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Abstract 
 A quantum system that lies nearby a magnetic or time-varying electric field region, 

and that is under periodic boundary conditions parallel to the interface, is shown to exhibit a 

hidden Aharonov-Bohm effect (magnetic or electric), caused by fluxes that are not enclosed 

by, but are merely neighboring to our system – its origin being the absence of magnetic 

monopoles in 3D space (with corresponding spacetime generalizations). Novel possibilities 

then arise, where a field-free system can be dramatically affected by manipulating fields in an 

adjacent or even distant land, provided that these nearby fluxes are not quantized (i.e. they are 

fractional or irrational parts of the flux quantum). Topological effects (such as Quantum Hall 

types of behaviors) can therefore be induced from outside our system (that is always field-

free and can even reside in simply-connected space). Potential novel applications are 

outlined, and exotic consequences in solid state physics are pointed out (i.e. the violation of 

Bloch theorem in a field-free quantum periodic system), while formal analogies with certain 

high energy physics phenomena and with some rather unexplored areas in mechanics and 

thermodynamics are noted.  
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Introduction 

 The well-known Aharonov-Bohm (AB) effect[1] occurs in systems with multiply-

connected topology: the system under consideration always has to surround an enclosed and 

inaccessible (magnetic or spacetime-electric) flux. We here show (by providing specific 

physical examples) that it is possible for planar systems, with an apparently simply-connected 

topology, to exhibit a similar dynamic effect, but caused by nearby (rather than enclosed) or 

even distant (and inaccessible) fields (and corresponding fluxes), something with potential 

revolutionary applications – the behavior of the system not being determined by local 

physical laws, but mainly by nonlocal influences of fields imposed on a neighboring land. 

 The above has a deep gauge character, as will be shown in this paper, and it has 

apparently been overlooked in numerous works on extended solid state systems with 

inhomogeneous magnetic fields (with either conventional (parabolic) or Dirac energy 

dispersions), possibly because it is plagued with a gauge ambiguity. The origin of this 

annoying feature (the ambiguity) is here explored in detail, and it is given a full mathematical 

and physical explanation. It is also suggested how it can be theoretically removed (by 

enforcing its elimination and studying its consequences), its removal leading to macroscopic 

quantizations and to certain well-known properties of a topological origin (Dirac quantized 

magnetic monopoles, integer quantum Hall effect, quantized magnetoelectric phenomena in 

topological insulator surfaces). The focus of this paper is, however, the demonstration that 

there may occur experimental conditions (clarified here) when the transformations leading to 

this gauge-proximity effect or remote influence of fields do not really suffer from any 
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ambiguity; this is due to real change in physics of a companion system in higher 

dimensionality that transfers momenta to our lower-dimensionality system, as will be shown 

with a singular gauge transformation argument (that will be different from the standard 

singular gauge transformation underlying the usual AB effect). Under such conditions, these 

proximity or remote effects are then real (experimentally realizable) and lead to the 

remarkable possibility of inducing topological phenomena from outside our system (which is 

always without fields and can even reside in simply-connected space). Specific procedures 

are then proposed to experimentally detect such types of nonlocal dynamical effects and 

exploit them for novel applications, while general consequences in solid state physics are 

pointed out (such as the first example of a planar field-free quantum periodic system that 

actually violates Bloch's theorem, this happening due to the hidden AB effect (i.e. the 

presence of an extra gauge field on our system that violates the standard Bloch theory) caused 

by the 3D companion). We also mention in passing some formal connections to certain high 

energy physics phenomena (θ-vacua, and some types of Gribov ambiguities), and similarities 

to some other, rather unexplored, areas that have attracted recent interest. 

 A bit of Zooming on the results: The deep reason behind the above effects is shown to 

be the well-known absence of magnetic monopoles[2] in higher dimensionality (3D) and 

corresponding generalizations in Minkowski space (whenever time-dependent fluxes are 

involved). These effects are here rigorously shown to exist and to affect numerous results in 

the literature (mostly on extended solid state systems with piecewise-continuous fields) if 

quantum coherence parallel to the interfaces is taken into account (through the standard 

imposition of periodic boundary conditions, as usually done in solid state physics). The 

already noted gauge ambiguity in the plane is actually due to the richer physics of the 

companion system in 3D that reduces to our 2D system in an appropriate limit. Under such a 

limiting procedure (and under certain experimental conditions) there are cases, as already 

mentioned, when such ambiguity is not present    an apparently innocent gauge 

transformation in the plane (that is responsible for the gauge ambiguity) actually corresponds 

to real change in physics, due to nonequivalent displacements of the 3D companion relative 

to our 2D system (but with all of these displacements producing the same result on our lower-

dimensionality system in the proper limit). This is shown to be a singular gauge 

transformation in 3D, namely one with a multiply-valued gauge function (but, as noted, 

different from the standard AB one), and it involves the above noted physical momentum 

transfers to our remote lower-dimensionality system, with all the physical consequences of a 

genuine nonlocal effect. Such type of gauge-nonlocal influence can then have important 

applications to extended systems that reside nearby time-dependent electric fields, or even 

nearby adiabatically varying magnetic fields (varying in their intensity or in their placement 

and adiabatic movement in 3D space), with fractional or irrational fluxes. This leads to the 

possibility of manufacture of interesting quantum devices that exploit the above proximity 

effects (i.e. a distant influence of spacetime electric fluxes) in order to induce topological 

phenomena from outside the system     the simplest example being an electric flux-driven 

charge pumping in a modification of the well-known Laughlin's gauge argument[3] that is 

usually invoked for the explanation of the Integer Quantum Hall Effect (IQHE). By analyzing 

the 3D companion system we show that the above proximity effects are not only real (i.e. 

