OBJECT RECOGNITION THROUGH KINECT USING
HARRIS TRANSFORM

Azeem Hafeez
Assistant Professor of Electrical Engineering Department, FAST - NUCES

Hafsa Arshad
Ali Kamran
Rida Malhi

Moiz Ali Shah

Muhammad Ali

Saad Malik
Final Year Student of Electrical Engineering Department,
FAST - NUCES, Faisal Town, Lahore, Pakistan

Abstract

With the growing research in the field of computer vision and image processing,
numerous applications of Object Recognition have been developed. This paper discusses the
recognition of objects through image processing. For this purpose RGB camera is being used.
Initially, templates of objects (ball, box and bottle) are stored and processed for template
matching. At real time original image data is taken and then divided into four frames,
containing an object in each frame. These frames have resolution equal to the resolution of
the templates. All the processing is done on colour images. Then, Harris Transform is applied.
Using the co-variance matrix, error is calculated and compared with the threshold to match
objects. Object is basically recognized by calculating the difference in the co-variance of
images.

Keywords: Co-variance, frame extraction, down-sampling, harris transform, speech
recognition, Kinect

Introduction

Speech recognition is an active region of research in the field of computer vision. In
this system to recognize the voice commands, built-in speech recognition of Kinect was used.
A speech grammar was created in this system and a code in C# language was written to start
the speech engine and match commands. The input to this system was the voice command
from the microphone array of Kinect. Anyone can give a voice command and the software
acts according to the response stored for that command. For voice commands, two to three
words were stored corresponding to each image. We tested the system on four objects. Images
of four objects were being used as samples. The object recognition was done using image
stream data from the RGB camera. After acquiring the pixel data of the image frame,
processing was done. First, the background colour was identified (in this case the colour of the
background was red) and removed, turning everything, except for the object, black. The
resulting pixel data was of the object with a black background. The R, G and B arrays were
separated for further processing. The covariance was used to compare the similarity between
the template image and the image taken at run time. In this way, Harris Transform was used
for object recognition.

420

Implementation of the proposed algorithm

This section describes in detail the implementation and the steps of the different
algorithms used in this object recognition system. The steps of the system are as follows:

Take images of the objects and store them after scaling to required resolution
(160x160 in this case) so that they can be used as templates for matching.

Receive a voice command to search the template image of the object in the database.

Remove the background of both, the image taken at run time and the template image.

Extract pixel information from image stream data of Kinect.

Apply Harris transform on both the template image and the image acquired at run time
from Kinect to compare the similarity between both.

The steps mentioned above are explained in sub-sections given below:

Speech Recognition

A library of speech grammar for identification of commands given by user was build
first. The templates were stored corresponding to each object name in the database. User’s
voice command was taken as an input through the microphone array of Kinect to find the
desired object. The C# language code was executed to start the speech engine and match
commands. If the command was in the library, template image of the object was searched and
loaded from the data base. Otherwise no further processing was done. Built in library of
Kinect was used for speech -recognition.

Voice

command 1% | Kinect | =t

No

Word
Recognized

{} Yes

. Search Object
Image acquired ¢ template in databasg

Figl: Speech Recognition through Kinect

Algorithm for reduction of data for fast computation

The template image resolution was 640 x 480 initially. 1t was down sampled so that its
resolution matches that of the divided frame of the image taken at run time. The template
image was down sampled by a factor of 12 to make the image resolution 160 x160. Template
image pixel data had 640 columns and 480 rows. To reduce resolution of columns from 640 to
160, pixel data was collected as pixeldataO, pixeldata4, pixeldata8,.
pixeldata640. Consecutive 3 pixels data was removed. Similarly for the rows, pixel data Was
collected as pixeldata0, pixeldata3, pixeldata6, ,pixeldata480. Consecutive 2 pixels
data was removed and rows were reduced from 480 to 160. The new pixel data obtained
resulted in the down sampled image which was further processed. Fig2 illustrates how down
sampling was done on the template image.

421

480

0 4 ... 640
Fig2: Downsampling of template image.

