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Abstract 

Rainfall is of critical importance for many people particularly those whose livelihoods are dependent 

on rain fed agriculture. Methods of analysis of daily rainfall records based on Markov chain models 

have been available for many years and their value is widely recognized. However they are rarely 

used because of the complexity of their analysis. This paper describes how these models are being 

made more accessible through a series of specially written procedures and menus in GenStat, a widely 

available statistics package. 
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1.Introduction: 

Many people all over the world have devoted themselves in collecting climatic data 

for longer period of time but little is done on the analysis (Stern and Coe 1984). Despite a 

wide range of available statistical software, the effort of climatic data analysis still does not 

match their collection. Rainfall is one of the important climatic variables in planning and 

decision making in the agricultural sector particularly in those regions whose livelihood is 

dependent on rain fed agriculture. For this reason, as extensive understanding of rainfall 

regime is an important prerequisite in such planning.  

Rainfall variable is a stochastic process in nature and therefore they require stochastic 

models to describe them (Mimikou 1983). Markov Chain is one of the stochastic models that 
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have gained popularity in describing rainfall characteristics since its introduction by (Gabriel 

and Neumann 1962). They found that the daily rainfall occurrence for the Tel Aviv data 

successfully fitted using the first-order Markov chain model.  Kotegota et al. in their paper 

(Kottegoda, Natale and Raiteri 2004)also reported that the first order Markov chain model 

found to fit the observed data in Italy successfully. However, (Wilks 1999) reported that there 

are cases where first order Markov chain model failed to fit the observed data and therefore 

higher order Markov chain model was an alternative to improve these inadequacies. 

Although a number of powerful statistical packages have the capability to analyze 

rainfall data using Markov chain models, most of them do not have specialized routines for 

doing this.  Instat was introduced in the early 1980s as a simple statistical package to help in 

the teaching of statistics. It was later improved by adding more components with particular 

interest for processing climatic data (Stern, et al. 2006). Today it is the only available 

package with a specialized routine accessible for analyzing rainfall data using Markov chain 

models. Though it is not powerful enough to handle generalized linear model (GLM) 

(Gallagher and Stern 2009). 

The primary objective of this paper is to use GenStat command language to 

implement a specialized routine for Markov modeling of rainfall data in GenStat Package by 

creating procedures and making them accessible by creating their dialogues and menus. The 

improvement of the package to handle Markov modeling of rainfall data will encourage most 

researchers and other interested parties to utilize climatic data in their work since the 

procedures will be accessible to perform such analysis. Section 2 provides a theoretical 

background to Markov modeling and GLM. Section 3 discusses some of the methods used 

during the implementation. The program itself is discussed in Section 4, and an example is 

discussed in Section 5. Finally section 6 concludes with a discussion. 

2. Background Information: 

 
A two state Markov chain is the commonly used type of Markov model where state is 

the condition of a day. A day is referred to as wet if rainfall received is greater than a 

threshold value (a minimum value say 0.85) or dry if the rainfall amount is at most than the 

threshold value. We will describe the Markov model for rainfall occurrences and amounts.  

2. 1. The Generalized Linear Model  

The Generalized Linear Model was introduced by (Nelder and Wedderburn 1972).  It 

is used where the response variable neither follows a normal distribution nor have 
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homogenous variances (Payne, et al. 2009). Comparing GLM and Multiple regression models 

(a form of general linear model) makes its features seen more clearly (Stern and Coe 1982). 

The expression below can be used to define General linear models: 

    

These set of equations can be written in the form of a compact model as shown in 

the below. 

            

Where   is a vector of response  is the matrix of explanatory variable (Covariate),  

is a vector of unknown parameters (where  are estimated by solving the least-square 

equations shown in Eq. (3)) and  is a vector of unobservable of errors corresponding to the 

observation.  

