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Abstract 
The work is aimed at studying design effect for the maximum 

likelihood estimators of variance components in a split plot design. The 
study used the general linear model with one whole plot factor and one sub-
plot factor and assumed that both factor effects are random variables. The 
main problem studied is how to assign a given number of whole plots with 
equal sizes to the level of the whole plot factor in a way that will form a 
balanced one way design. The work introduced a method of classifying the 
five variance components to make comparison and presentation meaningful. 
The resulting optimal designs depend on the true proportional value of the 
variance components. 
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Introduction 

Optimal designs for variance components model have been discussed 
fairly in experiment that are ran in a completely random order. Most of the 
published work dates back to the 60’s and 70’s and have been restricted to 
specific models namely, one-way random model, the two-way crossed 
classification random model and the two way nested model. R.L Anderson 
and many of his co-workers are the main contributors to the design area 
during that period (Anderson 1975, 1981). . For the one way model, 
Hammersly (1949), Crump (1954), Anderson& Crump (1967) were some of 
the earliest authors. Hammersly (1949) showed that for a fixed N, the 
variance   is minimized by allocating an equal number n, of )( 2

ασVar
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observation to each class where , since this formula may not 

yield an integer value, it was suggested that the closest integer value for n be 
chosen. Crump (1954) and Anderson & Crump (1967) showed that for fixed 
K and N,   is minimized when  for all i. The optimal 

value for a in this case is given as   

Other authors are Kussmaul & Anderson (1967), Thompson and 
Anderson (1975), Herrendofer (1979), Murkerjue &Huda (1988), Giovagnoli 
& Sebastiani (1989), Norell (2006). Norell (2006) studied design effect for 
the one way random model of the maximum likelihood estimators. 

The construction of optimal design for the two way crossed models 
seems to have been considered first by Gaylor (1960). He considered the 
problem of optimal designs to estimate variance components using the fitting 
constant method of estimation of variance components for the unbalanced 
data. Bush (1962) and Bush and Anderson (1963), HIrotsu(1966), Mostafa 
(1967) are some of the other contributors to the designing experiment using 
the two way random model. 

Some pioneering articles that address the problem of estimating 
variance components in a nested classification are Bainbridge (1965) Prairie 
(1962), Prairie and Anderson (1962), Bainbridge (1965), they proposed 
designs that systematically spread the information in the experiment more 
equally among the variance components. Goldsmith and Gaylor (1970) 
carried out extensive investigation on optimal designs for estimating 
variance components in a completely random nested classification. Delgado 
(1999) defined a class of unbalanced design for estimating variance 
component in the three stage nested classification using the ANOVA method 
of estimation. 

Loeza-Serrano. S and A .Donev (2012) constructed D- optimal 
design for variance components estimation in a three stage crossed and 
nested classification. 

For experiments that include both crossed and nested factor in the 
same model, no assumption of a complete random model has been made. 
Work that design experiment for variance component estimation are based 
on the linear mixed effect model .Beverly (1981) , Ankenman, Liu, Karr, and 
Picka (2001) and Aviles and Pinheiro (2001) are authors that have published 
work. However experiments that complete randomization of order of runs is 
not feasible or might be too expensive to use is performed using split plot 
models. 
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Split Plot Design 
Split plot designs initially developed by Fisher (1925) for use in 

agricultural experiments are basically the modified form of randomized 
block designs. These designs are used in situations where complete 
randomization of runs within block is not possible. These designs are  used 
widely in industrial experiments, experiments where one set of factors may 
require a large amount of experimental materials(Whole Plot factors), while 
another set of factors might be applied to smaller experimental materials 
(Sub Plot factors). Another situation that leads to the use of split plot designs 
in industrial experiment is when there exist one or more factors called hard 
to change factors, that are expensive or time consuming to change level 
settings (WP factors) and the other factors (SP factors), whose level settings 
are easier to change are called easy to change factors. 

In general split plot design can be used for any experimental situation 
that involves two different types of experimental unit (large and small), 
randomly assigned independently at the two different levels. 

The optimal design for split-plot experiments has received attention 
by Goos and Vandebroek (2001b, 2003a, 2004).  The work was based on a 
more complex design structure that used the first and second order 
polynomial model to represent the response, but in general the work used a 
linear mixed effect model which assumed fixed effects for the settings of the 
whole plot factors and sub-plot factors and two variance components 
associated with the whole plot error and sub-plot error. 