Original Sample Downsampled
Fig3:Result of Downsampling

Extraction of frames

Image obtained from the image stream data of KinectCam was of resolution 480 x
640. There were four objects in the image taken at run time. Those four objects were placed at
equal distance. Therefore four frames were captured from the image taken at run time, each
frame containing one object. The image of each object was of 160 x160 resolution, which was
equal to the template resolution. Harris Transform was then applied to the resulting images of
160x 160 resolution.

One Two' Three Four!
Figda: Image captured through Kinect.
Fig4b: Extracted images.

Harris Transform
Harris transform compares similarities between different images using co-variance.
Image data from the Kinect image stream is in the form of B,G, R, and a.

422

B G| R]|« B GJ|R]|a]|B G| R|a

w w v
pixel1 data pixel2 data pixel3 data

Fig5: Data captured through Kinect.

For each image frame extracted from the image taken at run time, separate arrays were
made for blue, green and red (a was not required). The template image data was also put in
separate arrays of blue, green and red and Harris transform was applied to those arrays as
well. Harris transform was used to compare similarities between the template image and the
image frames of image taken at run time using co-variance. The general formula for the
covariance is:

N

1 U

Cay =mzo<xi ~D-7)
£

For image covariance, covariance was calculated of red data of imagel with red data
of imagel, red data of imagel with blue data of imagel, red data of imagel with green data of
imagel. Similarly,for blue data of imagel and green data of imagel. In the same way image2
covariance was also calculated.

Image1 Image
R L R
G= (=G
= =3

Fig6: combinations for co variance
The matrix obtained by nine covariance was as shown below:

The next step was to calculate error between covariance of two images
correspondingly. The formula used to calculate error is as given below:
Error= Crr1 — Crr2 ! Crr1

423

Objectl

. 2499335

22.89622
17.59371
. 24.21977
22.53645
18.36702
. 13.29746
36.49438

10.44239

. 1161481

32.81418
19.74263

. 7567974

11.73985

Conclusion:

22.89622

28.34861

330.9726

22 53645

20.34286

319.5949

26.49498

58.90314

16.84206

32.81418

3428459

236.649

11.72985

29.44913

1759371

3309726

1775095

18.36702

319.5949

180.288

10.44239

16.84206

27.55469

19.74263

236.649

110.8644

50.33292

184.1551

Object2

51.07847 26.35608

26.35609 17.0443

32.52685 11.11979

50.78252 25.72562

2572562 17.1488

31.59242 10.57032

43.40421 293715

39.3715 73.6028

48.40616 B2.56217

27.01686 357318

35.7218 237.73593

5352562 29.04361

2081276 1562198

15.62198 54.68345

32.52685

1111979

11.26592

3159342

10.57022

10.32699

48.40616

82.56217

77.06865

53.52562

29.04261

32.72026

1425821

4184698

Object3

43.24374

2542037

32.19248

42 89235

2565707

3097217

3432672

38.99754

48.2064

1545042

35.22882

53.177

18.42217

15.08733

2542037

2177558

1245923

25.65707

20.23027

1265719

32.19248

12.45923

13.3127

3097217

1265719

1499495

38997594 48.2064

6153821

77.92561

35.23882

59.586931

10.84281

15.08733

3429628

77.92561

70.43802

53177

10.84281

13.42057

14.00688

26.96678

Objectd

41.04235 3187159 99.13445

31.87159 3.130935 7.642942

99.13445 7.642942 17.08174

40.56097 33.16213 107.269%

33.16212 2.11649% 7.759329

107.2696 7.759329 1672827

31.77067 9.601142 5137378

0601142 67.44975 B2.05721

5137378 B2.05721 78.7621B

12.21654 15.0202 3801219

150202 22.76824 26.86203

28.01219 26.86203 37.50193

15.39327 51.59891 1537547

5159851 4400459 40.34454

Object Recognition was done quite efficiently. We have done more than 20
experiments from which five have been shown in the above figure. Minimum error of 8% and
maximum error of 20% occurs between the covariance of the template image and the matched
object image. This method uses the extraction of frames, downsampling of the image and
covariance of image. Image matching has been done on the basis of their R, G and B value. A
distinguishing feature of this method is that it works for objects placed at a different angle
than the template image.

References:

Jason Owens, “Object detection using kinect,” in Title of His Published Book, Army Research

Laboratory

David Katuhe, Programming with the Kinect Windows SDK
D.G.Lowe, Distinctive image features from scale invariant key points

424

