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Abstract

The Lagrangian with linear acceleration can be considered as a model
of singular system. The constrained Hamiltonian systems with linear
acceleration are investigated by using the Hamilton-Jacobi method. The
Hamilton-Jacobi function is constructed by applying the integrability
condition on this function to obtain the path integral quantization. It is shown
that the equations of motion can be obtained from the action integral.
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1. Introduction

The efforts to quantize systems with constraints started with the work
of Dirac (Dirac, 1950, 1964) who first set up a formalism for treating
singular systems. In Dirac’s canonical quantization method, the Poisson
brackets of classical mechanics are replaced with quantum commutators.

The path integral quantization of constrained systems has been
investigated using the canonical method (Rabei, 2000; Muslih, 2001, 2002).
In this method the equation of motion are obtained as total differential
equations and the set of Hamilton-Jacobi partial differential equations is
determined.

Recently, the quantization of constrained systems has been studied
using the WKB approximation (Rabei et al., 2002; Rabei et al., 2005; Hasan
et al., 2004). The set of Hamilton-Jacobi partial differential equations for
these systems has been determined using the canonical method. The
Hamilton-Jacobi function has been obtained by solving these equations. By
calculating the Hamilton-Jacobi function and constructing the wave function,
the quantization has been carried out using this approximation.

Some authors (Rabei et al., 2003) have investigated singular
Lagrangians with linear velocities by using the Hamilton-Jacobi method and
obtained the integrable action directly without considering the total variation
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of constraints. We wish to extend the model for second-order linear
Lagrangian.

This paper is organized as follow. In Sec. 2, the canonical path
integral formalism for second-order Lagrangians is reviewed briefly. In Sec.
3, a new model of singular Lagrangian with linear acceleration is proposed.
In Sec. 4, several illustrative examples are examined. The work closes with
some concluding remarks in Sec. 5.

2. The canonical path integral formalism for second-order Lagrangians
The Lagrangian formulation of second-order theories requires the

configuration space formed by N generalized coordinates 0;, N generalized

velocities (;, and N generalized accelerations (:

LE L(qiaqiaqi), | :1,...,N . (21)
The corresponding Euler-Lagrangian equations of motion are
obtained from

S = [L(a;. 4, ¢t
using the Hamilton principle:

2
o _dfa) d*fa) o @22)
oq; dt{og; ) dt*{og;

This is a system of N differential equations of fourth order; so we
need 4N initial conditions to solve it.
The Hamiltonian formulation for second-order derivatives, first

developed by (Ostrogradski, 1850), treats ¢, and ¢, as coordinates. The
transformation from the Lagrangian to the Hamiltonian approach is achieved
by introducing the generalized momenta P;, 7; conjugate to the generalized

coordinates @;, 0;, respectively:

oL d(aL
ook _dfat. 23
P aq, dt(aqa} 23)
oL
= 2.4
7T 26, (2.4)

then writing the accelerations (, as functions of the coordinates g, and
velocities (; as well as of the momenta p; and 7, [(']'i = f(qi,qi, pi,ﬂi) . The

phase space will then be spanned by the canonical variables (qi, pi) and

(qi'”i)-

I ntroducing the canonical Hamiltonian
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H, = piq; +7Z-iqi|q‘i:fi - L|qi:fi , (2.5)
one can write the equations of motion of any function g of the canonical
variables as

g=1{g,H,}. (26)
where {,} is the Poisson bracket defined as

(apj_CAB _OAGB OAB OA OB
0q; op;  dp; 0q;  0q; Ox; O O,

Here A and B are functions in the phase space described in terms of

the canonical variables @;,0;, p;, 77, , which obey 4N first-order differential

equations of motion.
However, this procedure is admissible only if the determinant of the
Hessian matrix,

2
H; = 8 L : i,j=1..,N
0G; 04

does not vanish; otherwise it will not be possible to express all the
accelerations @ as functions of the canonical variables, and there will be
relations such as

q)a(qi,pi;qi,ﬂi)zo, a=1,...,m<2(N —l),
connecting the momenta variables. As a consequence, we will not be able to
treat the canonical variables as an independent set; instead, we will have to
use a formalism specially developed to deal with the interdependent

canonical variables, i.e., a formalism for constrained systems (Dirac, 1950,
1964).