The work is aimed at constructing D optimal designs for maximum 
likelihood estimators in a split plot experiment with one whole plot (WP 
factors) and one sub plot (SP factor), with the assumption of random effect 
for both factors. 

 
Model and variance structure 

The model equation for the split plot design with one WP factor 
(Factor A) and one SP factor (Factor B) can be written as, 

    , , irk .......1= , 

ir is the number of whole plot at  level of factor A, but rrrr a === .....21  
since equal number of whole plot are allocated to whole plot factor A . There 
are ar  whole plot of equal sizes available. 

is the response at the  replicate of the  level of factor A and the  
level of factor B,  is the general mean,  is the effect of the   level of 
factor A ,  is the effect of the   level of factor B.   is the 
interaction effect of the   level of factor A and the   level of factor B. 

ijkikijjiijk ey +++++= γαββαµ )( ai .......12= bj .....1=
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 is the error term of the  replicate of the   level of factor  A (WP 
error term),  is the error term corresponding to individual   (SP error 
term). The random variables 

,  and are assumed to be normally distributed with zero 

mean variance ,
2

,
2

,
2

,
2

,
2

eσγσαβσ
β

σασ   respectively. In matrix form the model can 

be written as, 
5544332211 .1 γγγγγµ ZZZZZY +++++=  

is a vector of abk observations, is the overall mean, is an indicator 
matrix associated with the  variance component, iγ  is a vector of 
normally distributed random effects associated with the  variance 
component such that . The variance matrix of observations 
can be written as,  

ισ i
i

ii ZZVYVar ∑
=

==
5

0

2)(  

 The Z are defined as the kroneker product as follows, 

nrbaZ Ι⊗Ι⊗Ι⊗Ι=0                  nrbaZ z Ι⊗Ι⊗Ι⊗Ι='
00  

nrbaZ 1111 ⊗⊗⊗Ι=              nJrJbJaZ z ⊗⊗⊗Ι='
11  

nrbaZ 1112 ⊗⊗Ι⊗=                             nJrJbaJZ z ⊗⊗Ι⊗='
22  

nrbaZ 113 ⊗⊗Ι⊗Ι=             nJrJbaZ z ⊗⊗Ι⊗Ι='
33  

       nrbaZ 114 ⊗Ι⊗⊗Ι=             nJrbJaZ z ⊗Ι⊗⊗Ι='
44   

 

 
Large Sample Variance of the Maximum Likelihood Estimators     

Maximum likelihood estimates of variance components cannot be 
obtain explicitly except for some balanced data, but their large sample 
asymptotic dispersion matrix can be derived. It is known that the large 
sample asymptotic dispersion matrix of the maximum likelihood estimators 
for any model is the inverse of the information matrix. This matrix is the 
negative of the expected value of the second order partial derivatives 
(Hessian Matrix) with respect to the parameters of the log-likelihood 
function.   
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 For our data vector ),,( VXNy β≈ the likelihood function is, 
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 Upon taking the log of the likelihood 

)()(
2
1log

2
12log

2
1 1 ββπ ι XyVXyVNLogLl −−−−−== −  

The matrix is given as 
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 the model for this work involve only the variance components and 

therefore the information matrix becomes 

[ ] .5.....1,)}({
2
1 '1'1 =−− jiZZVZZVtr jjiim

  Using Searle (1970) this reduces to 

[ ] [ ] .5.....1,)}({
2
1)}({

2
1 1''1'1 == −−− jiZVZsesqZZVZZVtr jimjjiim  
 The inverse of v is also obtained using the results of Henderson and 
Searle (1979), 
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Where 
= , =1θ )

22
( γσσ bne + , =2θ )

22
( αβσσ rne + , =3θ )

222
( βσαβσσ arnrne ++  

=4θ )
2222

( ασαβσγσσ brnrnbne +++  , )
22222

(
β

σασαβσγσσ arnbrnrnbne ++++  

 a computational information matrix can thereafter be obtained 
………Searle et al (2006) pg 247. 
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Where 

