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Abstract  
             Clustering categorical data is an essential and integral part of data 
mining. In this paper, we propose two new algorithms for clustering 
categorical data, namely, the Standard Deviation of Standard Deviation 
Significance and Standard Deviation of Standard Deviation Dependence 
algorithms. The proposed techniques are based mainly on rough set theory, 
taking into account the significance and dependence of attributes of database 
concepts. Analysis of the performance of the proposed algorithms compared 
with others shows their efficiency as well as ability to handle uncertainty 
together with categorical data. 
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1. Introduction 

Imagine that you are given a set of data objects for analysis where, 
unlike in classification, the class label of each object is unknown. This is 
quite common in large databases, because assigning class labels to a large 
number of objects can be a very costly process. Clustering is the process of 
grouping the data into classes or clusters, so that objects within a cluster have 
high similarity to one another, but are very dissimilar to objects in other 
clusters (Han J 2006). Dissimilarities are assessed based on the attribute 
values describing the objects; distance measures are frequently used for this 
purpose. Clustering has its roots in many areas, including data mining, 
statistics, biology, and machine learning.  

Clustering techniques are used in many areas including 
manufacturing, medicine, nuclear science, radar scanning, and research and 
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development planning. For example (Wu S, Liew A, Yan H, Yang M 2004) 
developed a clustering algorithm specifically designed for handling the 
complexity of gene data, while (Jiang D, Tang C, Zhang A 2004) analyzed a 
variety of cluster techniques that can be applied to gene expression data. 
(Wong K, Feng D, Meikle S, Fulham M 2002) presented an approach for 
segmenting tissues in a nuclear medical imaging method known as positron 
emission tomography. (Haimov S, Michalev M, Savchenko A, Yordanov O 
1989) used cluster analysis to segment radar signals in scanning land and 
marine objects. Finally, (Mathieu R, Gibson J 1993) used cluster analysis as 
part of a decision support tool for large scale research and development 
planning to identify programs in which to participate and to determine 
resource allocation. 

The problem with all the algorithms mentioned above is that they 
mostly deal with numerical datasets, that is, databases with attributes with 
numeric domains. The main advantage of dealing with numerical attributes is 
that they are very easy to handle and moreover, it is easy to define similarity 
between them. On the other hand, categorical data have multi-valued 
attributes. Thus, similarity can be defined as common objects, common 
values of attributes, or an association between the two. In such cases, 
horizontal co-occurrences (common value of objects) as well as vertical co-
occurrences (common value of attributes) must be examined (Wu S, Liew A, 
Yan H, Yang M 2004). 

Various algorithms that can handle categorical data have been 
proposed, including the work by (Parmar D, Wu T, Blackhurst J 2007, 
Gibson D, Kleinberg J, Raghavan P 2000, Jiang D, Tang C, Zhang A 2004 
and Dempster A P, Laird N M, Rubin D B 1977). While these algorithms 
and methods are very useful in forming clusters from categorical data, they 
have the disadvantage of being unable to deal with uncertainty. However, in 
real-world applications it has been found that there is often no sharp 
boundary between clusters. Recently, work has been done by Huang (Huang 
Z 1998) and Kim et al. (Kim D, Lee K, Lee D 2004) in developing several 
clustering algorithms using fuzzy sets, which can handle categorical data. 
However, these algorithms suffer from stability problems as they do not 
provide satisfactory values owing to multiple executions of the algorithms. 

There is, therefore, a need for a robust algorithm that can handle 
uncertainty together with categorical data. For categorical data, fewer 
algorithms are available for grouping objects with similar characteristics. 
Furthermore, some of these have a complicated clustering process, while 
others have stability issues. Nevertheless, the results of all of these 
algorithms have low purity. In 2007, the Minimum-Minimum Roughness 
algorithm was proposed (Parmar D, Wu T, Blackhurst J 2007), which uses 
rough set theory concepts to deal with the above problems in clustering 
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categorical data. Later, in 2009, this algorithm was further improved to 
create the Minimum Mean Roughness (MMeR) algorithm (Tripathy B K , 
Prakash M S 2009), which can handle hybrid data. More recently in 2011, 
MMeR was again improved to develop an algorithm called the Standard 
Deviation Roughness (SDR) (Tripathy B K, Ghosh A 2011), which can also 
handle hybrid data. Later in 2011, SDR was further improved to create a new 
algorithm, the Standard Deviation of Standard Deviation Roughness (SSDR) 
(Tripathy B K, Ghosh 2011).  