=                 

The approach used by (Nelder and Wedderburn 1972) was to describe any given 

model in terms of its link function and its variance function. The variance function describes 

the relationship between the mean and the variance of the dependent variable to allow for a 

proper calculation of the variance under non-normal conditions while the link function 

describes the non-linear relationship between the mean of the dependent variable and the 

linear right hand side. 

Suppose we generalize Eq. (2) with a linear predictor based on the mean of the 

outcome variable, then the function  will be called the link function.  

            

The link function can be inverted as shown in Eq. (5) 

            
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Rainfall occurrence take a binomial distribution (it can rain or not rain) with mean 

 then its link function is a logit as derived by (Nelder and Wedderburn 1972) and expressed 

as:  

         [6] 

Then the  can be expressed as: 

           

 [7] 

2. 2. Markov chain 

A Markov chain is a time ordered probabilistic process that goes from one state to 

another according to some probabilistic transition rules determined by the current state only 

(Perera et.al, 2002). That is, the probability at some point of time  being in a certain state is 

conditioned on the states of the previous time, where the number of previous periods is 

termed as the order of the chain. Markov chain is useful for analyzing events whose 

likelihood depends on what happened last. 

2.2.1.The Markov Chain of first order 

In the first-order Markov chain, the current state is dependent solely on the state of the 

immediate previous period and the chance that a process is in state  at time  given that it 

was in state  at time is represented by transitional probability  which is expressed as 

follows 

            [8] 

2.2.2.High Order Markov Chain  

A Markov chain of order λ is referred to as high order Markov chain if λ greater than1. 

The probability of a day of the year having a particular state will depend on the states of the λ 

previous days. The Markov chains of order 2 and 3 satisfy the conditions in Eq. (9) and Eq. 

(10) respectively. 

        [ 9] 
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Where  is the transition probability of state  in day  year n given state  in day  

and state  in day  

 [10] 

Modeling high order Markov chain leads to a high-dimensional space of parameters 

(Vardi and Ju 1999). A higher order Markov chain say of order 2 with two states will have 

four parameters, order 3 will have eight parameters order 4 will have sixteen parameters and 

order will have  parameters. Increasing the number of states increases the number of 

parameter in each order. Such models may not be accurate in situation where there may be no 

sufficient climatic data to estimate them. However, (Longhai and Radford 2008) and” (Vardi 

and Ju 1999).  Suggest that the high dimension of parameters can be reduced in such 

situations. 

2.2.3.Fitting a first order Markov Model to rainfall data  

The first order model assumes that the probability of rain occurring on any day depends 

only on whether it did or did not rain on the previous day. To fit this model, the parameter for 

transition probability  is estimated over the year (Stern and Coe 1982). The is the 

probability of rain in day  given state  (for  ) in day . The estimate of   is 

given by   (Stern and Coe 1984) which is the proportion of years with state  in their day 

 that had rain in their day . The   is expressed as shown below.  

  =          

 [11] 

Where,  is the number of years with rain on day  and  is the number of years 

with no rain on day  



European Scientific Journal       August edition vol. 8, No.18   ISSN: 1857 – 7881 (Print)    e - ISSN 1857- 7431 

6 

 

The random variable  is binomially distributed with the probability of success being   

and ) is the number of trials. Therefore the model used is  

           

 [12] 

Where  is a logit link function connecting the probabilities   to the function  

which is linear unknown parameters (Stern and Coe 1984). The model is a generalized linear 

model since binomial is a member of the exponential family (Nelder and Wedderburn 1972) 

 is therefore expressed as  

          

 [13] 

Stern (Stern and Coe 1984) suggested that Fourier analysis may be used to express as 

shown below: 

     

 [14] 

Where  and  is the number of harmonics 

2.2.4.High Order Markov Chain  

A Markov chain of order  is referred to as high order Markov chain if  greater than1. 

The probability that on time   will have a particular state depends on the states of the 

previous time . For example the Markov chains of order 2 and 3 satisfy the conditions in 

Eq. (15) and Eq. (16) respectively. 

