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Abstract

With the growing research in the field of computer vision and image processing,
numerous applications of Object Recognition have been developed. This paper discusses the
recognition of objects through image processing. For this purpose RGB camera is being used.
Initially, templates of objects (ball, box and bottle) are stored and processed for template
matching. At real time original image data is taken and then divided into four frames,
containing an object in each frame. These frames have resolution equal to the resolution of
the templates. All the processing is done on colour images. Then, Harris Transform is applied.
Using the co-variance matrix, error is calculated and compared with the threshold to match
objects. Object is basically recognized by calculating the difference in the co-variance of
images.

Keywords: Co-variance, frame extraction, down-sampling, harris transform, speech
recognition, Kinect

Introduction

Speech recognition is an active region of research in the field of computer vision. In
this system to recognize the voice commands, built-in speech recognition of Kinect was used.
A speech grammar was created in this system and a code in C# language was written to start
the speech engine and match commands. The input to this system was the voice command
from the microphone array of Kinect. Anyone can give a voice command and the software
acts according to the response stored for that command. For voice commands, two to three
words were stored corresponding to each image. We tested the system on four objects. Images
of four objects were being used as samples. The object recognition was done using image
stream data from the RGB camera. After acquiring the pixel data of the image frame,
processing was done. First, the background colour was identified (in this case the colour of the
background was red) and removed, turning everything, except for the object, black. The
resulting pixel data was of the object with a black background. The R, G and B arrays were
separated for further processing. The covariance was used to compare the similarity between
the template image and the image taken at run time. In this way, Harris Transform was used
for object recognition.
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Implementation of the proposed algorithm

This section describes in detail the implementation and the steps of the different
algorithms used in this object recognition system. The steps of the system are as follows:

Take images of the objects and store them after scaling to required resolution
(160x160 in this case) so that they can be used as templates for matching.

Receive a voice command to search the template image of the object in the database.

Remove the background of both, the image taken at run time and the template image.

Extract pixel information from image stream data of Kinect.

Apply Harris transform on both the template image and the image acquired at run time
from Kinect to compare the similarity between both.

The steps mentioned above are explained in sub-sections given below:

Speech Recognition

A library of speech grammar for identification of commands given by user was build
first. The templates were stored corresponding to each object name in the database. User’s
voice command was taken as an input through the microphone array of Kinect to find the
desired object. The C# language code was executed to start the speech engine and match
commands. If the command was in the library, template image of the object was searched and
loaded from the data base. Otherwise no further processing was done. Built in library of
Kinect was used for speech -recognition.
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Figl: Speech Recognition through Kinect

Algorithm for reduction of data for fast computation

The template image resolution was 640 x 480 initially. 1t was down sampled so that its
resolution matches that of the divided frame of the image taken at run time. The template
image was down sampled by a factor of 12 to make the image resolution 160 x160. Template
image pixel data had 640 columns and 480 rows. To reduce resolution of columns from 640 to
160, pixel data was collected as pixeldataO, pixeldata4, pixeldata8,. . . . . .. ... ..
pixeldata640. Consecutive 3 pixels data was removed. Similarly for the rows, pixel data Was
collected as pixeldata0, pixeldata3, pixeldata6, . ........ ,pixeldata480. Consecutive 2 pixels
data was removed and rows were reduced from 480 to 160. The new pixel data obtained
resulted in the down sampled image which was further processed. Fig2 illustrates how down
sampling was done on the template image.
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Fig2: Downsampling of template image.

Original Sample Downsampled
Fig3:Result of Downsampling

Extraction of frames

Image obtained from the image stream data of KinectCam was of resolution 480 x
640. There were four objects in the image taken at run time. Those four objects were placed at
equal distance. Therefore four frames were captured from the image taken at run time, each
frame containing one object. The image of each object was of 160 x160 resolution, which was
equal to the template resolution. Harris Transform was then applied to the resulting images of
160x 160 resolution.

One Two' Three Four!
Figda: Image captured through Kinect.
Fig4b: Extracted images.

Harris Transform
Harris transform compares similarities between different images using co-variance.
Image data from the Kinect image stream is in the form of B,G, R, and a.
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Fig5: Data captured through Kinect.

For each image frame extracted from the image taken at run time, separate arrays were
made for blue, green and red (a was not required). The template image data was also put in
separate arrays of blue, green and red and Harris transform was applied to those arrays as
well. Harris transform was used to compare similarities between the template image and the
image frames of image taken at run time using co-variance. The general formula for the
covariance is:
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For image covariance, covariance was calculated of red data of imagel with red data
of imagel, red data of imagel with blue data of imagel, red data of imagel with green data of
imagel. Similarly,for blue data of imagel and green data of imagel. In the same way image2
covariance was also calculated.
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Fig6: combinations for co variance
The matrix obtained by nine covariance was as shown below:

The next step was to calculate error between covariance of two images
correspondingly. The formula used to calculate error is as given below:
Error= Crr1 — Crr2 ! Crr1
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Object Recognition was done quite efficiently. We have done more than 20
experiments from which five have been shown in the above figure. Minimum error of 8% and
maximum error of 20% occurs between the covariance of the template image and the matched
object image. This method uses the extraction of frames, downsampling of the image and
covariance of image. Image matching has been done on the basis of their R, G and B value. A
distinguishing feature of this method is that it works for objects placed at a different angle
than the template image.
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