In this paper we propose two new algorithms that can deal with both 
uncertainty and categorical data at the same time, and which are better than 
their predecessors, SDR and SSDR. These algorithms are called the Standard 
Deviation of Standard Deviation Significance (SSDS) and the Standard 
Deviation of Standard Deviation Dependence (SSDD). The proposed 
techniques are based on rough set theory and take into account the 
significance (S) and dependence (D) of attributes in the database. An 
analysis and comparison of the performance of the SDR, SSDR, SSDS, and 
SSDD algorithms shows that SSDD has the highest purity ratio of the 
algorithms in this and previous series. To establish the superiority of this 
algorithm we tested all algorithms on the ACME company dataset. 

The rest of this paper is organized as follows. Section 2 presents 
some important definitions. In Section 3 we discuss the SSDS and SSDD 
algorithms. Section 4 describes the experimental setup, while Section 5 
compares the performance of SSDS and SSDD with previous algorithms. 
Section 6 presents the conclusions of this work. 
 
2. Main Concepts 
Definition 1 (Information system) 

In a rough set, information systems are used to represent knowledge. 
An information system is denoted as S=(U,A,V,F), where U is a non empty 
finite set of objects, A is a non empty finite set of attributes, a A aV V∈=  , 

where aV  is the domain (value set) of attribute a, and :f U A V× →  is a total 
function, called the information (knowledge) function, such that 

( , ) af u a V∈  for every ( , )u a U A∈ ×  (Pawlak Z, Skowron A 2007).  
 
Definition 2 (Indiscernibility relation) 

Indiscernibility relation (Ind (B)): Ind (B) is a relation on U. Given 
two objects ,i jx x U∈ , they are indiscernible by the set of attributes B in A, if 

and only if ( ) ( )i ja x a x=  for every a B∈ as proposed in (Pawlak Z, 
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Skowron A 2007). That is, , ( )i jx x Ind B∈  if and only if a B∀ ∈ , where

B A⊆  and ( ) ( )i ja x a x= . 
 
Definition 3 (Equivalence classes) 

Equivalence class ( ( )[ ]i Ind Bx ): Given Ind (B), the set of objects ix  with 
the same values for the set of attributes in B comprises the equivalence class, 

( )[ ]i Ind Bx , also known as an elementary set with respect to B.              
 
Definition 4 (Upper approximation) 

Given the set of attributes B in A and the set of objects X in U, the 
upper approximation of X is defined as the union of all the elementary sets 
contained in X. That is,  

( ){ | [ ] }B i i Ind BX X X X φ= ∩ ≠ .          (1)    
 
Definition 5 (Lower approximation) 

Given the set of attributes B in A and set of objects X in U, the lower 
approximation of X is defined as the union of all the elementary sets 
contained in X. That is, 

( ){ | [ ] }B i i Ind BX X X X= ⊆ .       (2)   
 
Definition 6 (Roughness) 

The ratio of the cardinality of the lower approximation and that of the 
upper approximation is defined as the accuracy of estimation, which is a 
measure of roughness. In (Tripathy B K, Ghosh 2011) this is defined as 

 

( ) 1 B
B

B

X
R X

X
= −

 .               (3)

 

If ( )BR X , X is crisp with respect to B; in other words, X is precise 

with respect to B. If ( )BR X <1, X is rough with respect to B; that is, B is 
vague with respect to X.  
 
Definition 7 (Relative roughness) 

Given that ia A∈ , X is a subset of objects with one specific value α of 

attribute ia , and ( )
ja jX a α=  and ( )

ja jX a α=  denote, respectively, the 

lower and upper approximations of X with respect to { }ja , then ( )
jaR X  is 
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defined as the roughness of X with respect to { }ja  as given in (Tripathy B 
K, Ghosh 2011): 

( )
( / ) 1

( )

j

j

j

a j

a j
a j

X a
R X a

X a

α
α

α

=
= = −

=
, where ia , ja A∈ , and i ja a≠ .            (4)    

 
Definition 8 (Mean roughness) (Tripathy B K, Ghosh 2011) 

Let A have n attributes with ia A∈  and X be the subset of objects 

with a specific value α of attribute ia . Then we define the mean roughness 

for the equivalence class ia α= , denoted as ( )iMeR a α=  (Tripathy B K, 
Ghosh A 2011), As 