they can be realized experimentally), but they can also serve as an easier experimental 

detection of AB effects (in a simply-connected system and without enclosed fluxes (hence 

with lesser magnetic leakage problems)), and they can also lead to already mentioned exotic 

possibilities. We propose specific ways through which an experimentalist can measure effects 

related to the above, hinting at expected behaviors not only in a conventional 2D solid state 

system (i.e. with parabolic energy spectrum), but also in graphene and topological insulator 

surfaces (examples of quantum systems with linear low-energy spectrum). 
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 However, in a strict planar world, with complete lack of information on the 3D 

companion, the above mentioned ambiguity may indeed show up (actually reflecting our 

ignorance of the properties of the higher dimensional companion system). This ambiguity can 

then be theoretically removed when certain adjacent fluxes are forced to be properly 

quantized; this immediately suggests a natural way to eliminate the artificial effect for 

confined systems, and we propose this (enforcement of elimination of the ambiguity, through 

quantization of nearby fluxes) as a criterion of proper behavior. Although this is not the main 

focus of the present paper, we argue that this has direct applicability even to cases when 

(effective) magnetic monopoles are present; the same criterion then directly leads to the 

quantization of certain macroscopic quantities, and this in turn leads to topological 

quantization of charge and response functions in a wide range of systems of current interest 

without further gauge considerations. Examples include the already noted Dirac quantization 

of magnetic monopoles[2], and – by additionally invoking axion electrodynamics[4] – the 

integral quantization of Hall conductance in conventional 2D Quantum Hall systems, and 

also the half-quantization of the recently proposed quantized magnetoelectric phenomena in 

surface-gapped 3D time-reversal-symmetric topological insulators (basically reflecting the 

Witten effect[5]). Finally, connections are noted with certain high-energy physics phenomena 

that seem to have a formal similarity (the already noted    θ-vacuum sectors, and some types 

of Gribov ambiguities), as well as with certain areas in mechanics and in thermodynamics 

that are still underexplored. It may also be of interest to solid state physics that a mapping is 

also possible to general spin-related phenomena, through boosts to properly moving frames, 

providing the possibility of studying nontrivial spin-physics by starting from purely orbital 

considerations – although a serious look at spin-related phenomena (including spin-orbit 

interactions) in this new framework is reserved for a future note. 

  

The simplest (static and magnetic) example 

 Consider a flat rectangle (strip) of horizontal length  L   in the ( xy  )-plane with 

periodic boundary conditions along  L   (in the  x  -direction), that consists of two adjacent 

(up and down in the  y  -direction) parts, again strips of length  L  , the one on top being 

empty of fields or scalar potentials (the white area) and the one at the bottom penetrated by a 

perpendicular magnetic field  B   (the dark area). Let us start with a static and uniform  B  , 

and let us first consider a nonrelativistic quantum particle (of mass  m   and charge  e  ) that 

moves only inside the upper white area; i.e. we make sure that the two areas are separated by 

an appropriately infinite scalar potential wall, so that the lower dark (magnetic) area is totally 

inaccessible to the particle. Let us then set the origin  y 0   at the bottom of the dark area 

(i.e. take  0,0  at the bottom left corner of the dark (magnetic) strip), the separating wall 

being at  y d1  , and the top of the white area being at  y d2   (which, for simplicity, we 

also consider to be impenetrable). The particle is therefore confined in the  y  -direction by the 

walls at  y d1   and  y d2  , with periodic boundary conditions (pbc) in the  x  -direction, 

and feels no magnetic field    the field  B   being only in the adjacent dark forbidden area, 

that lies below the particle's white strip. The usual procedure to solve this rather trivial 

problem, especially for the  B 0   case, would be to work in the gauge  A 0   everywhere 

inside the white region: eigenfunctions are then of the form   x,y eikxx sink yyd1  

(with  k y 
n y

d
, ny 1,2, . . .   and  d d2 d1  , and with  

k x 
2m


2ky

2

2m



2   being 

quantized as  k x 
2

L
nx    ( nx 0,1,2, . . .  )), with the associated energies being 
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therefore   n x ,n y 


2

2m


2n y

2

d2



2

2m

2

L

2
nx

2

  . Let us now include the nonzero magnetic field  

B   (that is always inside the dark area only) by using a generalization of the Landau gauge, 

with the origin being as noted above, namely  A yBêx    for  0 y d1 ,    and   

A d1Bêx A 0êx    for  d1 y d2  ; this gauge choice indeed satisfies that  
Ay

x

Ax

y   

is  B   inside (and zero outside) the dark region, and  A   is continuous at the separating wall 

(at  y d1  ). Note that the particle in the white area now feels a nonzero (although uniform) 

vector potential, that makes wavefunctions formally pick up an extra phase factor  

e
i e

c


x
Adx

  (through a gauge transformation mapping trick, starting from  A 0  ), so that 

we now have  
A
x,y eikxxei e

c
A

0
x sin

n y

d
yd1 . By then imposing the pbc in the  x  -

direction, we obtain   e
ikx

e

c
A

0
L
1.   From this, we can determine the new quantized 

values of  k x   and then the energy spectrum, which finally turns out to be   

n x ,n y 


2

2m


2ny

2

d2



2

2m
2
L

2

nx f2 ,   #   
 

 with   f 
dark

0  ,  where   dark Bd1L    is the total flux through the dark area and  

0 
hc
e   is the flux quantum. These allowed energies are actually periodic with respect to  

dark   (with period  0  )    as can be seen if, for a given  dark  , proper shifting of the 

integers  nx   is made    and whenever  dark   happens to be an integral multiple of  0  , 

the global spectrum is equivalent to that corresponding to the absence of the adjacent  B   (i.e. 

to  dark0  , reducing to the one with  A 0   derived earlier). 

