  ( )[ ]iiiii pqqfq π,,,  = . The 

phase space will then be spanned by the canonical variables ( )ii pq ,  and 
( )iiq π, . 
I ntroducing the canonical Hamiltonian   
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iiii fqfqiiii LqqpH
==

−+≡


 π0 ,                   (2.5) 

one can write the equations of motion of any function g  of the canonical 
variables as 

{ }0, Hgg = .       (2.6) 
where { }, is the Poisson bracket defined as 

                     { }, .
i i i i i i i i

A B A B A B A BA B
q p p q q qπ π
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

Here A and B are functions in the phase space described in terms of 
the canonical variables , , ,i i i iq q p π  , which obey 4N first-order differential 
equations of motion. 

However, this procedure is admissible only if the determinant of the 
Hessian matrix, 

         










∂∂
∂

≡
ji

ij qq
LH


2

 ,                             Nji ,...,1, =                                 

does not vanish; otherwise it will not be possible to express all the 
accelerations iq  as functions of the canonical variables, and there will be 
relations such as  

         ( ) 0,;, =Φ iiii qpq πα  ,             ( )12,...,1 −<= Nmα ,                      
connecting the momenta variables. As a consequence, we will not be able to 
treat the canonical variables as an independent set; instead, we will have to 
use a formalism specially developed to deal with the interdependent 
canonical variables, i.e., a formalism for constrained systems (Dirac, 1950, 
1964). 
     Let us consider a Lagrangian ( )tqqqL iii ,,,  . One can obtain a completely 
equivalent Lagrangian by introducing 

( )
dt

tqqdS
tqqqLL ii

iii
),,(

,,,


 −=′  ,     (2.7)                                                         

such that the auxiliary function ( )tqqS ii ,,   must satisfy  

0H
t
S

−=
∂
∂  ,        (2.8) 

where 0H  is defined as the usual Hamiltonian: 
LqqpH iiii −+=  π0 ;      (2.9)     

i
i q

Sp
∂
∂

= ;        (2.10) 



European Scientific Journal   January 2014  edition vol.10, No.3  ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

334 

i
i q

S
∂
∂

=π .       (2.11) 

These are the fundamental equations of the equivalent Lagrangian 
method; Eq. (2.8) is the relevant Hamilton-Jacobi partial differential 
equation. 

If the rank of the Hessian matrix 

ji qq
L
 ∂∂

∂ 2

       (2.12)                                                  

is N-R, R<N, then the generalized momenta conjugate to the generalized 
coordinates iq  are defined as  

a
a q

L
∂
∂

=π ,                 NRa ,...,1+= ;    (2.13) 

α
απ q

L
∂
∂

= ,                 R,...,1=α .    (2.14) 

Since the rank of the Hessian matrix is N-R, one can solve Eq. (2.13) 
to obtain N-R accelerations aq  in terms of iq , iq , aπ  and αq as follows: 

( )απ qqqwq aiiaa  ,,,= .     
 (2.15) 

 Substituting Eq. (2.15) into (2.14), one gets  

( ) ( )aaiiqqqwq
pqqH

q
L

aiiaa
ππ π

απ
α

α
α

,,,
,, ,


 

−=
∂
∂

=
= .  (2.16) 

 We can obtain a similar expression for the momenta αp : 

( )aaii
p pqqHp παα ,,, −= ,     (2.17) 

where  
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;     (2.18a) 
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=
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α q
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dt
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q
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.     (2.18b) 

 Equations (2.16) and (2.17) become 
( ) 0,,, =+=′ π

αα
π

α ππ HpqqH iiii  ;    (2.19a) 

( ) 0,,, =+=′ p
iiii

p HppqqH ααα π ,    (2.19b) 
which are called primary constraints ( Dirac, 1950, 1964). These relations 
indicate that the generalized momenta αp  and απ  are not independent of ap  
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and aπ , which is a natural result of the singular nature of the Lagrangian. 