            [15] 

Where  is the transition probability of state  in time  given state  in time  and 

state  in time  
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            [16] 

Modeling a high order Markov chain leads to a high-dimensional space of parameters 

(Vardi and Ju 1999). A higher order Markov chain say of order 2 with two states will have 

four parameters, order 3 will have eight parameters order 4 will have sixteen parameters and 

order will have  parameters. Increasing the number of states increases the number of 

parameter in each order. Such models may not be accurate in situation where there may be no 

sufficient data to estimate them. However, (Longhai and Radford 2008) and (Vardi and Ju 

1999) suggest that the high dimension of parameters can be reduced in such situations. 

3. Methods 
The implementation of this work involves creating four procedure using GenStat 

command language. These are: ‘count’, ‘prepare’, ‘fitting’ and ‘fittingamount’ using the 

GenStat command language. The count procedure reads the raw data then counts the number 

of days with a specific state over the years and calculates the amount of rain in the rainy days 

using Markov model. The prepare procedure in calculates the probability of rain for each day 

of the year, the fitting procedure fits the probability of rain for each day of the year while 

amountfitting procedure fits the amount of rainfall.  

GenStat has a capability of allowing users to create their own menus for newly 

developed procedures (Gallagher and Stern 2009). Once a procedure has been written, it can 

be recalled and used in the command interface or its corresponding menu and dialogs built 

and used in a graphical user interface as described by (Gallagher and Stern 2009).  

 

4.Program  

4.1. Procedures  

The dialogs and menus for the four procedures are built in GenStat and can be accessed 

through a newly created menu called ‘user’(any time you add a procedure into GenStat, it 

will be listed in the menu ‘user’ See Figure 1). The user menu contain four submenus 

namely; Counts and Total From daily data, Probability of rain, fitting probability and fitting 

amounts corresponding to ‘count’, ‘prepare’, ‘fitting’ and ‘fittingamount’ procedures 

respectively (see Figure 2 and Figure 3 ).  Once the procedures have been built in GenStat 

system, they can now be used to analyze climatic data using Markov chain model.  
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Figure 1:User menu 

 

 

Figure 2: Counts and Total form Daily Data and Probability of rain dialog boxes 

 

 

Figure 3:Fitting probability and fitting amounts 

 

4.2. Input data 

The input data required is in variate data type in a single column for all the years (rainfall 

data) and a factor column over which the counts are done. The factor column can be in days, 
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months or weeks of the year.  A sample of data required for the procedures is shown in 

Figure 4 

 

Figure 4: Sample rainfall data 

 

In most cases, the rainfall data may not be given in one stalked column as shown in figure 1, in 

such a case the user is expected to stalk the data into one column over the years the data is given. This 

facility is available in GenStat by using Spread=> Manipulate=> Stalk menu.  

 

4.3. Setting up the analysis  

Modeling rainfall data using these newly created procedures are done in two stages. 

The first stage of the analysis is to determining the rain counts and total of specific days over 

the years using count procedure. Then any the remaining three procedures can follow since 

they use the results from count procedure. It is in this first stage of analysis, where the user 

specifies the order of chain, the threshold value of rainfall and whether or not the model will 

be high or normal.   

In the second stage the calculation of probabilities is done using the ‘Probability of 

rain’ dialog box, the user simply specify the table for the counts and then indicate whether to 

display the result in a table or a graph, both or none. Then to fitting of  the probabilities is 

done by using a  ‘fitting probabilities’ dialog box where the user specifies the table for 

counts, number of harmonics used for fitting and whether to plot the fitted values or not.  

Finally, when fitting amounts, the ‘fitting amount’ dialog box is used; the amounts and counts 

tables have to be specified.  