 The key observation is that, although the particle will never enter the dark area, its 

energy spectrum, and from this other measurable quantities (i.e. global electric current  

J c 
  ) are seen to be affected by the adjacent (forbidden) magnetic field    a type of 

proximity field influence, and not the usual AB effect, since the magnetic flux is not 

enclosed by the region where the particle resides, but is only adjacent to it. If the origin of 

our coordinate system were chosen anywhere below the dark floor, the above result would 

seem to be origin-independent. If however we chose the origin to be, e.g., at the wall 

separating the two areas, then this effect would go away. (And note that in flat space, change 

of origin is equivalent to a gauge transformation    see further on this later below). We 

observe therefore a gauge ambiguity. Hence one may well say that it cannot be a real physical 

effect; the theory however does predict such an artificial effect as a direct consequence. What 

is the reason behind it or what is its deeper origin? And, most importantly, is it ever possible 

to make any use of it experimentally? We shall see that this can be given an affirmative 

answer, under certain conditions. 

 A direct first understanding of why an adjacent region can affect our system can 

immediately be provided by the appearance of nonlocal terms in a gauge function, in the 

generalized theory of refs [6,7],  something  that  occurs  whenever,  in  the  standardsolutions 

(Dirac phases) with integrals of vector or scalar potentials, these integrals have to pass 

through regions with nonvanishing fields (although the final point of the integrals is always 

outside these fields). However, even in the standard framework of the usual Dirac phase 

factors, the results are the same (as derived above), and the deeper origin of the above 

proximity field influence in flat space can be revealed through 3D folding (compatible with 

the pbc in the  x  -direction): we show in what follows that the above effect is actually due to 
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the well-known absence of magnetic monopoles anywhere in the embedding 3D space. 

Indeed, by folding in the  x  -direction in order to form a cylinder (by gluing the opposite 

vertical sides), the above gauge, now written in cylindrical coordinates, has only azimuthal 

component, and it is  A 0,zB,0  in the dark and  A 0,d1B,0  in the white area, 

with  B   always denoting the magnitude of the locally perpendicular field (at every point of 

the now dark folded strip) that has now become the radial component of a larger magnetic 

field  B   in 3D space. It is crucial then to note that this gauge choice leads in 3D to the 

additional appearance of a nonzeroBz   (component of this larger field  B   parallel to the 

cylinder's  z  -axis) that is inhomogeneous (generally   - and  z  -dependent). Indeed, 

straightforward calculation of the total field  B   produced by the above form of  A   (see next 

Section) leads to  Bz 
zB
   in the dark area, and  Bz 

d1B
   in the white area. This 

inhomogeneous  Bz   in all 3D space is exactly what is needed to give a flux (of this  Bz  ) 

through the top (say at height  z2  ) and the bottom (say at height  z1  ) of any cylinder (of 

height  z2 z1  ) that overall cancels out the radial flux (of  B ) that goes through its curved 

cylindrical side-surface (with this  B  partly being  B   and partly zero in the corresponding 

dark and white regions that now lie folded on the surface). And the flux of  Bz   through the 

top is also identical to the value of a horizontal closed integral of the corresponding  A   at 

height  z2   this way directly demonstrating that we now have the standard AB effect 

operating (since the  Bz  -flux is now enclosed by the particle's region). What we see here is 

simply the well-known fact that the total flux passing through the entire closed cylindrical 

surface is indeed zero (as demanded by the volume integral of  B 0   inside the whole 

cylinder). Hence, in the case of  z2 z   being in the white region, and  z1 0   (so that the 

flux-contribution from the bottom at  z1 0   is vanishing), the proximity field influence at 

height  z   inside the white area is a hidden (or indirect) AB effect, due to the enclosed flux of  

Bz   that is automatically created, which in turn is equal (up to a sign) to the dark flux, i.e. the 

flux of the radial  B   through the entire dark folded strip, due to the above cancellation. This 

way the dark strip affects indirectly the adjacent white region (through the companion 

system in 3D, i.e. through the automatic formation of the appropriate 3D magnetic field  B   

that must satisfy all the above (and everything that follows, see next Section)). 

 

Flux cancellations and physical explanation 

 Let us first briefly confirm the above mathematical results and then provide a physical 

understanding. Recall that  
A




1


A z



A

z  ,  
A




A

z

A z

   and  

A
z


1


A



A

  . For our gauge  A 0,zB,0  in the dark area and  

A 0,d1B,0  in the white area, these lead to:  B
1




z
zB B  in the dark 

area, and  B
1




z
d1B 0   in the white area as required; we also obtain  B0   

in both areas, and finally  
Bz 

1





zB 

zB
   in the dark area, and  

Bz 
1





d1B 

d1B
   in the white area, as claimed above. In order to make the 

above mentioned cancellations easily visible, take the special choice  z1 0   (the bottom of 

the cylinder being at the origin (at the bottom of the dark strip)) and  z2 z   (the top of the 
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cylinder, lying either (a) inside the dark or (b) inside the white area); the curved side-surface 

then consists of either (a) just a lower part of the dark strip or (b) the entire folded dark strip, 

together with a lower part of the white folded area. Then indeed, the flux of  Bz   through the 

ceiling is  BzddzB2R   if  z   is inside the dark area, or  d1B2R   (hence a 

constant) if  z   lies inside the white area; and we see that, in either case, it indeed cancels out 

the radial  B  -flux (which is  zB2R  in the dark area and the constant  d1B2R  in the white 

area, either of which can also be determined by use of the proper  B  as given above). And 

the flux of  Bz   through the top is also identical to the value of a closed integral of the 

corresponding  A   around the cylinder (which is  ARdzB2R   or  d1B2R  ) as 

expected, this way clearly demonstrating that the above cancellation is actually due to the 

standard AB effect (due to the  Bz  -flux that is enclosed by the particle's region). 