The Hamiltonian 0H  is then defined as  

( )aaiiHaaHpaa wqqqqLqqpqqpH p =−+++=
−=−=

 ,,,0 απαααα π
ββββ

ππ ;                          

                             R,...,1=β ;            NRa ,...,1+= .  (2.20) 
 Defining the momentum 0p   as  

t
Sp
∂
∂

=0 ,       (2.21) 

one can write the corresponding set of  HJPDEs  as (Pimentel and Teixeira, 
1996)  

0;;,,,,00000 =
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 παα ;  (2.22a) 
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 πααααααα ;  (2.22b)                                       
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π
α .    (2.22c)    

The equations of motion are written as total differential equations in 
many variables as follows (Pimentel and Teixeira, 1996): 
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dq
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∂
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∂ ∂

 .                                                  (2.23e) 

where  ( , , , )a aZ S q q q qα α=   . We note that the existence of  constraints  
reduces  the number of the equations of motion. 
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Here tq =0 . The set of Eqs. (2.23) is integrable ( Muslih  and Guler, 
1998) if and only if 

00 ≡′Hd ;                 (2.24a)                                                                   

0≡′ pHd α ;                 (2.24b) 

0≡′παHd .                 (2.24c)  
These conditions are identically satisfied or they lead to new 

constraints.  
Besides the canonical action integral is obtained in terms of the 

canonical coordinates. 0H ′ , pHα′  and H π
α′  can be interpreted as the 

infinitesimal generators of canonical transformations given by parameters ,t
qα  and qα  respectively. In this case, the path integral representation may be 
written as (Guler, Y.  1992; Muslih  and Guler, 1998; Rabei, 2000; Muslih, 
2001, 2002)  

, , ,a aq q q qα α  , , ,a aq q q qα α′ ′ ′ ′  =
,

1 1 ,

exp { ( )
q qR R

a a a a a a
a a a aq q

H Hdq dp dq d i H p dt
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α α

α α

π π
π

′ ′

= =

′ ′∂ ∂
× − + +

∂ ∂Π Π∫ ∫
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H HH p dq
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α απ
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+ − + +

∂ ∂
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H HH p dq
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π π
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+ − + +
∂ ∂

 }               (2.25) 

  
3. The Model 
              The general form of a second-order linear Lagrangian  is 

( , , ) ( , ) ( , )i i i i j j i j jL q q q a q q q V q q= −                                                         (3.1) 
The associated Euler-Lagrange equations 
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=
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∂
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∂
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iii q
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dt
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q
L

dt
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                                                           (3.2) 

have at most order three. If )(),( qaqqa ii = ,then the associated Euler-
Lagrange equations have at most order two. Let )(),( qVqqV = , in this case 
the general form of a second-order linear Lagrangian becomes 

( , , ) ( ) ( )i i i i j i jL q q q a q q V q= −                                                                 (3.3) 
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The transformation from the Lagrangian to the Hamiltonian approach 
is achieved by introducing the generalized momenta ip , iπ  conjugate to the 

generalized coordinates iq , iq , respectively: 









∂
∂

−
∂
∂

=
ii

i q
L

dt
d

q
Lp


;  

( ) pi
i i j i

dap b q H
dt

= − = = − ;                                                 (3.4)  

( )i i j i
i

L a q H
q

ππ ∂
= = = −
∂

.                                                     (3.5) 

 Equations (4) and (5) become 
( ), , , 0i i i i i i iH q q p Hπ ππ π′ = + = ;                 

( ), , , 0i i i i i i iH q q p aπ π π′ = − = ;                                                        (3.6) 

( ), , , 0p p
i i i i i i iH q q p p Hπ′ = + = ;                 

( ), , , 0p
i i i i i i iH q q p p bπ′ = − = .                                                        (3.7) 

which are called primary constraints. 
 The canonical Hamiltonian 0H  is given by: 

LqqpH iiii −+=  π0 = ( ) ( )i j i jb q q V q+                                           (3.8) 
 The corresponding HJPDEs 

0)( =++
∂
∂

=′ jii qVqb
t
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0=−
∂
∂
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q
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π
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SH b
q
∂′ = − =
∂
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The equations of motion are obtained as total differential equations follows: 

0
p
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H HHdq dt dq dq dq
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∂ ∂ ∂
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0
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∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂
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π
α α
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.   (3.12)      



European Scientific Journal   January 2014  edition vol.10, No.3  ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

