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Abstract 
The objective of this research is to investigate the combined effects of 

heat generation and viscous dissipation on MHD natural convection flow of 
an electrically conducting fluid over an isothermal sphere with variable 
thermal conductivity. Thermal conductivity is considered as a linear function 
of temperature. The governing equations are solved numerically by 
numerical solution strategy as per requirement and suitability. Solution 
method such as finite difference method with killer box scheme has been 
employed. The computational findings for the dimensionless velocity, 
temperature profiles as well as for the skin-friction coefficient and surface 
heat transfer rate are displayed graphically.  
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Nomenclature: 
a Radius of the sphere Tw Temperature at the surface 
Cf Skin friction coefficient u Dimensionless velocity component 

along x direction 
Cp Specific heat at constant pressure v Dimensionless velocity component 

along y direction 
f  Dimensionless stream function U Velocity component along the 

surface 
Gr Grashof number V Velocity component normal to the 

surface 
g Acceleration due to gravity X 

 
Axis in the direction along the 

surface 
k Thermal conductivity Y 

 
Axis in the direction normal to the 

surface 
kf Thermal conductivity of the fluid ξ Dimensionles coordinate along to 

the surface 
k∞ Thermal conductivity of the  

ambient fluid 
η Dimensionles coordinate normal to 

the surface 
M Magnetic parameter ψ Stream function 
N Viscous dissipation parameter τw Shearing stress 

Nu Local Nusselt number ρ Density of the fluid 
Pr Prandtl number µ Viscosity of the fluid 
qw Heat flux at the surface ν Kinematics viscosity of the fluid 
Q Heat generation parameter θ Dimensionless temperature 

function 
Q0 Constant β coefficient of thermal expansion 
r Radial distance from the symmetric 

axis to the surface 
β0 Strength of magnetic field. 

T Temperature of the fluid in the 
boundary layer 

γ Thermal conductivity variation 
parameter 

T∞ Temperature of the ambient fluid σ0 Electric conductivity 
 
Introduction 

Natural convection heat transfer has gained considerable attention 
because of its numerous applications in the areas of energy conservation 
cooling of electrical and electronics components, design of solar collectors, 
heat exchangers etc.. Many practical heat transfer applications involve with 
the conversion of some forms of mechanical, electrical, nuclear or chemical 
energy to thermal energy. A vast number of research papers have been 
published considering different fluid flow systems. Alam et al. [1] analyzed 
the viscous dissipation effects on MHD natural convection flow along a 
sphere. Miraj et al. [2] studied the effects of pressure work and radiation on 
natural convection flow around a sphere with heat generation. Mixed 
convection boundary layer flow about a solid sphere with Newtonian heating 
is investigated by Salleh et al. [3]. Huang and Chen [4] considered laminar 
free convection from a sphere with blowing and suction. The effect of 
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viscous dissipation on external natural convection flow over a surface was 
examined by Gebhert and Mollendorf [5]. 

None of the above mentioned paper considers the thermal 
conductivity with variable behavior. However physical property may change 
with the change of temperature. Sarma and Singh [6] have shown that the 
effects of variable thermal conductivity and heat source/sink on MHD flow 
near a stagnation point on a linearly stretching sheet. Mollah et al. [7] 
analyzed the natural convection flow from an isothermal sphere with 
temperature dependent thermal conductivity. Boundary layer flow in a 
porous medium past a moving vertical plate with variable thermal 
conductivity and permeability is carried out by Singh [8].  

It is observed that the effect of variable temperature thermal 
conductivity in presence of heat generation on natural convection flow near 
the lower stagnation point over a sphere has received a little attention. So, in 
the present study, it is proposed to investigate the conjugate effects of heat 
generation and viscous dissipation on natural convection flow over a sphere 
with temperature dependent thermal conductivity. 
 