 After this mathematical confirmation, and in an attempt to provide a better physical 

understanding and also seek an experimental realization, let us momentarily turn to a slightly 

different gauge, namely  A 0,zBR


,0  in the dark area (a gauge discussed earlier[8], 

together with an actual realistic current distribution  J   that produces it) and  

A 0,
d1BR


,0  in the white area (all this being compatible with our own gauge for  

R  the radius of the cylinder). This gauge, produced by a  J BRzê , can be shown to 

lead to similar cancellations and a similar conclusion of influence of remote fields as with our 

initial choice. But, more importantly, in both gauges, the value of  Bz   changes with the 

location of origin; i.e. in our first choice of gauge, a direct calculation as above (but with 

shifted origin) now gives  Bz 
zz0B
   for  z   in the dark area, and  Bz 

d1z0B
   for  z   

in the white area, and the presence of the arbitrary constant  z0   in the results can be seen as 

the actual source of the gauge ambiguity noted earlier. It has to do with a different flux 

balance (in the overall cancellation) between the top, the bottom, and the side-surface of any 

considered cylinder, and this will generally give an origin-dependent fluxthrough the top  

hence leading to a  z0  -dependent AB influence at height  z  , and therefore a  y0  -dependent 

proximity influence in the initial flat system. Note that, in both 1st and 2nd choice of gauge, 

the point  z0   is always the point (height) where  Bz   (or  J  ) vanishes (see also ref.[9], fig.3, 

for a related (but simpler) system, where a similar  Bz  , with a vanishing point, also shows up)  

  these observations being important for our later discussion (Section V) on a relevant 

experimental setup. 

 In spite of the above peculiarity however (namely, the extra appearance in higher 

dimensionality of a  Bz   that actually has a vanishing point with a completely arbitrary 

location), the crucial property to note is that, when the plane is flat (i.e. in the limit  

R  ),the above Bz  always goes to zero on the surface (for any finite  z  ), because of its  

1/  - dependence (whereas for the 2nd gauge it is exactly zero on the cylinder surface 

because of a delta function centered on the axis). Although  Bz   is zero in the planar system, 

we see, however, that the memory of a finite enclosed flux in infinite 3D space remains, and 

it is this that actually causes the proximity field influence in the planar case. It is as if the 

cylinder axis has moved to infinity in such a way that  Bz   through the infinite space gives the 

same flux as for the folded system, namely  Bz 0  , but    in such a way that their 

product is either  yB  (dark area) or  d1B  (white area), which, in fact, are the correct 
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values of  A   for our planar system, but now derived by a limiting procedure. It is also 

interesting to emphasize that the nonlocal terms appearing in the gauge functions of the 

theory of refs [6,7] for 2D static magnetic cases confirm (or, better, contain) this type of 

proximity influence directly in flat 2D space, without the need of any folding (or unfolding) 

or other limiting considerations    a point of importance that we are planning to get back to 

in the near future. 

 Regarding a possible connection of the above  y0  -ambiguity to real physics, note 

that, mathematically, a gauge transformation in the planar problem (upon displacement of the 

origin  y0  ) is an ordinary gauge transformation (the gauge function is   
x

L   (with  

  being the change of flux that corresponds to a change of vector potential  A , a quantity 

that will appear below to be involved in a momentum transfer) and is indeed a smooth single-

valued function everywhere on the plane); when however we fold into a cylinder, the 

corresponding     turns out to be   z0BR , that is basically identical to the above 

planar    , but is now multiply-valued (it has the usual discontinuity with respect to the 

azimuthal variable    appearing in all magnetic AB types of phenomena in a cylindrically 

symmetric configuration). Hence in 3D the change of origin  z0   is not an ordinary gauge 

transformation but a singular one, and it is expected to reflect real physics (or, more 

accurately, a real change in physics between behaviors before and after the transformation, to 

be clarified below). The situation is similar to the standard AB effect (that introduces real 

difference in physics, compared to a particle free of potentials) but not identical :  here the 

effect is defined by the surface radial B   in the dark region (and by the choice  C 0   in a 

more general gauge, see below) and there is no additional arbitrary flux allowed to pass 

through the empty space    the one that appears in our problem (the flux of  Bz  ) having 

shown up automaticallydue to the absence of magnetic monopoles ; in other words, and now 

mathematically speaking, in an otherwise legitimate choice of gauge  A yBCêx   etc., 

we have always used  C 0  , hence not allowing the usual AB effect (i.e. not allowing an 

extra arbitrary magnetic flux that one could always add inside the cylinder without affecting 

the fields on the surface    the point being that the effect we present here appears by itself 

due to the surface radial  B  -field, and it is not caused by additional and arbitrary flux-

insertions). Furthermore, and now physically speaking, the  z0  -freedom has to do with the 

different (infinite in number) arrangements of the total magnetic field (in 3D space) that all 

produce the same 2D values of fields on the side surface (namely the same radial field 

component, either zero or  B   in the corresponding strips) and therefore produce the same 

physical field-arrangement of our initial planar system. Indeed, note that the formal 

appearance of  zz0  in  Bz  , actually reduces the above mentioned ambiguity to an 

ambiguity with respect to displacements of the point where Bz vanishes. And note that there is 

a great arbitrariness in placing the point of vanishing  Bz   somewhere in 3D space, although 

the 2D system does not know of all this freedom -- it only senses the radial field, which is 

always (for any of these  B  -constructions) the same    in our case it is  B   in the dark area 

and zero in the white. And then, any such change of location of the vanishing point  z0   

involves relative displacements of the total  B  -field in 3D space (relative to the cylinder), 

and this must be the source of momentum transfer to the particle on the surface. Indeed, such 