338 

To check whether the set of equations (9-12) are integrable or not , let 
us consider the total variation of (6) and (7). In fact  

0i i idH d daπ π′ = − =  
( ) ( )i j i jb q dt da q= − − ;        (3.13) 

0p
i i idH dp db′ = − =  

 
( )j

j i j
i i

aV dt dq db q
q q

∂∂
= − + −

∂ ∂
  ;      (3.14) 

 So, we have 
( )( ) ji

j j
j i i

a qb q Vdq dq dt
q q q

∂∂ ∂
− = −

∂ ∂ ∂


 


 ;                               (3.15) 

which is equivalent to 
( )( ) ji

j j
j i i

a qa q Vdq dq dt
q q q

∂∂ ∂
+ =

∂ ∂ ∂
   ;                                  (3.16) 

or                                         1 ( )
j ij

i

V qq f
q

− ∂
=

∂
 ; 

where the symmetric matrix ijf is given by  

 ijf =
( )( ) ji

j i

a qa q
q q

∂∂
+

∂ ∂
.                                                    (3.17) 

 The total derivative of the Hamilton-Jacobi function can be 
obtained as: 

 
i i

i i

S S SdS dq dq dt
q q t
∂ ∂ ∂

= + +
∂ ∂ ∂




.                                              (3.18) 

 Using the above HJPDEs, we get 

i idS a dq Vdt= − , 
 Which can integrated to give     

 

ii
S a dq Vdt= −∫ ∫ ,                                           (3.19) 

 Now, using the fact that 
( )i i i i i i ii

d a q a q a dq q da= = +∫ ∫ ∫    , 
 The above Hamilton-Jacobi function Eq. ( 3.16) reduces to 

 
1 [ ]
2 i i i ji j

S a q a dq q da Vdt= + − −∫ ∫ ∫    ,                       (3.20) 

 By some rearragment, Eq. 3.17 becomes  
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]2[
2
1

2
1 VdtqdadaqqaS iijjii +−−= ∫  ,                             (3.21) 

 And using the fact that 

jjjjjj daqdbqdaq
dt
d

+−=)( , 

]2[
2
1)(

2
1

2
1 Vdtqdadbqdaq

dt
dqaS iijjjjii +−−−= ∫∫   

]2[
2
1

2
1

2
1 Vdtqdadbqdaq

dt
dqaS iijjjjii +−−−= ∫∫  ,            (3.22) 

 Assuming that the function ( )ia q and ( )V q  satisfy the following 
conditions 

i
j i

j

aq a
q
∂

=
∂

,      2j
j

V q V
q
∂

=
∂

 

Eq. (3.22) becomes 

][
2
1

2
1

2
1 dt

q
Vqd

q
a

dbqdaq
dt
dqaS

j
i

j

i
jjjjii ∂

∂
+

∂
∂

−−−= ∫∫  .        (3.23)                             

 However, in order for S to be an integrable function, the terms in the 
brackets must be zero, i.e. 

0=
∂
∂

+
∂
∂

− dt
q
Vqd

q
a

db
j

i
j

i
j  .                                                  (3.24) 

 In fact, this equation represents the equation of motion for the 
coordinates jq . 

To obtain the path integral quantization for the singular Lagrangian 
(3.3), we have two different cases, 

Case1: If the inverse of the matrix ijf exist, then we can solve all the 

dynamics iq . In this case the path integral Ψ is given by 

1

1 1exp { }
2 2

n

i i i i i i
i

ddq dq i a q q da c
dt=

Ψ = − +Π∫ ∫  .                              (3.25) 

Case2: If the rank of the matrix ijf is n-R, then we can solve the 

dynamics aq  in terms of independent parameters ( , ,t q qα α ), 1, 2,..., Rα = . In 
this case the path integral Ψ is given by 

1

1 1exp { }
2 2

n R

a a i i i i
a

ddq dq i a q q da c
dt

−

=

Ψ = − +Π∫ ∫  ,   1, 2,...,i n=        (3.26) 
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4. Examples 
4.1 As a first example, we consider the following linear (singular) 
Lagrangian (Goldstein, 1980) . 