1,1),1)(1(),1(),1)(1( −=−=−−=−=−−= avbvbavravrbave αβαβγ

  
Design optimality and generation 

No closed form analytical expression is available for the variance 
covariance matrix in this linear random effect model; we examine optimality 
using the asymptotic variance covariance matrix. A design from a group of 
designs with the same number and sizes of whole plots is said to be optimal 
if it minimizes an optimality criterion related to the variance- covariance 
matrix of the parameter estimates. Equivalently, we seek the design that 
maximizes an optimality criterion related to the information matrix of the 
five variance components. Optimal design in a linear random effects model 
depends on the relative size of the true values of the variance components, 
and we will not be able investigate optimality unless an assumption is made 
on the true values of the variance components. Since optimality for such 
models is similar to that of nonlinear models, we borrow an idea from 
optimization on theory of nonlinear models and use the local optimality. The 
five variance components were classified into two sets, the first set consist of 
the main effects and Interaction variance components (MIVC), which consist 

of ,
2
ασ  ,

2
β

σ and 2
αβσ . The second set include the whole plot and sub plot error 

variance components (WSEVC) 2
γσ  and 2

eσ . 
The work will initially assign proportional value of variance 

components to the two sets in such a way that the sum equals one, and 
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thereafter distribute proportional value to each set based on initially 
allocation. As an example 

 MIVC= 5.0
222

=++
αβ

σ
β

σασ  WSEVC= 5.0
22

=+
e

σγσ , sub assigning 

MIVC and WSEVC, we have 

 ,05.0
2

=ασ 40.0
2

=
β

σ , 05.0
2

=αβσ  and WSEVC = 42.0
2

=γσ , 08.0
2

=eσ .  

As stated earlier, the optimality of the design depends on the 
proportion of the true value of the variance components and not the total 
variance components. Proportional value of the variance components will be 
assigned to each of the five variance components. We employed this 
approach to make comparison easy. We wish to state that the proportional 
value of variance components used for comparison in the work is by no 
means exhaustive, what is required is the knowledge of the true values of 
variance components. Our approach however, will enable us make some 
statements about the choice of optimal design for this model. 

A MATLAB code was written in the context of the information 
matrix of section (2.1) in such a way that enumerated design for a particular 
number and sizes of whole plot can be compared based on any configuration 
of the true values of the variance components.  
 
Design Generation 

The work intend to assign Rar =  whole plots of equal size randomly 
to the level of the whole plot factor such that equal number of whole plots is 
assigned to individual levels of whole plot factor. Each level of the sub plot 
factor is applied once within each whole plot and one observation is 
measured within each sub plot. The resulting design structure is balanced.  
 The number of possible designs (design space) equals the total 

number of ways to partition ∑=
a

i
irar subject to ai rrr === .......2  and 

ara <≤2 . The assignment of Rar = whole plots to the levels of whole plot 
factor formed a balanced one way design. 
 As an example, consider six (6) whole plots of size two, the size of 
the whole plot equals the number of levels available for sub plot factor B( In 
this case b=2). The number of possible designs equals the number of ways of 
partitioning 6 i.e. a=2, r=3 [2, 2, 2] and a=3 r=2 [3, 3], we list the possible 
designs for various number of whole plot between 6 and 20 that satisfy the 
condition for balancedness. 
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Number of 
whole plot Possible Designs Number of 

whole plot Possible Designs 

6 [a=3, r=2][a=2, r=3] 15 [a=3,r=5][ a=5,r=3] 
8 [a=4, r=2][a=2,r=4] 16 [a=2,r=8][a=8, r=2][a=4,r=4] 
10 [a=5,r=2][a=2,r=5] 18 [a=2,r=9][a=9,r=2][a=3,r=6][a=6,r=3] 

12 [a=6,r=2][a=2,r=6] 
[a=3,r=4][a=4,r=3] 20 [a=2,r=10][a=10,r=2][a=4,r=5][a=5,r=4] 

14 [a=7, r=2][a=2, r=7]   
  
An Algorithm 

(1) List the possible design for a fixed number and size of whole plot 
(Generate the design space) 

(2) Specify the available information about individual variance 
components. i.e. proportional value available to MIVC and WSEVC. 
Such that MIVC+WSEVC=1 

(3) Redistribute the proportional value above to the variance components 
within each set. 