momentum transfer (integrated over infinite time) turns out to be equal to  qA/c   (as can be 
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shown by following lines of reasoning similar to those of ref.[10]) and gives an explanation 

for the physical origin of the extra phases (of AB type) picked up by the particle's 

wavefunctions upon change of  z0  . Summarizing, the crucial element is that our original 

planar system, with the pbc, is an effectively compact system (and can always be viewed as 

the  R   limit of a compact cylinder), and due to the compactification, the gauge 

transformations are not so innocent (they are actually singular, and hide real physics), the 

nontrivial effects having as origin the above noted displacement of the  B  -field in 3D space 

and the associated momentum transfers to our surface-particle. [Note also that, although in 

the planar system  Bz vanishes everywhere, the special point  z0   (or now  y0  ) has already 

been identified (as the unique point of local vanishing of  Bz   in the 3D companion system) 

before taking the limit   something that will be of relevance to the experimental discussion 

later in Section V.] 

 Effects of the above type are actually implicit in carbon nanotubes[11] (with metallic 

nanotubes subject to the above pbc), and also have immediate applicability to planar 

graphene (with no curvature)[12], although the above ambiguity has not to our knowledge 

been discussed (or exploited)    see however later below (Section VI) for our own 

suggestions on what to expect in such proximity measurements in graphene and topological 

insulator surfaces. 

 

Consequenses on other works and Generalization 

 Let us first briefly point out some consequences of the above effects on previous 

works, and discuss certain important generalizations, together with issues of experimental 

relevance (on how i.e. these proximity influences could be detected in the laboratory). 

 (A) The above types of effects seem to also appear in connection with the concept of 

effective scalar potential that has been extensively used in previous works (both on 

conventional systems[13,14] and on Dirac materials[15,16]) and in cases that the field is 

accessible to the particle (although this is not the focus of the present work    the case of 

forbidden fields making our proximity effect more striking (or physically unexpected)). 

Indeed, the above noted gauge ambiguity shows up as a gauge-dependence of the effective 

scalar potential (that seems to have also escaped notice), and it seems to affect even the 

qualitative form of this potential in the white area (see i.e. fig. 1(b) of the first of ref.[13])    

this form depending on the combination of  d1   and the sign of  k x   (see below)    bringing 

about important changes in measurable quantities in either conventional or Dirac systems. All 

examples in the literature consist of systems with magnetic strips or barriers that have been 

discussed (for accessible fields) by matching methods. For parabolic energies the effective 

potential turns out to be  Veffy
kx

e
c Axy

2

2m  , and in the white area  Axy  is a constant  

d1B , whose value is  d1  -dependent, and it is matched with the form of  Veff   as this comes 

from inside the field at the interface; inside the field we have  Veffy
1

2
mc

2
yy0

2
  

with  y0 k x
c

eB  , and it is clear that if  d1   is not an integral multiple of  y0  , then we have 

nontrivial consequences on the form of the potential (and therefore of the wavefunctions) 

outside the magnetic region (whereas if  d1 Ny0  , with  N   integer, then  dark   is 

quantized and there is no new effect). In the case of Dirac materials, by using the Dirac 

Hamiltonian  H v f  (with  pe
c A  the kinematic momentum) and with ansatz  

 ix,y  iye
ikxx

  (with  i 1,2   denoting the components of a spinor) it turns out that 

for the white area we have to solve a system of Schrödinger-like equations, namely  
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
2 2

y2
k x 

e
c Axy

2
 1,2x,y E2

v f
2
 1,2x,y

 , and we clearly see a similar effect 

(and gauge-dependence) as in the nonrelativistic system (the detailed solution will be given 

elsewhere[17]). In case that the dark strip has no integrally-quantized flux, the solution is 

again not equivalent to the case of flux-absence. Once again, at the bottom of this is phase-

physics (and the phase-mismatch around the cylinder when  dark   is not quantized). And if 

we follow this method of effective scalar potential for our original striped system with the 

magnetic region being again inaccessible, then it turns out (in a quite different manner from 

what we did in the beginning of this paper) that the energy spectrum in the white area is 

identical to eq.(1), with  
f 

qd 1B

ch/L   which is  dark/0  , in agreement with our gauge 

transformation mapping technique. Hence the use of the effective scalar potential method    

and the solution based on matching conditions in a direction transverse to the interface    

seems to lead to the same results as those of a phase-mismatch analysis parallel to the 

interface. 

 In a similar vein, systems such as a striped one discussed in Zygelman's recent 

work[18] are also expected to be affected    if we impose periodic boundary conditions 

parallel to the strip    whenever the flux of the strip is not quantized (and it is easier to see 

this if we take the strip to be a delta function). A detailed solution will be given elsewhere[17] 

with the direct use of the concept of pseudomomentum and its generalization to 

inhomogeneous fields (and how it is affected across the interface from inside to outside the 

field for piecewise-continuous cases). However, note again that the focus of the present work 

is not on fields sensed by the particles, but on inaccessible fields, because it is these cases that 

may make the effect of nearby fluxes appear more unexpected. 

 (B) It is also important to note that the above folding procedure of our dark-and-white 

system actually generalizes Laughlin's gauge argument on a cylinder[3], where, however, the 

automatic appearance of the above  Bz   (upon folding) is, to our knowledge, rarely (if ever) 

discussed. And the addition of our white strip on the surface of the usual Laughlin cylinder 

gives nontrivial consequences whenever the outside magnetic flux is not quantized (see 

below, on effective pumping and IQHE conditions induced from the outside). 