 
2

2
1

2
1 kqqmqL −−=                                       (4.1) 

where the potential V is given by 

 
21

2
V kq=  

 Here the function a is  
1
2

a mq= −  

 Using  (3.4) and (3.5), the generalized momenta corresponding to this 
Lagrangian are: 

L d Lp
q dt q

 ∂ ∂
= −  ∂ ∂  

pHqm −== 
2
1 ;                     (4.2a) 

1
2

L mq H
q

ππ ∂
= = − = −
∂

 .                                  (4.2b) 

 By (3.6) and (3.7) the primary constraints are given as  
1
2

H mqπ π′ = + ;                                                   (4.3a) 

qmpH p 
2
1

−=′ .                                                  (4.3b) 

 Equation (3.8) gives the canonical Hamiltonian 0H  as 
22

2
1

2
1 kqqmH += 

                                                   (4.4) 

 Now using (3.11) and (3.12), the equations of motion read as 

qmdkqdtdp 
2
1

−−= ;                                            (4.5a) 

dtqmd 
2
1

=π .                                                    (4.5b) 

 Making use of (3.24), we can obtain the equation of motion for q  

0
2
1

2
1

=++ kqdtqmdqmd  ,                                     (4.6) 

 This equation can be written as 

0=+ q
m
kq .                                                          (4.7) 
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This is interesting because this equation of motion is just Hook’s law. 
It’s interesting to notice that this equation is familiar for a simple harmonic 
oscillator,  which has the following solution 

cos sinq A t B tω ω= + , where 
k
m

ω = . 

 Using Eq. (3.23), we find the integrable action function as 
S c=                                                                  (4.8) 
Making use of equation ( 3.25) and (4.8), the path integral is given by 

expdqdq icΨ = ∫  .                                                  (4.9) 
 
4.2. As a second example consider the following singular Lagrangian: 

)(
2
1 2

2
2
22211 qqqqqqL +−+=  ,                                                  (4.10)  

where the potential V is given by 
2 2
1 2

1 ( )
2

V q q= +  

 Here the functions 1a and 2a  are 

1 1a q= ,          2 2a q=  
 Using  (3.4) and (3.5), the generalized momenta corresponding to this 
Lagrangian are: 

1
1 1

L d Lp
q dt q

 ∂ ∂
= −  ∂ ∂  

pHq 11 −=−=  ;                                         (4.11a) 

2
2 2

L d Lp
q dt q

 ∂ ∂
= −  ∂ ∂  

pHq 22 −=−=  ;                                      (4.11b) 

1 1 1
1

L q H
q

ππ ∂
= = = −
∂

;                                                           (4.11c) 

2 2 2
2

L q H
q

ππ ∂
= = = −
∂

.                                                           (4.11d)  

By (3.6) and (3.7) the primary constraints are given as  

1 1 1H qπ π′ = − ;                                                                      (4.12a)   

2 2 2H qπ π′ = − ;                                                                      (4.12b)    

111 qpH p +=′ ;                                                                        (4.12c)    

222 qpH p +=′ .                                                                        (4.12d)    
 

Equation (3.8) gives the canonical Hamiltonian 0H  as 
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)(
2
1 2

2
2
1

2
2

2
1 qqqqH ++−−= 

 .                                      (4.13)    

Now using (3.11) and (3.12), the equations of motion read as 
111 qddtqdp +−= ;                                                                               (4.14a)
222 qddtqdp +−= ;                                                                             (4.14b)  

dtqd 11 =π ;                                                                                        (4.14c)
dtqd 22 =π .                                                                                       (4.14d)    

 The matrix ijf defined in (3.17) is given by 
20
0 2ijf  

=  
 

                                               (4.15) 

 Making use of (3.24), we can obtain the equation of motion for 1q and 

2q  
0111 =−+− qddtqqd  ,                                                        (4.16a)  
0222 =−+− qddtqqd  .                                                      (4.16b)    

 These equations can be written as 
02 11 =− qq ;                                                                   (4.17a) 
02 22 =− qq .                                                                  (4.17b)  

 Which have the following solutions 
2 2

1
t tq Ae Be−= + ;                                                     (4.18a)            