Let us consider a Lagrangian L(qi ,q;, 6, ,t). One can obtain a completely
equivalent Lagrangian by introducing

ds(q;,d;.t
L' = L(inQiaqi’t)_% 1 (2-7)
such that the auxiliary function S(qi,qi ,t) must satisfy
oS
E =-H,, (2.8)
where H, is defined as the usual Hamiltonian:
Ho =pidi + 76 —L; (2.9)
0S
P =, 2.10
p a0, (2.10)
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0S
==

aq;
These are the fundamental equations of the equivalent Lagrangian
method; Eq. (2.8) is the relevant Hamilton-Jacobi partial differential

equation.
If the rank of the Hessian matrix

oL
a0;0d;
is N-R, R<N, then the generalized momenta conjugate to the generalized
coordinates (; are defined as

(2.11)

(2.12)

oL

ﬂaza, a=R+1..,N; (2.13)
oL

T, Z@, a=1..,R. (2.14)

Since the rank of the Hessian matrix is N-R, one can solve Eq. (2.13)
to obtain N-R accelerations {j, in terms of ¢, §;, 7, and {, as follows:

qa :Wa(qi’qi’ﬂa’qa)'

(2.15)
Substituting Eqg. (2.15) into (2.14), one gets
oL ol
7o =50 o) = THI 0007, (2.16)
We can obtain a similar expression for the momenta p,,:
p, =-H} (@G P..7,), (2.17)
where
oL df{ oL
— _ = : 2.18a
P ", dt(ada] (2159
oL df oL
= = | . 2.18b
P "5, "t (ada] (2450
Equations (2.16) and (2.17) become
H'"(q,,4,, p,,7;)=n, +H' =0; (2.19a)
H." (0.6, Py )= p, +H =0, (2.19b)

which are called primary constraints ( Dirac, 1950, 1964). These relations
indicate that the generalized momenta P, and 7, are not independent of p,
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and 7., which is a natural result of the singular nature of the Lagrangian.
The Hamiltonian H, is then defined as

HO = paQa +qa pa ‘p/]:*H/E +7Z-aq.a +q.aﬂ.a ‘ﬂﬂ:—H}; - L(qi’qi’qa7qa :Wa);

£=1...R; a=R+1..,N. (2.20)
Defining the momentum P, as
oS
=, 2.21
Po=— (2.21)

one can write the corresponding set of HIJPDEs as (Pimentel and Teixeira,
1996)

o oS oS
= p, +H, = p, +Ho{t,qa,qa,qa,qa; Pe =g e =a—.J=0: (2.22a)
H;p = pa +HOE) = pa +H£[t1qa1qa’qa1qa; pa :%lﬂ-a :66_8]:0’ (222b)
H =r,+H. =z, +H;{t,qa,qa,qa,qa;|oa =%;ﬂa =§—.SJ=0- (2.22¢)

The equations of motion are written as total differential equations in
many variables as follows (Pimentel and Teixeira, 1996):

OH, OH'P OH!”

d O dt + —=-d “-dq,, ; 2.23a
Qs = o, . Qs + . d, ( )
! rp T
dg, = aHodt oH, dg, + oH, dqg,,; (2.23b)
or, T, or,
’ p Z3
dp, = aHodt o, dg, - oH, dqg,,; (2.23c)
aC]| aq| aql
' rp Z3
dr, = aHOdt—aH,“ dq, - H, dqg,,; (2.23d)
aq| aQ| 6ql
dZ =(-H. +p, oH, +7, oH, )dt
op, or,
rp p
Rz 4P T r, Ty,
op, o
+(-H™ +p, M,z aHa )dg,, (2.23e)
op, ° or,

where Z=5(q,,qd,,0,,4,) . We note that the existence of constraints
reduces the number of the equations of motion.
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Here Q, =t. The set of Egs. (2.23) is integrable ( Muslih and Guler,
1998) if and only if

dH, =0: (2.24)
dH'? =0; (2.24b)
dH" =0. (2.24c)