1
( ) ( ( / ) / ( 1))

j

n

i a j
j
j i

MeR a R X a nα α
=
≠

= = = −∑ .         (5)                

 
Definition 9 (Standard deviation of roughness)  

After calculating the mean of each ia A∈ , we apply the standard 

deviation to each ia  using the formula defined in (Tripathy B K, Ghosh 
2011): 

1
2

1
( ) (1/ ( 1)) ( ( / ) ( ))

j

n

i a j i
i

SD a n R X a MeR aα α α
−

=

= = − = − =∑
   (6) 

 
Definition 10 (Significance of attribute) 

Let the significance of attribute ia ∈A related to ja A∈ , where A 
represents all the attributes, denoted by ( )

ja iS a , be ( )
ja iS a =

( ) ( ) ( )
ja i A j A ja a aσ γ γ′ ′′= − ,                                    (7) 

where A′= A – { ja }, A′′= A′ - { ia } (see Pawlak Z 1991).                                                                                
 
Definition 11 (Mean significance) 

The mean significance of attribute ia A∈  with respect to attribute 

ja A∈ , where i j≠ , denoted as ( )
ja iSignificance a , is evaluated as  
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1
( )

( )
1

j

n

a i
j
j i

i

S a

MeS a
n

=
≠=

−

∑

 .          (8)
          

 
Definition 12 (Dependence of an attribute) 

Suppose S = (U,A,V,F) is an information system and ia  and ja  are 

subsets of A. The dependence of attribute ia  on ja  with degree k (0 < k < 1), 

is denoted as ia          ja . Degree k proposed by Herawan et al. (Herawan T, 
Deris M, Abawajy J H 2010), is defined as 

( )/( ) i

j

jX U a
a i

a X
K a

U
γ ∈= =

∑
 .      (9)                                                                                 

 
Definition 13 (Mean dependence) 
 The mean dependence of attribute ia A∈  with respect to attribute 

ja A∈ , where i j≠ , denoted by ( )iMeD a , is calculated as:  

1
( )

( )
1

j

n

a i
j
j i

i

a

MeD a
n

γ
=
≠=

−

∑
.          (10)                                                           

 
Definition 14 (Standard deviation of dependence) 

After calculating the mean dependence of each ia ∈A, we apply the 

standard deviation to each ia  using the formula:                          

 
21

1
( ) (1/ ( 1)) ( ( ) ( ))

j

n

i a i i
j

SD a n a MeD aγ
−

=

= − −∑
 .        (11)                                         

                      

 
Definition 15 (Standard deviation of significance) 

After calculating the mean significance of each ia ∈A, we apply the 
standard deviation to each ja  using the formula:                           
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21

1
( ) (1/ ( 1)) ( ( ) ( ))

j

n

i a i i
j

SD a n S a MeS a
−

=

= − −∑
 .        (12)

 

 
Definition 16 (Purity ratio) 

To compare the SDR, SSDR, SSDS, and SSDD algorithms, which 
can all handle uncertainty and categorical data together, we developed a 
measure of purity. The traditional approach for calculating the purity of a 
cluster proposed in (Herawan T, Ghazali R, Yanto I, Deris M 2010) is given 
as 
 

innumber of occurences both the cluster and its corresponding classpurity
number of data sets

=     (13) 

over all purity = 

#

1
( )

#

of clusters

i
purity i

of clusters
=
∑

             (14) 

 
3. Proposed Algorithms 

Having introduced the notations and definitions of the concepts in the 
previous section, here we present our algorithms. 

Algorithm 1 for SSDS 
1. Procedure SSDS(U,k) 
2. Begin  
3. Set current number of clusters, CNC = 1 
4. Set ParentNode = U 
5. Loop1: 
6. If CNC < k and CNC ≠ 1 then 
7. ParentNode = Proc ParentNode(CNC) 
8. End if 

             // Clustering the ParentNode 

9. For each ia A∈  (i = 1 to n, where n is the number of attributes in A) 
10. Determine [Xm]Ind(ai) (m=1 to number the objects) 

11. Get / ( )U ind A′ , where A′  denotes the family (A) except { }ja  of all 

equivalence classes of jA a− , written as /U A′ . 
12. Get /U A′′ , which denotes the equivalence classes of { { }} { }j iA a a− −  or A′

- { ia }. 