2 2
2

t tq Ae Be−= + .                                                     (4.18b) 
 Using Eq. (3.23), we find the integrable action function as 
S c= .                                                                            (4.19) 
 Making use of equation ( 3.25) and (4.19), the path integral is given 
by 

1 2 1 2 expdq dq dq dq icΨ = ∫   .                                           (4.20) 
 
4.3. As a third example consider the following singular Lagrangian: 

2 2 2
2 1 1 2 3 3 2 2 3

1 ( )
2

L q q q q q q q q q= − + − + +   ,                       (4.21) 

where the potential V is given by 
2 2 3
1 2 3

1 ( )
2

V q q q= + +  

 Here the functions 1a , 2a  and 3a  are 

1 2a q= ,          2 1a q= − ,            3 3a q=  
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 Using (3.4) and (3.5), the generalized momenta corresponding to this 
Lagrangian are: 

1
1 1

L d Lp
q dt q

 ∂ ∂
= −  ∂ ∂  

= 2 1
pq H− = − ;                                     (4.22a) 

2
2 2

L d Lp
q dt q

 ∂ ∂
= −  ∂ ∂  

= 1 2
pq H= − ;                                      (4.22b) 

3
3 3

L d Lp
q dt q

 ∂ ∂
= −  ∂ ∂  

= 3 2
pq H− = − ;                                      (4.22c) 

1 2 1
1

L q H
q

ππ ∂
= = = −
∂

;                                                          (4.22d) 

2 1 2
2

L q H
q

ππ ∂
= = − = −
∂

;                                                            (4.22e) 

3 3 3
3

L q H
q

ππ ∂
= = = −
∂

.                                                            (4.22f) 

 By (3.6) and (3.7) the primary constraints are given as  

1 1 2H qπ π′ = − ;                                                                        (4.23a) 

2 2 1H qπ π′ = + ;                                                                       (4.23b) 

3 3 3H qπ π′ = − ;                                                                        (4.23c) 

1 1 2
pH p q′ = +



;                                                                       (4.23d) 

2 2 1
pH p q′ = −  ;                                                                        (4.23e) 

3 3 3
pH p q′ = +  .                                                                          (4.23f) 

 Equation (3.8) gives the canonical Hamiltonian 0H  as 
2 2 2 2

0 3 1 2 3
1 ( )
2

H q q q q= − + + + .                                                           (4.24) 

 Now using (3.11) and (3.12), the equations of motion read as 

1 1 2dp q dt dq= − −  ;                                                     (4.25a) 

2 2 1dp q dt dq= − +  ;                                                    (4.25b) 

3 3 3dp q dt dq= − +  ;                                                    (4.25c) 

1 2d q dtπ =  ;                                                               (4.25d) 

2 1d q dtπ = −  ;                                                            (4.25e) 

3 3d q dtπ =  .                                                               (4.25f) 
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 The matrix ijf defined in (3.17) is given by 
000
000
002

ijf
 
 =  
 
 

                                                 (4.26) 

 Making use of (3.24), we can obtain the equation of motion for 3q  
0333 =−+− qddtqqd    .                                       (4.27) 

 This equation can be written as 
02 33 =− qq ,                                                       (4.28) 

which have the following solution 
2 2

3
t tq Ae Be−= + .                                                     (4.29) 

 Using Eq. (3.23), we find the integrable action function as 

2 1 1 2
1 1
2 2

S q q q q c= − +  .                                                     (4.30) 

 Making use of equation ( 3.26) and (4.30), the path integral is given 
by 

3 3 2 1 1 2
1 1exp [ ]
2 2

dq dq i q q q q cΨ = − +∫    .                               (4.31) 

 
5. Conclusion 

In this work, we have investigated the singular Lagrangians with 
linear accelerations using the  Hamilton-Jacobi method and obtained the 
integrable action directly without considering the total variation of 
constrained. In other words, it has been shown that the total derivative of the 
Hamilton-Jacobi function is constructed using the HJPDEs. In order to show 
that this function is integrable, some conditions must be satisfied. It is shown 
that these conditions represent the equations of motion which are equivalent 
to both the consistency conditions of Dirac method and the canonical 
method. Also it is shown that by calculating the integrable action and 
constructing the wave function, the quantization has been carried out using 
the path integral. 
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