These conditions are identically satisfied or they lead to new
constraints.
Besides the canonical action integral is obtained in terms of the

canonical coordinates. H, , HP and H!” can be interpreted as the
infinitesimal generators of canonical transformations given by parameters {,

0, and , respectively. In this case, the path integral representation may be

written as (Guler, Y. 1992; Muslih and Guler, 1998; Rabei, 2000; Muslih,
2001, 2002)

(0,,9,,9,.4, | q.. 4., 9., 4. )

R R ) (o114 GH ’ aH ’
dg,dp, T ]dqg.dz, xexpi{ (-H.+p,—+7,—)dt

JTTda.dp.1T g op, " ox,
r p rp

oH) i oH) )da,

op, or,

M.z Mg 3 (2.25)

op or,

+(_H£ + pa

+(_HZ + pa

a

3. The Model
The general form of a second-order linear Lagrangian is

L(g;.d.6) =2a(a;,9;)8 -V (a;.4;) (3.1)
The associated Euler-Lagrange equations

2
oL _dpoby difal ) (3.2)
og; dt{oqg; ) dt°\ oqg;

have at most order three. If a,(q,4)=4a,(q) ,then the associated Euler-
Lagrange equations have at most order two. Let V(q,4) =V (q), in this case
the general form of a second-order linear Lagrangian becomes

L(g;.d;.6) =a (a;)6 -V (a;) (3.3)
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The transformation from the Lagrangian to the Hamiltonian approach
is achieved by introducing the generalized momenta P;, 7, conjugate to the

generalized coordinates 0, (;, respectively:

oL _dfa
' og, dtl ad,

da;
i =——-=b(q;)=- 3.4
pi=—"4 =0(4) 3.4)
oL
=——=8(0;)=-H. 35
i P :(d;) : (3.5)
Equations (4) and (5) become
H/” (9,6, P, 7 )=m+HT =0;
H{™ (G G Py ) = 7 -8 =0, (3.6)
H* (0. G P )= P+ HP =0;
Hi’p(qiiqi’pi’ﬂi)zpi_bizo- (3.7)

which are called primary constraints.
The canonical Hamiltonian H, is given by:

Hy = pid; + 7,6 _l—:bi(qj)qi +V(qj) (3.8)
The corresponding HIPDES
, O0S . )
H. :E-i_biqi +V(qj):O’

Ho’” :a_S._ i = 0
aq
He =5 g,
aq
The equations of motion are obtained as total differential equations follows:
’ 6H fp aH 24
dg, = Mo g+ T gq + 00 g —dg,; (3.9)
op, op,  op
oH/ OH'P oH'"
dg, = —C2dt+——dq, +——dg, =dg, ; 3.10
o or, o, 4 or, % 9 ( )
[ aH p aH 24
dp, = aH(’dt— ) dq; - ) dg, _—ﬁdu dq (3.11)
aq; aq; aq; aq; aq;
’ rp £4
drz, = _%H, dt—8H_“ dq, _oH, dq, =-Db(q;)dt. (3.12)
aq| aql aql
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To check whether the set of equations (9-12) are integrable or not , let
us consider the total variation of (6) and (7). In fact

dH/* =dr, —da, =0

:_bi (qj)dt_dai(qj); (3.13)
dH/? =dp, —db =0
oV oa,
— N gt + gy —db(q.): 3.14
o +aqi q; —db(q;) (3.14)
So, we have
ab(q) .. 93;(a) . v .
220dg. - dg, =——dt ; 3.15
aq, i aq; y aq; (319

which is equivalent to

oa(q) ,. aaj (a) .. ov .
! dqg. dg. =—dt ; 3.16
aq; W aa i oo, (310
. LoV
or qj = f” l—aq(q) ;

where the symmetric matrix f; is given by

f. :aai (q) +aaj (Q)
' o oo,
The total derivative of the Hamilton-Jacobi function can be

obtained as:

0S 0S 0S
dS =—dq, + —dg, +—dt. 3.18
g 0o G (3.18)

(3.17)