Formulation of the problem: 

A steady two-dimensional natural convection boundary layer flow of 
an incompressible viscous and electrically conducting fluid over a sphere of 
radius a has been considered. In this analysis Tw is assumed as the constant 
temperature at the surface of the sphere, and T∝  being the ambient 
temperature of the fluid, and T is the temperature of the fluid within the 
boundary layer. The conservation equations for the flow characterized with 
the continuity, momentum and energy equations which are written as 
follows:   
 
 
 
 
                  
                                      T∞ 
 
 
 
 
 
 
 
 

a 

 

 

 

Fig. 1:  Physical model and coordinate system 
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The boundary conditions for the governing equations are   
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where r = r(X) 

Where a is the radius of sphere, r is the radial distance from the 
symmetrical axis to the surface of the sphere, k (T) is the thermal 
conductivity of the fluid depending on the fluid temperature T. The amount 
of heat generation per unit volume is Q0 (T-T∞), Q0 being a constant which 
may either positive or negative. The source term represent the heat 
generation when Q0 > 0 and the heat absorption when Q0 < 0. Here we will 
consider the form of the temperature dependent thermal conductivity which 

was proposed by Charraudeau [9] as  
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 where ∞k is the thermal conductivity of the ambient fluid and *γ is defined 

as 
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T he above equations are non-dimensionalized using the following 
substitutions: 

∞∞

∞ ======
T
T ,

T-T
T-T ,Gra ,  UGrau,

a
Y Gr, 

a
X w

w

4
-1

2
-1

4
1

wθθ
νν

ηξ Vv  (7) 

Thus (5) becomes ξξ sin)( ar =                                                                      
The equations (1) to (3) can be converted into dimensionless forms 

using equation (7) as follows:  
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since 0T =
∂
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=
∂
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ηξ
T   and υρ=μ 

and the boundary conditions (4) becomes 
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dimensional temperature function, ( )∞−
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22
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= is the magnetic parameter, )(*
∞−= TTwγγ  is the 

non-dimensional thermal conductivity variation parameter and 
∞

=
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Cpµ

Pr is 

the Prandtl number. To solve equations (9) and (10) subject to the boundary 
conditions (11), we assume the following variables u and v as follows and 
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where ),()( ηξξξψ fr=  is a non-dimensional stream function . 
        Putting the above value in equation (9) and (10), we have 
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The corresponding boundary conditions are : 
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At the lower stagnation point of the sphere i.e. ξ≈0 and the equations 
(13) and (14) reduced to the following ordinary differential equations: 
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The boundary conditions as mentioned in Equation (15) then take the 
following form 
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Where primes denote the differentiation with respect toη . The 
physical quantities of the principle interest are shearing stress in 
terms of the skin-friction coefficient and the rate of heat transfer in 
terms of the Nusselt number, which can be written, in non-
dimensional form as  
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Discussion of Results: 

Numerical computations have been carried out for different values of 
the parameters entering into the problem. The velocity profiles, temperature 
profiles, average skin friction and Nusselt numbers are found for different 
physical parameters such as Prandlt number Pr magnetic parameter M, 
thermal conductivity variation parameter γ  , heat generation parameter Q 
and viscous dissipation parameter N, which are presented in Figures 2 to 9. 
In order to verify accuracy of the present work, the values of heat transfer 
rate are compared with those reported by by  Molla et al. [7] and Nazar et 
al.[10]that is shown in theTable-1. The results are found to be in good 
agreement. 