13. Get / jU a . 

14. Get ( )A jpos a′ . 
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15. Compute ( )A jaγ ′ , which is the dependence of ja  on condition attribute set A′ . 

16. Get ( )A jpos a′′ . 

17. Compute ( )A jaγ ′′ . 

18. Next  

19. 
1

( )

( )
1

j

n

a i
j
j i

i

S a

MeS a
n

=
≠=

−

∑
 

20. Next  
21. Apply standard deviation significance 

 21

1
( ) (1/ ( 1)) ( ( ) ( ))

j

n

i a i i
j

SDS a n S a MeS a
−

=

= − −∑  

22. Next 

23. Mean of all ( )iSDS a   

1
( )

( )

n

i
i

i

MinSDS a
MeSDS a

n
==
∑

 

24. Next  
25. Apply standard deviation of standard deviation significance   

2

1
(1/ ( 1)) ( ( ) ( ))

n

i i
i

SSDS n SDS a MeSDS a
=

= − −∑  

26. Determine splitting attribute ia corresponding to the standard deviation significance 

27. Perform binary split on the splitting attribute ia   

28. Compute ( )
ja iaσ . 
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Algorithm 2 for SSDD 
1. Procedure SSDD(U,k) 
2. Begin  
3. Set current number of clusters, CNC = 1 
4. Set ParentNode = U 
5. Loop1: 
6. If CNC < k and CNC ≠ 1 then 
7. ParentNode = Proc ParentNode(CNC) 
8. End if 

// Clustering the ParentNode 
9. For each ,i ja a A∈  (i, j = 1 to n, where n is the number of attributes in A) 

10. Determine / iU a , / jU a  

11. Calculate 
( )/( ) i

j

jX U a
a i

a X
K a

U
γ ∈= =

∑
 

12. Next  

13. 
1

( )

( )
1

j

n

a i
j
j i

i

a

MeD a
n

γ
=
≠=

−

∑
 

14. Next  
15. Apply standard deviation dependence 

 
21

1
( ) (1/ ( 1)) ( ( ) ( ))

j

n

i a i i
j

SDD a n a MeD aγ
−

=

= − −∑  

16. Next  

17. Mean of all SDD( ia )  

MeSDD( ia ) = 1
( )n

ii
SDD a
n

=∑  

18. Next  
19. Apply standard deviation of standard deviation dependence 

21

1
(1/ ( 1)) ( ( ) ( ))

n

i i
i

SSDD n SDD a MeSDD a
−

=

= − −∑  

20. Determine splitting attribute ia corresponding to the standard deviation 
dependence 

21. Perform binary split on the splitting attribute ia  
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4. Experiments 
For the experiment, we used the credit card promotion dataset given 

in (Roiger R J , Geatz M W 2003), a portion of which is listed in Table 1. 
There are five categorical attributes (n = 5): magazine promotion (MP), 
watch promotion (WP), life insurance promotion (LIP), credit card insurance 
(CCI), and sex (S). Each of the attributes has two distinct values, (l = 2), i.e., 
yes or no, and ten objects (m = 10) are considered. 

For the computations, we consider the information system shown in 
Table 1. 

Table 1 A subset of the credit card promotion dataset from Acme Credit Card Company 
database (Roiger R J , Geatz M W 2003) 

 
Person 

Magazine 
Promotion 

Watch 
Promotion 

Life Insurance 
Promotion 

Credit Card 
Insurance 

 
Sex 

1 Yes No No No Male 
2 Yes Yes Yes No Female 
3 No No No No Male 
4 Yes Yes Yes Yes Male 
5 Yes No Yes No Female 
6 No No No No Female 
7 Yes No Yes Yes Male 
8 No Yes No No Male 
9 Yes No No No Male 

10 Yes Yes Yes No Female 
 
4.1.  Computational Part 
4.1.1. Obtain equivalence classes 

 
a) ( ) {1,2, 4,5,7,9,10}X MP yes= = , ( ) {3,6,8}X MP no= = ,      

/ {{1, 2,4,5,7,9,10},{3,6,8}}U MP =  
b) ( ) {2, 4,8,10}X WP yes= = , ( ) {1,3,5,6,7,9}X WP no= = ,    

/ {{2,4,8,10},{1,3,5,6,7,9}}U WP =  
c) ( ) {2, 4,5,7,10}X LIP yes= = , ( ) {1,3,6,8,9}X LIP no= = ,   