 In the standard Laughlin's argument, with a radial  B   being present everywhere on 

the cylinder's curved cylindrical surface, one can actually understand the well-known 

translational symmetry breaking[19]    where the equilibrium positions of the standard 

Landau wavefunctions ( y0 k xl
2

  in planar language, with  l  c/eB   the magnetic 

length) become priviledged[19]    by the special consideration of this additional  Bz   

created due to folding :  as we saw, the AB flux enclosed by a horizontal circle (lying on the 

cylindrical surface) around the axis depends on the height  z   (due to the presence of the  

Bz 
zB
  ), so that, if we want immediate wavefunction single-valuedness around the 

cylinder, we indeed need special  z  's so that the enclosed AB flux (at that height) is 

quantized (in integral multiples of  0  ). It is straightforward to see that this requirement 

gives immediately the priviledged  z0  's (or equivalently the above equilibrium positions  y0  

's for the standard flat Landau problem in the Landau gauge). But further than that, in our 

generalized system, with the area of interest (where the particle resides) being only a white 

strip on the cylindrical surface (with no field  B   inside it), one finds that there are nontrivial 

consequences (due to remote field influence) on this white area, whenever the outside 

magnetic flux is not quantized. This we saw with inaccessible fields, but it seems to also 
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occur for accessible ones as well, as we demonstrated above. In such case of non-quantized  

dark   outside our white area, the wavefunction single-valuedness (or pbc along  x  ) in the 

white area is not automatically satisfied, and it is its enforcement that leads to a modification 

of physical properties, hence to the remote influence of the adjacent magnetic field that we 

saw. A plausible question would then be: is there a remote (or proximity) influence of the 

IQHE type that might affect the particle, although this resides outside the field  B   (hence, 

equivalently, a quantum Hall type of effect in zero-field)? There is a great deal that can be 

said on this    i.e. in relation to magnetic edge states in the interface[20], snake states[21] 

etc. to be discussed in a more focused paper, the main conclusion for now being that we must 

have nontrivial dissipationless edge currents in the interface that, in any case, are expected, as 

the persistent currents associated with the hidden AB effect, being therefore proportional to  

/y0  ; but even without details, we will point out as certainly true that one can generate (or 

simulate) IQHE conditions on our system (always a white area, with no  B  ) with a pulsed 

outside electric field    rather than the static field case discussed in the beginning    which, 

due to its time-dependence, can induce IQHE type of effects inside our field-free system (a 

case now involving remote electric fluxes in spacetime). An even simpler way is our original 

example of a magnetic field  B   in the dark area, which however is not static but slowly 

(adiabatically) changing with time, or, alternatively, a fixed  B   while our origin  y0   is being 

displaced slowly (and transversely to the interface) between two values that correspond to a 

change of flux in the dark area equal to 0   (this would then define a cycle). This way one 

can achieve charge pumping (with slow variation of  B   or of  y0   or proper combination of 

both) as in the case of Laughlin's cylinder[3], replacing the much harder to build externally 

applied varying enclosed AB flux. After a cycle, there must be an integer number of electrons 

transported from one side of the system to the other (along the  y  -direction), a well-known 

topological quantum effect (the so-called adiabatic particle transport) due to Thouless[22]. Or 

one can use other more sophisticated types of procedures based on nonlocal terms in refs [6,7] 

involving general  t  -dependent electric fields and electric scalar potentials. Summarizing, it 

seems that, in a number of different ways, one can induce conditions of, at least, topological 

(quantized) pumping of some quantity, resulting from manipulations from outside of our 

system, and, in fact, in ways that are expected to respect relativistic causality, as shown in 

detail in refs [6,7]. 

 (C) One should note that all the phenomena predicted here should be observable, 

independent of our (or any other) analysis of the  z0  -ambiguity. One can give  z0   an 

absolute meaning (for a particular cylindrical system in the laboratory): it is the point in the 

3D folded system at which the  z  -component  Bz   of the total 3D magnetic field  B   (or its 

source, the current density  J  ) vanishes. We can therefore determine this point  z0   in our 

3D setup (see i.e. in fig.3 of ref.[9] the point where the magnetic lines are curved in opposite 

directions), and then be careful to place our system of interest (i.e. a strip with no field, 

exhibitting quantum coherence parallel to the interface with the dark magnetic region) in a 

manner so that its basis (namely the interface itself) is displaced (by a small distance  d1  ) 

with respect to  z0  . Then, if this distance  d1   is such that the outside magnetic flux is not 

quantized, then the above effects (a proximity influence of this flux on our white strip) should 

be present and measurable. [If they are not ever found, then something is wrong with 

standard quantum theory and/or (classical) electromagnetism.] And, as shown earlier by a 

limiting procedure, these proximity influences must survive even after the system becomes 

flat. However, a question arises about cases when we start with a strictly flat system, with no 
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knowledge of the location of the  Bz  -vanishing point of a corresponding 3D companion. For 

such cases, we will argue that we have two options to consider :  for the 1st, see next Section 

(where it is shown that a possibility still remains to have a nonlocal proximity effect with no 

ambiguity), and the 2nd is the case of actually having the  y0  -ambiguity, which is now 

physically unacceptable, and thenour criterion of proper behavior (noted earlier) must be 

enforced. This enforcement of elimination of the ambiguity then seems to lead to (a) 

topological physics (manifested as quantization of certain quantities, such as magnetic charge 

and response functions), as well as to (b) connections and formal analogies with other 

physics areas. Indeed, (a) recall that, in all the above, essential use was made of the 

nonexistence of magnetic monopoles in 3D (the  B 0   law). But what if we had 

assumed that magnetic monopoles exist? Our simplest finding on thisis that imposition of our 

criterion of proper behavior (forced elimination of the  z0  -ambiguity) leads to quantization 

of fluxes external to the white system, so that, in the limit that our white system shrinks to 

zero, the nonlocal term of [6,7] can serve as a probe of quantization of the flux through the 

outside magnetic regions; and the enforced quantization of the nonlocal term leads, in turn, to 

the quantization of magnetic charge according to the Dirac condition[2], and more generally, 

to the quantization of other macroscopic quantities, that are related to quantized 

magnetoelectric effects in an axion electrodynamical consideration[4] (see further below, 