Table-1: Compares the present numerical value of Nu for the values of Pr = 0.70 without 
the effect of M, γ , Q and N with those obtain by  Molla et al. [7] and Nazar et al.[10] 

Pr =0.70 
ξ in degree Nazar et al . [10] Molla [7] present 

0 0.4576 0.4576 0.4576 
10 0.4565 0.4564 0.4565 
20 0.4533 0.4532 0.4533 
30 0.4480 0.4479 0.4480 
40 0.4405 0.4404 0.4406 
50 0.4308 0.4307 0.4310 
60 0.4181 0.4188 0.4192 
70 0.4046 0.4045 0.4049 
80 0.3879 0.3877 0.3882 
90 0.3684 0.3683 0.3689 
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Fig. 2.: (a) Variation of velocity and (b) variation of temperature against η  for varying of 

M withPr = 0.70, γ  = 0.10, Q = 0.01 and N = 0.10. 
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Fig. 3.: (a) Variation of skin friction and (b) variation of heat transfer against ξ  for 

varying of M with Pr = 0.70, γ  = 0.10, Q = 0.01 and N = 0.10. 
 

Figure 2(a) and Figure 2(b) deal with the effect of magnetic 
parameter M on the velocity and temperature distributions against  η  with 
Prandlt number Pr, thermal conductivity variation parameterγ , heat 
generation parameter Q and viscous dissipation parameter N. Here it is found 
from Figure 2(a) that  the velocity distributions decreases slightly as the 
magnetic parameter increases but near the surface of the sphere velocity 
increases up to the peck and then decreases and finally approaches to zero. 
The temperature increases owing to the increasing values of magnetic 
parameter M that is presented in Figure 2(b). The variation of the local skin 
friction coefficient Cf  and the local rate of heat transfer Nu for the selected 
values of magnetic parameter M are shown in Figures 3 (a) and 3(b), 
respectively. It is clear from both Figures that the skin-friction and heat 
transfers coefficient are decreased with the increasing values of magnetic 
parameter due to the increased M decreases the fluid velocity as well as the 
heat flow from the solid to fluid. 
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Fig. 4.: (a) Variation of velocity and (b) variation of temperature against η  for varying of 

γ  with Pr = 0.70, M = 0.10, Q = 0.01 and N = 0.10. 
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Fig. 5.:  (a) Variation of skin friction and (b) variation of surface temperature against ξ  for 

varying of γ   with  Pr = 0.70, M = 0.10, Q = 0.01 and N = 0.10. 
 

The effect of thermal conductivity variation parameter γ  on the 
velocity and temperature profiles with the fixed value of the controlling 
parameters are shown in Figures 4(a) and 4(b), respectively.  In Figures 4(a)-
4(b), it is found that both the velocity and temperature increases for the 
change of thermal conductivity parameterγ . From Figure 4(a), the highest 
values of the velocity are 0.35459, 0.36354, 0.36817 and 0.37287 for  γ  = 
0.10, 1.0, 2.0, 3.0, respectively which take place at η = 1.05539. We come to 
unanimous decision that the velocity increases by 3.83 % for distinction of  
γ  from 0.10 to 3.0. In addition, in Figure 4(b) the temperature increase with 
increasing γ  along η direction up to the extreme value and progressively 
decreases to zero. Figures 5(a) and 5(b) demonstrate the effect of thermal 
conductivity variation parameter γ  on the skin friction and heat transfer co-
efficient against ξ with Pr = 0.70, M = 0.10, Q = 0.01 and N = 0.10.  Figures 
reflect that the escalating value of the thermal conductivity variation 
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parameter γ  increases the skin-friction coefficient fC  and decreases the 
local heat transfer rate. The values of skin-friction coefficient increases by 
16.30% and the Nusselt number Nu decreases by 66.43 % as well for 
particular values of γ from 0.10 to 3.0.  
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Fig. 6.:  (a) Variation of velocity and (b) variation of temperature against η  for varying of 

Q with Pr = 0.70, M = 0.10, γ  = 0.01 and N = 0.10. 
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Fig. 7.: (a) Variation of skin friction and (b) variation of surface temperature against ξ  for 

varying of Q with Pr = 0.70, M = 0.10, γ  = 0.01 and N = 0.10. 
 