(4) Calculate the criterion of optimality(D-optimal) for all design in the 
design space using the MATLAB programme code and identify the 
D-optimal design 

(5) By making no changes to MIVC and based on the D- optimal design 
above, one can obtain the regions where some other designs in the 
design space is optimal. i.e. When ra ≤  based on the optimal design 
identified in (4) increasing the proportional value of 2

γσ  by 0.01 and 

decreasing the proportional value of 2
eσ  by 0.01 in sequence until  

another design in the design space is optimal. When  ra ≥  based on 
the optimal design obtain in (4) decreasing the proportional value of 

2
γσ  by 0.01 and increasing the proportional value of 2

eσ  by 0.01 in 
sequence until another design in the design space is optimal.  

Example: Consider the situation where we have 6 whole plot of size 2, 
following the steps in the algorithm the list of designs in the design 
space is {a=2, b=2, r=3} and {a=3. b=2, r=3}  
MIVC=0.5 and WSEVC=0.5 by (2) and applying (3) above 

individual variance components as, 

,05.0
2

,40.0
2

,05.0
2

{ ===
αβ

σ
β

σασ }20.0
2

,30.0
2

==
e

σγσ
    

Using the MATLAB code, the D-optimal is {a=2, b=2, r=3}. For this 
design we increase the proportion value of the whole plot error from 0.30

 

and reduce the proportional value of the sub plot error from 0.20 in 
sequences by 0.01, there is a change in the D-optimal design at a certain 
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configuration. In general for a fixed MIVC, the range of proportional value 
for which the two designs are optimal is given below. 

Designs Whole plot Sub plot 

{a=2, b=2, r=3}. 42.001.0 2 ≤≤ γσ
 

49.008.0 2 ≤≤ eσ
 

{a=3, b=2, r=2}. 49.043.0 2 ≤≤ γσ
 

07.001.0 2 ≤≤ eσ
  

 D- Optimal designs for some selected number and sizes of whole plot 
are presented in the appendix. 
 
Conclusion 

After empirically comparing designs with the same number and sizes 
of whole plot, these two wide-ranging statements can be made.  

(1) For increasing proportional value of 2
αβσ and 2

ασ , designs wit ra ≥  is 
optimal. 

(2) Optimal design is robust to increase in value of the sizes of the whole 
plot. i.e.  If a design is optimal for a smaller size of whole plot then 
the same design is optimal for higher values of the whole plot sizes 
except for negative determinant optimal design. 
The extension of the work to situations where there is an unbalanced 

one way structure in the assignment of whole plot to the whole plot factor is 
a subject of current research by the authors. 
 
Appendix 
 

Number 
Of Whole 

Plot 
Size Initial proportion Prop of 

variance components 
D-Optimal 

designs 
Range for optimality for 

the D-optimal design 

6 

2 
 
 

MIVC=0.5 
WSEVC=0.5 

0
2

,40.0
2

,05.0
2

{ ===
αβ

σ
β

σασ

}20.0
2

,30.0
2

==
e

σγσ
 

 
{a=2,b=2, r=3}. 

 
 

{a=2,b=5, r=3}. 
 

49.008.0 2 ≤≤ eσ
42.001.0 2 ≤≤ γσ  

 

5 
49.002.0 2 ≤≤ eσ

 
48.001.0 2 ≤≤ γσ  

12 

2 
 

MIVC=0.95 
WSEV=0.05 

0
2

,85.0
2

,05.0
2

{ ===
αβ

σ
β

σασ

}04.0
2

,01.0
2

==
e

σγσ  

{a=3,b=2, r=4}. 
 
 
 
 
 

04.003.0 2 ≤≤ eσ
 

02.001.0 2 ≤≤ γσ
 

 
 

5 {a=6,b=5, r=2}. 
 

04.001.0 2 ≤≤ γσ

04.001.0 2 ≤≤ eσ  
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For the ranges of value that were not captured by the optimal design, 
some other designs in the design space are optimal. For example when R=12 
and b=2, for the same proportional value in MIVC,   
 {a=6,b=2, r=2} is the D-optimal design when ,04.003.0 2 ≤≤ γσ

  
02.001.0 2 ≤≤ eσ

    
 

 When R=12 and b=2, for same MIVC, no other range of value exist 
for other designs to be optimal {a=6,b=5, r=2} is exhaustive for all possible 
range of WSEVC. 
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