/ {{2, 4,5,7,10},{1,3,6,8,9}}U LIP =  
d) ( ) {4,7}X CCI yes= = , ( ) {1, 2,3,5,6,8,9,10}X CCI no= = ,    

/ {{4,7},{1,2,3,5,6,8,9,10}}U CCI =  
e) ( ) {1,3,4,7,8,9}X S yes= = , ( ) {2,5,6,10}X S no= = ,      

/ {{1,3,4,7,8,9},{2,5,6,10}}U S =  
 
4.1.2. Apply SDR and SSDR algorithms 

Calculations to obtain the lower and upper approximations, relative 
roughness, mean roughness, and standard deviation of the roughness of 
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subsets of U based on attribute LIP with respect to attributes MP, WP, CCI, 
and S are given below. 
 
4.1.2.1.Obtain lower and upper approximations 

a) LIP with respect to MP 
          ( )X LIP yes φ= = , ( ) {1, 2,4,5,7,9,10}X LIP yes= =  

          ( ) {3,6,8}X LIP no= = , ( ) {1,2,3, 4,5,6,7,8,9,10}X LIP no= =  
b) LIP with respect to WP 

          ( )X LIP yes φ= = , ( ) {1,2,3,4,5,6,7,8,9,10}X LIP yes= =  

         ( )X LIP no φ= = , ( ) {1,2,3, 4,5,6,7,8,9,10}X LIP no= =  
c) LIP with respect to CCI 

         ( ) {4,7}X LIP yes= = , ( ) {1, 2,3,4,5,6,7,8,9,10}X LIP yes= =  

         ( )X LIP no φ= = , ( ) {1, 2,3,5,6,8,9,10}X LIP no= =               
d) LIP with respect to S 

   ( )X LIP yes φ= = , ( ) {1,2,3,4,5,6,7,8,9,10}X LIP yes= =  

         ( )X LIP no φ= = , ( ) {1,2,3,4,5,6,7,8,9,10}X LIP no= =             
              
4.1.2.2. Relative roughness 
a) LIP with respect to MP roughness 
      ( | ) 1 0MPR X LIP yes= = −   =  1,      ( | ) 1 0.3MPR X LIP no= = − =0.7 
b) LIP with respect to WP roughness 
      ( | ) 1 0WPR X LIP yes= = −  =  1,       ( | ) 1 0WPR X LIP no= = −   =  1 
c) LIP with respect to CCI roughness 
      ( | ) 1 0.2CCIR X LIP yes= = −  = 0.8, ( | ) 1 0CCIR X LIP no= = −  =  1 
d) LIP with respect to S roughness 
      ( | ) 1 0SR X LIP yes= = −   =  1,         ( | ) 1 0SR X LIP no= = −   =  1 
 
4.1.2.3. Mean roughness (MeR) 

a) MeR(LIP=yes) = 1 1 0.8 1
4

+ + +  = 0.95 

b) MeR(LIP=no)  = 0.7 1 1 1
4

+ + +  = 0.925 
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4.1.2.4. Standard deviation of roughness 

a) SD(LIP=yes)  = 2 2 2 2 21 ((1 0.95) (1 0.95) (1 0.95) (0.8 0.95) )
4
× − + − + − + −  

                       =  0.0866 

b) SD(LIP=no)   = 2 2 2 2 21 ((1 0.925) (1 0.925) (1 0.925) (0.7 0.925) )
4
× − + − + − + −  

                        =  0.12 
A similar process is followed, changing the value of α (for α = ‘yes’ 

or ‘no’) and keeping the value of ia  constant. Finally, we obtain two standard 
deviation values for each α, which are stored in variables. After calculating 
the standard deviation (SD) of roughness for each α, we take the minimum of 
these values for α and store this in another variable. 

The above procedure is carried out for each ia  (that is, ia = ‘MP’, 
‘WP’, ‘CCI’, and ‘S’), and the corresponding values are stored in variables. 
After completing the above step we use the minimum values for the next 
calculation. We apply the SSDR standard deviation to the minimum values 
to obtain the splitting attributes. If the value of SSDR does not match any of 
the minimum values, we take the closest minimum value as the splitting 
attribute and perform binary splitting. In other words, we divide the table 
into two clusters; the results of applying SDR and SSDR to all attributes 
listed in Table 1 are summarized in Table 2. 
 