Using the above HIPDEs, we get
dS =a.dg, —Vdt,
Which can integrated to give

S= j a dd, - j Vit (3.19)
Now, using the fact that

Id(aiqi) =a( = '[aidqi "‘_[qidai )
The above Hamilton-Jacobi function Eq. ( 3.16) reduces to
S=%[aiqi+Iaidqi—jqjdaj]—Ith | (3.20)
By some rearragment, Eq. 3.17 becomes
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S:%aiqi —%j[qjdaj —a,dg, +2vdt], (3.21)
And using the fact that

d .

a(qjdaj) =—q;db; +q;da;,

1. 1:d _
S=ad - jdt(q da,)- I[qjdbj—aidqi+2th]
=1a.q. 9 [q,da, - J'[q.db. _add +2vdt], (3.22)
2 4% TS Gt ;db; —add,

Assuming that the function & (q) and V(q) satisfy the following

conditions
oa; oV

9 — 8q, a, a0, —q; =2V

Eq. (3.22) becomes

s=1ag,-2%qda, - jq [db, ——dq. N 3.2
277 2t o o

However, in order for S to be an integrable function, the terms in the
brackets must be zero, i.e.

b, ——'dq a—th_ (3.24)
aq; aq;
In fact, this equation represents the equation of motion for the

coordinates q; .

To obtain the path integral quantization for the singular Lagrangian
(3.3), we have two different cases,

Casel: If the inverse of the matrix f; exist, then we can solve all the

dynamics (. In this case the path integral W is given by
Y = deq dg, exp |{ ag — _fq da, +c}. (3.25)

Case2: If the rank of the matrix f; is n-R, then we can solve the

dynamics g, in terms of independent parameters (t,q,.,d,), «=12,..,R. In
this case the path integral w is given by

‘P=Iﬁdq dq expi{laq-—lijq-da.m}, i=12..n  (3.26)
a=1 : : 2 . 2dt I I
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4. Examples
41  As a first example, we consider the following linear (singular)
Lagrangian (Goldstein, 1980) .

1 1
L=—-=mqg§-=kq® 4.1
5 qq 5 q (4.1)
where the potential V is given by
1
V ==kqg?
5 q
Here the function ais
1
a=——m
5 q

Using (3.4) and (3.5), the generalized momenta corresponding to this
Lagrangian are:

p:a_lf_i 6_L zlqu_Hp; (4.2a)
oq dt{ o 2
n—aL——lmq——H” (4.2b)
og 2 ' '
By (3.6) and (3.7) the primary constraints are given as
H'”" =7z+%mq; (4.32)
: 1 .
Equation (3.8) gives the canonical Hamiltonian H, as
1 -2 1 2
H ==mg° +=k 4.4
. =5ma"+2kg (4.4)
Now using (3.11) and (3.12), the equations of motion read as
dp = —kqdt — % mdq ; (4.5a)
dr = %qut | (4.5b)
Making use of (3.24), we can obtain the equation of motion for q
%mdq+%mdq +kqdt =0, (4.6)
This equation can be written as
G+<q=0. @)
m
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This is interesting because this equation of motion is just Hook’s law.
It’s interesting to notice that this equation is familiar for a simple harmonic
oscillator, which has the following solution

. k
q = Acoswt + Bsin wt , where a):\/%,

Using Eq. (3.23), we find the integrable action function as

S=c (4.8)
Making use of equation ( 3.25) and (4.8), the path integral is given by
v :I dgdgexpic . 4.9

4.2. As a second example consider the following singular Lagrangian:
N o1
L=q1q1+q2q2 _E(qzz +q22)’ (4-10)
where the potential V is given by
1
V= E(qlz +03)
Here the functions & and &, are

a =0, a, =0,

Using (3.4) and (3.5), the generalized momenta corresponding to this
Lagrangian are:

oL df oL :
== 2% =-q,=-H}; 4.11a
P aql dt (6%] ql 1 ( )
oL df oL :
-~ 2% =-q,=-H): 4.11b
P, aqz dt (aq.z j q2 2 ( )
oL -
T, :a_q'lqu:_Hl ; (411C)
oL .
”2:F%ZQ2:_H2 . (4.11d)
By (3.6) and (3.7) the primary constraints are given as
H™ =7 -0 (4.12a)
H," =7, -0, (4.12b)
Hi" = p, +G; (4.12¢)
H;" =p, +G,. (4.12d)

