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Abstract 
 In this paper we investigate the motion of discrete dynamical systems 
involving Caputo fractional derivatives using the fractional calculus. The 
fractional Hamilton’s equations and the explicit solutions of Euler-Lagrange 
equations are calculated by using the canonical transformations. The 
interesting point in this work is that the classical results are obtained when 
fractional derivatives are replaced with the integer order derivatives. Two 
examples are analyzed in detail. 
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Introduction     
 Fractional calculus is one of the generalizations of the differential 
calculus and it has been used successfully as an alternative tool to solve 
several problems in various fields of science and engineering (Oldham and 
Spanier, 1974; Miller and Ross 1993; Samko et al., 1993; Podlubny, 1999; 
Hilfer, 2000; Kumar and Kumar, 2013 
 Fractional calculus of variations unifies the calculus of variations and 
the fractional calculus, by inserting fractional derivatives into the variational 
integrals. This occurs naturally in many problems of physics or mechanics, in 
order to provide more accurate models of physical phenomena (Atanackovi 
and Stankovi, 2007; Baleanu, 2009). 
 The fractional calculus is nowadays a subject under strong research. 
Different definitions for fractional derivatives and integrals are used, 
depending on the purpose under study. Investigations cover problems 
depending on Riemann-Liouville fractional derivatives, the Caputo fractional 
derivatives (Agrawal, 2007, 2011; Baleanu and Muslih, 2005; Baleanu and 
Agrawal, 2006) and others. 
 However, the differential equations defined in terms of Riemann-
Liouville derivatives require fractional initial conditions whereas the 
differential equations defined in terms of Caputo derivatives require regular 
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boundary conditions. For this reason, Caputo fractional derivatives are 
popular among scientists and engineers. 
 The formulation of the fractional variational principles still needs to 
be more developed in the future and it has an important role for elaboration of 
a consistent fractional quantization method for both discrete and continuous 
systems. The first attempt to find the fractional Lagrangian and Hamiltonian 
for a given dissipative system is due to Riewe (1996, 1997). Riewe 
formulated the problem of the calculus of variations with fractional 
derivatives and obtained the respective Euler-Lagrange equations, combining 
both conservative and nonconservative cases. These Euler-Lagrange 
equations are then used to investigate problems with Lagrangians that are 
linear in the velocities (Baleanu and Avkar, 2004). Furthermore, many 
authors (Baleanu and Muslih, 2005; Muslih and Baleanu, 2005; Baleanu and 
Agrawal, 2006; Agrawal, 2006, 2007; Rabei et al., 2007; Fahd and 
 Baleanu, 2007) have introduced a huge amount of mathematical 
knowledge and important contributions in the field of fractional integrals and 
derivatives. 
 The study of fractional problems of the calculus of variations and 
respective Euler-Lagrange equations is a fairly recent issue and include only 
the continuous case. The discrete analogues of differential equations can be 
very useful in applications. 
 The current work is aimed to apply the fractional calculus to solve 
differential equation involving discrete classical systems with Caputo 
Derivatives.  
 This paper is organized as follows: In Section 2, some basic formulas 
of the fractional calculus are briefly reviewed. Section 3 contains a briefly 
review of the fractional Lagrangian and Hamiltonian analysis of discrete 
systems. In Section 4, two examples of discrete classical systems are 
presented. Section 5 is dedicated to our conclusions. 
  
Basic Tools 
 In this section we briefly present some basic definitions of the 
fractional calculus. The fractional Caputo derivatives are defined as follows: 
 The left-sided Caputo fractional derivative of order α is defined by 
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where the Gamma function has the form 

dxexp xp −
∞

−∫=Γ
0

1)( .        (3) 

 Here α  is the order of the derivative such that 
nn <≤− α1  and is  not equal to zero. By definition, the Caputo 

fractional derivative of a constant is zero.  If  α  is an integer,  we 
recovered the usual definitions, namely, 
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 The fractional Euler-Lagrange equations are obtained in Ref. 
(Agrawal, 2002), and we present briefly the main results obtained as follows: 
Let )(qS  be a functional of the form 

∫=
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 (5) 
and defined on the set of continuous functions q(t) which have continuous left 
fractional Caputo derivative of order α  and right fractional Caputo 
derivative of order β  in the interval [a, b]. Then a necessary condition for 