4.1.3. Apply the SSDS algorithm 

We obtain the significance, mean significance, and standard deviation 
of the significance of attribute LIP with respect to attributes MP, WP, CCI, 
and S as discussed below. 
 
4.1.3.1.Obtain the concept of significance of an attribute 

a) The degree of significance of attribute LIP  with respect to 
attribute MP, denoted as ( )MP LIPσ , can be calculated as follows. Let C′  
denote all attributes except attribute MP; thus  
     C′ ={WP,LIP,CCI,S} and C′′=C′ -{LIP}={WP,CCI,S}. 
     U \ C′  = {{1,3,9},{2,10},{4},{5},{6},{7},{8}},     
     U \ C′′  = {{1,3,9},{2,10},{4},{5,6},{7},{8}} 
     U \ MP ={{1,2,4,5,7,9,10},{3,6,8}}  

      ( )MP LIPσ   = ( ) ( )C CMP MPγ γ′ ′′−  = 7 5
10 10

−  = 0.2 

b) LIP with respect to WP 
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     C′  = {MP,LIP,CCI,S}, C′′  = {MP,CCI,S} 
      U \ C′  = {{1,9},{2,5,10},{3,8},{2,7},{6}},  
      U \ C′′  = {{1,9},{2,5,10},{3,8},{4,7},{6}} 
      U \ WP = {{1,3,5,6,7,9},{2,4,8,10}},   

      ( )WP LIPσ  = ( ) ( )C CWP WPγ γ′ ′′−  = 3 3
10 10

−  = 0 

c) LIP with respect to CCI 
      C′    = {MP,WP,LIP,S}, C′′  = {MP,WP,S} 
       U \ C′      = {{1,9},{2,5,10},{3,8},{4,7},{6}},     
       U \ C′′= {{1,7,9},{2,10},{3},{4},{5},{6},{8}} 
       U \ CCI    = {{1,2,3,5,6,8,9,10},{4,7}} 

       ( )CCI LIPσ = ( ) ( )C CCCI CCIγ γ′ ′′−  = 10 7
10 10

−  = 0.3 

d) LIP with respect to S 
      C′  = {MP,WP,LIP,CCI}, C′′  = {MP,WP,CCI} 
       U \ C′      = {{1,9},{2,10},{3,6},{4},{5},{7},{8}},  
       U \ C′′= {{1,5,9},{2,10},{3,6},{4},{7},{8}} 
       U \ S        = {{1,3,4,7,8,9},{2,5,6,10}} 

       ( )S LIPσ   = ( ) ( )C CS Sγ γ′ ′′−  = 8 5
10 10

−  = 0.3 

 
4.1.3.2. Find the mean significance 

( )MeS LIP = 0.2 0 0.3 0.3
4

+ + +  = 0.2 

 
 4.1.3.3 Obtain standard deviation of significance SDS( ia ) 

SDS(LIP) =
2 2 2 2 21 ((0.2 0.2) (0 0.2) (0.3 0.2) (0.3 0.2) )

4
× − + − + − + −

  
                 = 0.12 

These steps are typically carried out on the other attributes, keeping 
the value of ia  constant for ( ia = ‘MP’, ‘WP’, ‘CCI’, and ‘S’). After 

calculating the standard deviation of significance (SDS) of each ia , we 

finally obtain one standard deviation value for each attribute ia ; these values 
are stored in a variable. 

In the next calculation, we apply the SSDS to these values to obtain 
the splitting attributes. If the value of SSDS does not match any of the values 
of SDS exactly, we take the closest minimum value as the splitting attribute 
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and perform binary splitting; that is, we divide this table into two clusters. 
The SDS and SSDS results for all attributes are summarized in Table 3. 
 
4.1.4. Apply the SSDD algorithm 

We obtain the concept of dependence, the mean dependence, and the 
standard deviation of the dependence of attribute LIP with respect to 
attributes MP, WP, CCI, and S as given below. 
 