Section VII). In particular, our above criterion seems to nicely complement the recent proof 

of the  2 -periodicity of the axionic action[23] by providing a justification of the 

quantizations of certain separate 2D fluxes (one in 2D space and one in 1+1-D spacetime) 

that are crucial in the proof, justification that is not given in ref.[23]. (b) Apart from the 

above, there are much wider implications (mainly physical), but also relationships with other 

physics areas that one can see formal analogies with (see below brief discussion on axions,   

-vacuum sectors[24,25], Gribov copies[26], but also connections with certain open problems 

in mechanics[27] and in thermodynamics[28]), that certainly necessitate further investigation 

of an interdisciplinary character. 

 

How to measure nonlocality in a strictly planar system 

 First, for a cylindrical arrangement, we have seen that the special vanishing- Bz   point 

( z0  ) is unique and identifiable, and survives in the  R   limit, so that the remote 

influences that are the focus of the present work must survive even after the system becomes 

flat; and although in the completely planar system  Bz vanishes everywhere, we have already 

identified the absolute reference point  z0   (or  y0  ) before the limit (as the unique point of 

vanishing  Bz   that existed in the companion 3D system). Hence, by using this  y0  , we can 

achieve (or measure) all the types of proximity effects discussed above in the same way 

(namely, by placing our white area in a properly displaced manner with respect to this  y0  ). 

 However, for strictly planar system, when we have no knowledge of the  Bz  -

vanishing point of a corresponding 3D companion, we argued earlier that we have two 

options to consider, and here we focus on the first :  If we have a large-width ( d1  ) magnetic 

area, it is quite possible that, generically, this would behave as if it were produced by a 

corresponding long cylinder (in the usual theoretical limit  R   ) with its special 

vanishing- Bz   point ( z0  ) being in the middle of its finite length; this is for symmetry 

reasons and due to the fact that all expressions of the fields used here (and in fact in the entire 

literature) are actually exact only in the case of infinite cylinders -- the middle of a long 

cylinder being therefore slightly preferred (as being the point that is more distant from both 
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cylinder-ends, and also because, due to its symmetrical placement, it is a better representative 

of the infinite-cylinder theory). If this turns out to be correct, then this suggests an obvious 

experimental way on how to place our white area:  y0   can be taken to be in the middle of the 

width of the flat dark area, and then our white system must be placed as described earlier. In 

fact, a slightly better experimental suggestion would be to have two systems of interest (white 

areas, i.e. they could be identical graphene samples), separated by the above (inaccessible) 

wide magnetic region, and then make measurements (i.e. of persistent current) in one system 

or the other; the point is that, no matter where  y0   is located, at least one of the two systems 

must be affected by proximity (if i.e. it happens that  y0   is at the edge of one area, giving no 

effect on it, then the same  y0   is necessarily displaced with respect to the 2nd area; so 

proximity influence on the 2nd system is guaranteed, if the intermediate flux is not quantized, 

and we can measure nontrivial effects in this 2nd system    and it is interesting to note that, 

if  y0   is indeed in the middle of the magnetic region, as we hoped earlier, then now, in the 

present setup, both systems will be affected equally). If all this does not work (meaning that 

there is no memory of a uniquey0  , a remnant of the theoretical limit), then the lack of 

knowledge of a 3D companion is indeed complete, or equivalently this gives rise to the 

earlier discussed ambiguity. In such case, as already noted, our criterion of proper behavior 

must be imposed, and the consequences of this are briefly discussed in Section VII. 

 

Predictions on Graphene and Topological Insulator 

 An outline of the simplest possible types of measurements (related to the gauge 

proximity effect presented in this work) in conventional systems has been given earlier in this 

paper (mostly on induction of IQHE-type of effects and charge pumping, all induced from 

outside the system). It should be stressed, as a generic feature (and as a prediction) that, even 

if our white area is almost empty (i.e. a single electron in empty space), we would at least 

expect (persistent) currents along the edge (interface between white and dark areas)    this 

being valid for real solid state systems with both parabolic and Dirac electronic spectrum in 

AB configurations[29]. This was also noted for our own proximity configuration above (with 

the expectation that  J   will be proportional to  /y0  ). 

 But beyond this, we here also provide our more detailed predictions of what one 

would expect on general grounds, if our white system is one of the two most popular 

nowadays topological materials, graphene or a topological insulator :Graphene: proximity 

arrangement with a  B  , would offer a controllable way (through changes of the outside  B   or 

of  y0  ) to lift the orbital degeneracy that originates from the two valleys, with consequences 

on persistent currents (in  x  -direction) and in conductance (i.e. some shifting of peaks), 

analogous to the ones of ref.[30]. In addition, giant magnetoresistance at room temperature is 

possible, due to the hidden AB interference[31]. Topological insulators: By way of an 

example, in the proximity to an HgTe quantum well one would expect to measure helical 

edge states, bound states and persistent currents (with Rashba spin-orbit coupling), that would 

generally be affected in a manner similar to the one described in ref.[32]. On all this, we plan 

to return with details (and experimental suggestions on each material) in a future note. 