)(qS  to have an extremum for a given function q(t) is that q(t) satisfies the 
generalized fractional Euler-Lagrange equation given by 
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 Note that for fractional calculus of variation problems the resulting 
Euler-Lagrange equation contains both the left Caputo fractional derivative 
and the right Caputo fractional derivative. This is expected since the optimum 
function must satisfy both terminal conditions. Further, for 1== βα , we 
have 
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and Eq.(6) reduces to the standard Euler-Lagrange equation for 
classical calculus of variations 
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Fractional Lagrangian and Hamiltonian Analysis of Discrete Systems 
 A Hamiltonian dynamics in terms of Caputo derivatives was 
developed (see e.g. (Baleanu and Agrawal, 2006; Agrawal, 2006, 2007; Rabei 
et al., 2007). For a given fractional Lagrangian 
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the fractional canonical momenta are defined as 
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 Therefore, we construct the corresponding fractional Hamiltonian as 
follows: 
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 The total differential of this Hamiltonian can be obtained as [18] 
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 We may combine (10) and (12) to obtain 
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  Making use of the Euler-Lagrange equation (6), we get 
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  Since the Hamiltonian is required to be a function of the 
generalized coordinates and momenta:   
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it follows that 
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 Comparing (14) and (16), one obtains the following fractional 
Hamilton's equations of motion 
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 It is worth to mention that for 1→α , equations (17) reduce to 
classical Hamilton equations. In addition, the fractional Hamiltonian isn’t a 
constant of motion even though the Lagrangian doesn’t depend on the time 
explicitly, this can be observed by making use of 

  dt
dp

p
H

dt
dp

p
H

dt
dq

q
H

dt
dH β

β

α

α ∂
∂

+
∂
∂

+
∂
∂

= , 

and by substituting the values of partial derivatives of Hamiltonian from (17). 
As a result we obtain that 
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Examples 
 As a first example of discrete systems consider the fractional 
Lagrangian: 



European Scientific Journal   August  2014 edition vol.10, No.24   ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

282 

( ) ( )22

2
1

2
1 qDqDL b

C
tt

C
a

βα +=       (19) 

which is the analog of free motion in one-dimensional space. 
 Considering 1,0,1,0 <<== βαba , and by using (6), the 
fractional Euler-Lagrange equation is given by 
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 The expressions of the generalized fractional momenta read  
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 The fractional Hamiltonian corresponding to (19) is  given by  
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 Thus, the fractional equations of motion can be obtained as: 
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in addit ion to 
( ) ( ) 01001 =+ qDDqDD C
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 In fact, this result shows that the fractional Hamiltonian equations are 
equivalent to the fractional Euler-Lagrange equation. 
  As a second example Let us consider the following  fractional 
Lagrangian: 
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 The fractional Euler-Lagrange equation is given by 
( ) ( ) 01001 =++++ qqqDDqqDD C
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 Now, the generalized fractional  momenta read as  
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and therefore the fractional  Hamiltonian has the form 
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 Accordingly, the fractional  equations of motion can be obtained as: 
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Again, these results are in exact agreement with (26) and (27). 
 
Conclusion 
 The canonical fractional Hamiltonian and the corresponding fractional 
Hamilton’s equations of motion for discrete systems are constructed within 
the fractional Caputo derivatives. For the given two discrete examples we 
observed that both fractional Euler-Lagrange equations and fractional 
Hamiltonian equations give the same results.  
 The approach presented here and the resulting equations of motion are 
very similar to those for variational problems containing integral order 
derivatives. 
 As it is expected the dynamics of the fractional calculus systems is 
different from the classical one but the classical dynamics is recovered as a 
particular case when the derivatives are of integral order only, the results of 
fractional calculus of variations reduce to those obtained from the ordinary 
calculus of variations.  
 We consider two specific examples in this paper. For the first example 
we consider one of the possible fractional generalization of the free one 
dimensional particle Lagrangian. Both fractional Euler-Lagrange and 
Hamilton equations are obtained for this example and it was proved that they 
are equivalent in the fractional case. The second example deals with the same 
fractional generalization of the free one dimensional particle except by adding 

a term of 
2

2

10
qqDqqDq C

tt
C ++ βα . 

 The advantage of using the method presented in this paper, is that we 
can easily obtain the action function, which is the essential part for obtaining 
the WKB quantization for any mechanical fractional system.  
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