Equation (3.8) gives the canonical Hamiltonian H, as
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Lo, 1
H. =—qf—q§+§(qf+q§)- (4.13)

Now using (3.11) and (3.12), the equations of motion read as

dp, = —q,dt +dq,; (4.14a)

dp, = —q,dt +dq,; (4.14b)

dz, =q,dt; (4.14c)

dz, =q,dt. (4.14d)
The matrix f; defined in (3.17) is given by

f.. = =0 (4.15)
"oz '

Making use of (3.24), we can obtain the equation of motion for ¢;and

G,

—dg, +q,dt—dg, =0, (4.16a)

—-dg, +9g,dt—dg, =0. (4.16b)
These equations can be written as

26, —-q,=0; (4.173)

24, —q, =0. (4.17b)
Which have the following solutions

q, = AeV? + Be V?; (4.18a)

q, = AeV? + Be 2, (4.18b)
Using Eq. (3.23), we find the integrable action function as

S=c. (4.19)
Making use of equation ( 3.25) and (4.19), the path integral is given

by

¥ = da,da,dg,dd, expic. (4.20)

4.3. As a third example consider the following singular Lagrangian:

. . .1
L = 0,0, — 0,8, + Oyt = (G +0, +05). (4.21)
where the potential V is given by

1
V=20 +0, +05)
Here the functions &, &, and &, are
8, =0, a, =—0, a; =0
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Using (3.4) and (3.5), the generalized momenta corresponding to this

Lagrangian are:

oL df oL .
- | — |=— :—Hp'
P, oq,  dt (qu] d, 1

oL df oL .
= — | = :_Hp,
P, aa, dt(@qzj 4 2
oL df oL .
= — |=— :_Hp,
Ps o4, dt(@qj s 2
o,
ad,
oL ,,
=—=0 :_H3 .
4,
By (3.6) and (3.7) the primary constraints are given as
H" =m -0,

7Ty q,=-H;

—Q; :_H;;

7T,

7Ty

H =7, +q;
Hs',ﬂ =73—0s;
0
H)® =p,+0,;
Hép =P, =0y
Hép = ps"'Qs-

Equation (3.8) gives the canonical Hamiltonian H, as

L1
H0=—q§+5(qf+q§+q§)-

(4.22a)

(4.22h)

(4.22¢)

(4.22d)

(4.22€)

(4.22f)

(4.233)
(4.23b)
(4.23c)

(4.23d)
(4.23€)
(4.23f)

(4.24)

Now using (3.11) and (3.12), the equations of motion read as

dp, = —q,dt—dd,;
dp, =—q,dt +dc,;
dp, =—q,dt +dd,;
dz, =q,dt;

dz, =—q,dt;
dz, =d,dt.

(4.253)
(4.25b)
(4.25c¢)
(4.25d)
(4.25¢e)
(4.25f)
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The matrix f; defined in (3.17) is given by

(0]0]0
f, =| ooO (4.26)
o002
Making use of (3.24), we can obtain the equation of motion for ¢,
-dg, +0,dt-dd, =0 . (4.27)
This equation can be written as
20, -0, =0, (4.28)
which have the following solution
Qs = AeV? 4 Be V2, (4.29)
Using Eq. (3.23), we find the integrable action function as
1 . 1
S :Equl_quqZ +C. (4.30)
Making use of equation ( 3.26) and (4.30), the path integral is given
by
, 11
W = | da,dd; expil 0,6, - 0y, +c]. (4.31)

5. Conclusion

In this work, we have investigated the singular Lagrangians with
linear accelerations using the Hamilton-Jacobi method and obtained the
integrable action directly without considering the total variation of
constrained. In other words, it has been shown that the total derivative of the
Hamilton-Jacobi function is constructed using the HIPDEs. In order to show
that this function is integrable, some conditions must be satisfied. It is shown
that these conditions represent the equations of motion which are equivalent
to both the consistency conditions of Dirac method and the canonical
method. Also it is shown that by calculating the integrable action and
constructing the wave function, the quantization has been carried out using
the path integral.
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