4.1.4.1.Obtain the concept of dependence of an attribute 

From Table 1, for each attribute, there are five partitions of U 
induced by indiscernibility relations on each attribute. The degree of 
dependence of attribute LIP on attribute MP, denoted MP LIP⇒ , is 
calculated as follows. 

a) MP LIP⇒         

( )/X U LIP
MP X

K
U

∈=
∑

= 
{3,6,8}

{1,2,3,4,5,6,7,8,9,10}
= 3

10
= 0.3 

           In the same way, we obtain the following: 
b) WP LIP⇒         

( )/X U LIP
WP X

K
U

∈=
∑

  = { }
{1, 2,3,4,5,6,7,8,9,10}

= 0
10

 =  0 

c) CCI LIP⇒  

( )/X U LIP
CCI X

K
U

∈=
∑

= { }4,7
{1, 2,3, 4,5,6,7,8,9,10}

= 2
10

= 0.2 

d) S LIP⇒         

( )/X U LIP
S X

K
U

∈=
∑

= { }
{1, 2,3,4,5,6,7,8,9,10}

 = 0
10

=  0 

 
4.1.4.2.Find the mean dependence  

( )MeD LIP  = 0.3 0 0.2 0
4

+ + +  = 0.125 

 
4.1.4.3.Calculate the standard deviation of the dependence SDD(𝑎𝑖) 

2 2 2 21( ) ((0.3 0.125) (0 0.125) (0.2 0.125) (0 0.125) )
4

SDD LIP = × − + − + − + −               = 0.19 
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             The above procedure is repeated changing the attribute and keeping 
the value of ia  constant (for ia =’MP’, ’WP’, ‘CCI’, and ’S’). Finally we 

obtain one standard deviation value for each attribute ia , and again these 
values are stored in variables. The corresponding values are also stored in 
variables. After completing this step, the stored values are used in the next 
calculation in which we apply the second standard deviation of the standard 
deviation dependence to the values to obtain the splitting attributes. If the 
value of the second algorithm (SSDD) does not match any of the values of 
SDD we take the closest minimum value as the splitting attribute and 
perform binary splitting; that is, we again divide the table into two clusters. 
The results of SDD and SSDD are summarized in Table 4. 
 
4.2. Results of the algorithms 

In this section we present the original results tested on the ACME 
company dataset, obtained using the SDR and SSDR algorithms (as shown 
in Table 2). We also give our results for the SSDS and SSDD algorithms, 
given in Tables 3 and 4, respectively. 

Table 2 Experimental results for SDR and SSDR algorithms 
 

Attributes MeR( ia α= ) SD( ia α= )  
 

SDR 

 
 

SSD
R MeR( ia yes=

) 
MeR( ia no= ) SD(

ia yes= ) 
SD( ia no= ) 

MP 0.825 1 0.2 0 0 
0.2 

 
 
 
 

0.035 

WP 1 1 0 0 0 
LIP 0.95 0.925 0.08 0.12 0.08 
CCI 1 0.6 0 0.11 0 

0.11 
S 0.95 1 0.086 0 0 

0.086 
 

Table 3 Experimental results for SSDS algorithm 
Attributes Significance ( )iMeS a

 

SDS SSDS 

MP WP 
0.2 

LIP 
0.2 

CCI 
0 

S 
0.2 

0.15  
0.0866 

 
 
 
 

0.038 

WP MP 
0.1 

LIP 
0 

CCI 
0 

S 
0.1 

0.05 0.05 

LIP MP 
0.2 

WP 
0 

CCI 
0.3 

S 
0.3 

0.2 0.12 

CCI MP 
0 

WP 
0 

LIP 
0.3 

S 
0.3 

0.15 0.15 

S MP 
0.1 

WP 
0.1 

LIP 
0.3 

CCI 
0.2 

0.175 0.08 

Table 4 Experimental results for SSDD algorithm 
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Attribute 
(depends 

on) 

 
Degree of dependence 

 
( )iMeD a

 

 
( )iSDD a

 

 
( )iSSDD a

 
MP WP 

0 
LIP 
0.5 

CCI 
0.2 

S 
0 

 
0.175 

 
0.2 

 
 
 
 
 
 
 

0.087 
 
 
 