 

5. Example 

We will use the procedures to analyze the rainfall dataset for Samaru1, Nigeria collected 

from 1930-1940. The data is available in Instat library. It is exported to GenStat spreadsheet 

                                                             
1 This data set is readily available in Instat library, Instat package is downloadable freely from  
http://www.ssc.rdg.ac.uk/ 

http://www.ssc.rdg.ac.uk/
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and then stalked into one variate of rainfall data and a factor column for year. A factor 

column for day number with levels 1-366 is created over which the counts will be done. 

The analysis in this example will be based on the following categories; two states and a 

three state, normal orders and high order, Markov on daily basis and Markov summarized to 

group of days totals (weekly, monthly and 5-days etc).   

The analysis starts with the count procedures with the options of two statesMarkov. 

This results for count and amount of rainfall in a summary table on a spreadsheet.  The 

command associated with the analysis is shown below.  

COUNTS [CLASS=DayYear; HIGH=NO; SPREAD=YES;STATES=2] a=Amount; 

counts=Count; DATA=Rain 

Based on the number of states and order of the Markov chain specified, in the Counts 

and Totaldialog box, the‘counts’procedure counts the number of times that a day of the year 

is having a specific state-condition for the number of years the data is observed and then 

calculates the rainfall amounts for rainy days which is defined as the actual amount of rainfall 

recorded minus the threshold value. That is, if the threshold is 0.85mm and in a specific day, 

it was recorded that the rainfall was 2mm, then the rainfall amount is 1.15mm. 

The probability plots for the model is obtained by using the prepare procedure and plot a 

graph for the model shown in the Figure 5.The plot is overcrowded and seems hard to read 

and distinguish; a better plot can be obtained when the days of the years are summarized into 

groups. The fitted model for counts and amounts are shown in figure 3 (a) and (b). The 

results in Figure 6(a) indicate that there is a higher chance of rain between day 150 and day 

270 though considering the state condition of previous day (Markov chain of order 1), theiris 

a higher chance of rain given that the previous day was rainy than when the previous day is  

dry. In Figure 6(b), the highest amount of rainfall given that the previous day being wet was 

experienced between days 150 to day 230. However, the expected amount of rain will be 

higher given that in the previous dayit had rained.  
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Figure 5: Probability Plot for a two-state Markov Chain Model 
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(a)                                                                                          (b) 

Figure 6: Fitted Probability Plot (a) and Amount (b) for a two-state Markov Chain 

The analysis of deviance is also given when the analysis is run (see Table 1) and it 

suggest that two harmonics is significant (P-Value<0.001) when fitting the model 
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Table 1: Analysis of deviance 

Change d.f. deviance Mean 

deviance 

deviance 

ratio 

Aprox. 

chi pr 
+ half_hamonic[1]  1 55.762 55.762 55.76 <.001 

+ half_hamonic[2]  1 19.970 19.970 19.97 <.001 

+ half_hamonic[3]  1 11.364 11.364 11.36 <.001 

+ half_hamonic[4]  1 18.066 18.066 18.07 <.001 
      Residual  193  223.368  1.157   

Total  197  328.530  1.668   

 

6.Summary and Conclusion 

The current version of GenStat (version 14) is very powerful in statistical analysis and in 

particular climatic data analysis with the capability of handling the rainfall data using Markov 

chain model approach, however this functionality is not accessible a directly that non-

statistician can used. In this work therefore, we have presented four GenStat procedures for 

analyzing rainfall data using Markov Chain model approach. The procedure can now be used 

directly through the dialogs and menu.  

We have illustrated the use of these procedures by applying it to rainfall data for Samaru, 

Nigeria. The example illustrated here is only a one case (a normal Markov chain model of 

order 1 with two states) out of other possibilities that the procedure can perform including: 

Markov chain model of order (0, 2, 3,…n), more than states model and High order Markov 

chain explained in section 2.2.4.  

Future work might include modeling andimplementation climatic events, crop 

performance index analysis, summaries of climatic data, time series analysis, and temperature 

analysis etc. For a full utilization of the package in handling climatic data, it is important to 

look forward in implementing all these aspects of climatic analysis.  
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