Figures 6(a) and 6(b) display the numerical results of velocity and 
temperature distributions for the effect of heat generation parameter Q with 
Prandlt number Pr = 0.70, magnetic parameter M = 0.01thermal conductivity 
variation parameter γ  = 0.10 and viscous dissipation parameter N = 0.10. 
Tasting for different values of Q, it is observed that the velocity and 
temperature profile increase with the increase of heat generation parameter. 
The upper limit of the velocity are 0.35459, 0.36820, 0.38495 and 0.40297 
for Q =0.01, 0.10, 0.20 and 0.30, respectively, which come about at η = 
1.05539 for the first maximum value and the rest of all is at η =1.11440. It is 
deliberate that the velocity increases by 13.64 % as Q count in from .01 to 
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0.30. Again the effect of heat generation parameter Q on skin friction and the 
rate of heat transfer are shown in Figures 7(a) and 7(b) with Pr = 0.70, M = 
0.10, γ  = 0.01 and N = 0.10.. From Figures 7(a) and 7(b) we observed that 
the skin friction coefficient increase sharply, on the contrary the heat transfer 
rate decrease monotonically for the selected value of Q along ξ direction. It 
is observed that the skin friction coefficient and local Nusselt number 
increase by 10.49% and decrease by 41.48%, respectively for distinct value 
of Q.  
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Fig. 8. (a) Variation of velocity and (b) variation of temperature against η for varying of N 

with Pr = 0.70, M = 0.10, γ  = 0.01 and Q = 0.10. 
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Fig. 9.(a) Variation of skin friction and (b) variation of surface temperature against ξ  for 

varying N of with  Pr = 0.70, M = 0.10, γ  = 0.01 and Q = 0.10. 
 

The variation of viscous dissipation parameter, N on the velocity and 
temperature profiles while Pr = 0.70, M = 0.01, γ  = 0.10, and Q = 0.01 are 
exposed in Figures 8(a)-(b). We observed in Figure 8(a) that the velocity is 
zero at the boundary wall then the velocity increases up to the peak value as 
η increases and finally approach to zero (the asymptotic value). The 
maximum values of the velocity are 0.35459, 0.36354, 0.36817 and 0.37287 



European Scientific Journal   May 2014  edition vol.10, No.15   ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

375 

for N =0.1, 10.0, 15.0 and 20.0, respectively at position η =1.05539. 
Counting these peak values of the velocity, we have calculated that the 
velocity rises by 5.15 % as N increases from 0.10 to 20.0. On the other hand,  
Figure 8(b) exhibits the temperature profile increases for the extend value of 
N. Figures 9(a)-(b) demonstrate the effect of viscous dissipation parameter N 
on the local skin friction coefficient and heat transfer rate against ξ with Pr = 
0.70 , M = 0.01, γ  = 0.10,  and Q = 0.01. It is observed from Figure 9(a) that 
the increasing value of the viscous dissipation parameter N, causes the 
greater skin friction on the surface of the sphere. On contemporary of Figure 
9(b) depicts that the rate of heat transfer which is gradually decreased from 
positive to negative value for larger values of N.  
 
Conclusion 

In this analysis, the solution of two dimensional steady free 
convectional flow of viscous incompressible fluid over a sphere with the 
effects of viscous dissipation and heat generation in presence of variable 
thermal conductivity have been examined separately. The following 
observations and conclusions can be drawn: 
 

 Velocity decreases with the increasing magnetic parameter, while 
temperature increases. 

 The velocity and the temperature of the fluid within the boundary 
layer increases with increasing thermal conductivity variation 
parameter, heat generation parameter and viscous dissipation 
parameter. 

 The skin friction along the surface of the sphere increases with 
increasing thermal conductivity variation parameter, heat 
generation parameter and viscous dissipation parameter but 
decreases for the increasing M. 

 The heat transfer rate from the surface of the sphere to the fluid 
decreases with the increasing value of the magnetic parameter, 
thermal conductivity variation parameter, heat generation 
parameter and viscous dissipation parameter. 
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