WP MP 
0 

LIP 
0 

CCI 
0 

S 
0 

 
0 

 
0 

LIP MP 
0.3 

WP 
0 

CCI 
0.2 

S 
0 

 
0.125 

 
0.19 

CCI MP 
0.3 

WP 
0 

LIP 
0.5 

S 
0.4 

 
0.3 

 
0.187 

S MP 
0 

WP 
0 

LIP 
0 

CCI 
0.2 

0.05 0.0866 

 
5. Performance comparison of the SDR, SSDR, SSDS, and SSDD 
algorithms 

 
5.1. Object splitting in SDR, SSDR, and SSDS algorithms 

For object splitting, we use a divide-conquer method. For the 
example in Table 1, we can cluster (partition) the objects using the SDR, 
SSDR, and SSDS algorithms, which have the same clustering attribute and 
similar object splitting, i.e., WP. Note that the partition of the set of objects 
for the first split induced by attribute WP is {{1,3,5,6,7,9},{2,4,8,10}}, while 
for the second split, we select the second closest attribute from the selected 
clustering attribute of the SDR, SSDR, and SSDS algorithms, which is 
attribute S. Thus, we redo the split attribute WP on attribute S with 
equivalence classes {{1,3,4,7,8,9},{2,5,6,10}}. We therefore, split the 
objects according to the hierarchical tree shown in Fig. 1. 
 
 
 
                 
                                                                                          
 

 1stpossible clusters 
 
                                                                                     
 

2nd possible clusters 
 

 
Fig. 1 Object splitting in SDR, SSDR, and SSDS 
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5.2.Purity ratios of SDR, SSDR, and SSDS algorithms 
The Acme company dataset contains ten objects, where each data 

point represents information of a credit card in terms of five categorical 
attributes in the Acme company. The three algorithms SDR, SSDR, and 
SSDS have the same classification for each, with the objects divided into two 
classes, Thus, we need to stop when we get two clusters as only two credit 
cards, namely, watch promotion  and sex, are described by the five 
categorical attributes. The dataset comprises six objects for watch promotion 
(WP) and sex (S). Since there are two possible credit cards, the objects are 
split into two clusters. The results are summarized in Table 5. All the ten 
objects belong to the majority class label of the cluster in which they are 
classified. Thus, the overall purity of the cluster is 58.33%. 

Table 5 Overall purity of SDR, SSDR, and SSDS algorithms 
Clusters C 1 C2 Purity 
Cluster 1 4 2 4/6 
Cluster 2 2 2 2/4 

Overall purity  0.5833 
 

5.3.Object splitting in SSDD algorithm 
Attribute S is used for splitting objects in the first split of the example 

given in Table 1 using the hierarchical tree based on the clustering attribute 
selected by SSDD. This split partitions the set of objects into 
{{1,3,4,7,8,9},{2,5,6,10}}. For the second split we depend on attribute CCI, 
which is the second closest attribute to the selected clustering attribute 
{{1,2,3,5,6,8,9,10},{4,7}}. The hierarchical tree for splitting the objects is 
shown in Fig. 2. 
 
 
 
 
                                                                                                                                     
                                                                                            

    
 
    1st possible clusters           

                               
 
                                                                                                                                      
                                                                                          

    2nd possible clusters 
 

Fig. 2 Object splitting in SSDD algorithm 
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5.4. Purity ratio of SSDD algorithm 
The Acme company dataset consists of ten objects, where each data 

point represents information of a credit card in terms of five categorical 
attributes. Each credit card data point is classified into two classes. 
Therefore, for SSDD, the split data is contained in two clusters. The results 
of applying the SSDD algorithm to the Acme company dataset are 
summarized in Table 6, which gives the overall purity of the cluster as 
83.33%. 

Table 6 Overall purity of SSDD algorithm 
Clusters C 1 C2 Purity 
Cluster 1 4 2 4/6 
Cluster 2 0 4 1 

Overall purity  0.8333 
 

 
Fig. 3 Comparison of overall purity 

 
From Fig. 3 we can see that the purity of selecting the clustering 

attribute using the SDR, SSDR, and SSDS algorithms is the same, i.e., 
58.33%, while that for the SSDD algorithm is the highest of all the 
algorithms, i.e., 83.33%. 
 
6. Conclusion 

In this paper, we proposed two new algorithms for obtaining the 
splitting clustering attributes, that is, the SSDS and SSDD algorithms. The 
proposed techniques are based on rough set theory using the significance of 
attributes in information systems and the dependence of attributes in the 
database. Analysis of a test case shows that using the SSDS algorithm 
provides an easier method compared with the SDR and SSDR algorithms 
while yielding the same purity. Using the SSDD algorithm yields the highest 
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purity compared with the other algorithms. The proposed approach can also 
be used for clustering data in large databases. We also carried out an 
experiment with various other conditional attribute tables with larger 
amounts of data and obtained similar results. Thus, our conclusion can be 
generalized. 
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