 

Removal of the ambiguity 

 Although not the focus of the present paper, let us briefly mention the manner in 

which topological physics shows up upon the enforced removal of the ambiguity, and let us 

first consider cases where (effective) magnetic monopoles are present. Note that, already in 
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the case of the Laughlin cylinder discussed earlier    with the usual in the literature practice 

of not any mention of the extra  Bz   that originates from folding of the original flat system    

it is seen that the radial  B   in 3D space must be a result of a linear magnetic monopole 

distribution (along the  z  -axis)    since a purely radial field violates the  B 0   law (as 

there is a nonzero net flux outwards and, therefore, magnetic monopoles must be invoked to 

justify it). And starting with an additionally placed extra narrow ( d  0  ) white strip (with 

no field) that goes around the axis on the cylindrical surface, and imposing our criterion of 

proper behavior (forced elimination of the gauge ambiguity) in the limit  d 0   one obtains 

the well-known quantization of the  B  -flux in the dark area, and from this it comes out that 

the monopole charge must also be quantized (see ref.[33] for quantitative details on how the 

Dirac's quantization condition comes out). By formally enforcing the elimination of this 

gauge ambiguity in a closed system, the nonlocal term (namely, the flux lying outside our 

system) can play the role of a probe of (or a detector of) quantization of macroscopic 

quantities (although, it should be noted, we are merely at the level of wavefunction phases). A 

plausible question then is: can such a type of argumentation be followed for other more 

complicated cases? We answer positively by working out some considerably more 

sophisticated examples (with topologically nontrivial systems), which, as has been shown 

recently[34,35], seem to need axion electrodynamics to describe their exotic magnetoelectric 

response properties. The reader is again referred to [33] that shows in detail that imposition of 

our criterion of proper behavior leads to quantization of the axionic current density  J  , 

which in turn leads, for conventional IQHE systems to  H   an integral multiple of  
e2

h  , 

and for topological insulator surfaces that are in contact with a topologically trivial medium 

(i.e. the vacuum) to  H   an odd integral multiple of  
e2

2h  ; the same method also leads to 

their quantized magnetoelectric responses, in accordance with the Witten effect[5] (see [33] 

for details). 

 

Formal analogies with other areas 

 The wider physical implications, and/or relationships with other physics areas have 

also been examined in [33], where formal connections have been noted, among others, (i) 

with recent considerations of Berry and Shukla[27] on curl forces that are spatially confined 

in classical systems (while the point of observation is outside, in curl-free regions), (ii) with 

not yet well-studied issues of irreversibility and vorticity in thermodynamics[28], (iii) with 

extensions to spin-physics[36], and (iv) with certain quite esoteric issues in high energy 

physics, such as   -vacuum sectors[24,25] being formally analogous to our  y0  --sectors, 

and the so-called Gribov problem (or Gribov ambiguity[26]); for such a claimed connection 

see in particular refs [37] and [38] where the existence of the Gribov phenomenon is related 

to the existence of inequivalent quantizations (which in our simpler problem corresponds to 

different  y0  -sectors), and then Gribov copies are labeled through procedures that are 

formally similar to ours. 

 

Discussion and Conclusion 

 Even without the above generalizations, however, the simplest outcome of the present 

theoretical work    that it is in principle possible to have effects without fields, in the 

simply-connected plane, that are generated outside our system and that affect its physical 

properties    is remarkable, and if true, extremely important in experimental work on 

fundamental physics as well as in practical applications. First, the most obvious use is for an 
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easier experimental detection of AB effects, as already noted (with considerably lesser 

problems of leakage of magnetic lines, compared to typical enclosed-flux arrangements). 

Then, the already noted possibility of violation of Bloch theorem (especially if our white (no-

field) system is periodic along the interface direction) is worth emphasizing. The violation is 

due to the presence (on the system) of the extra vector potential (from proximity with the 

outside  B  -field), and it leads to AB-type of modifications of the translation operators that 

are used in the standard proof of the Bloch theorem. [It should be noted that these 

modifications are not the same as the well-known modifications of Bloch theorem in an 

IQHE system (such as the ones studied i.e. in [39]) with the particle being inside a field    in 

our case we always have  B 0   on the particle.] We therefore eventually expect nontrivial 

modifications in the form of wavefunctions; in such a case, one can first gauge away the 

proximity-induced  A  , with the consequence of the extra appearance in the boundary 

conditions of a crystal momentum (parallel to the strip). And then, by adiabatically changing 

the special point  y0   in a direction transverse to the strip by a cycle (meaning that the 

corresponding change of flux is equal to  0  ), we can have the crystal momentum moving 

from one edge to the other of the (parallel) Brillouin zone, and hence induce new effects (or 

transitions) that can lead to interesting physics, especially if electron-electron interactions are 

taken into account. It is also interesting, and potentially useful experimentally, that, in cases 

when both electrons and holes are considered, the Berry phase picked up during such a cycle 

seems to contain not only an AB part (as derived by Berry in the transported rigid box around 

an AB flux[40]), but also a term directly related to the electric current, similarly to what 

happens in an AB ring[41,42]. Finally, a periodic (or even quasiperiodic, i.e. Fibonacci) 

arrangement of magnetic strips (on a cylinder, or in the plane with pbc parallel to the strips), 

each one containing a rational flux  f0   (with  f 
p

q  ,  p,q   integers, with  p q  ), would 

be an interesting system to consider, with new (in)commensurability effects expected (not of 

the Hofstadter type[43] where we have a nonzero  B  -field), that will be a result of the 

interplay between the gauge proximity effects of the present work and the (quasi)periodicity 

of the structure    behavioral patterns that will be possibly useful for novel applications in 

intelligent devices. 

 Regarding all the above, it is for the experiment to give the verdict, but it is fair to say 

that we have provided in this work strong theoretical evidence (in fact a rigorous proof) for 

the existence of a proximity effect (or even remote influence of fields from a distance) that 

has a deeply gauge nature    something remarkable, and important at least for novel 

applications. And although we have focused on orbital physics, there are well-defined steps 

(through boosts to properly moving frames) that lead to spin-physics as well    although a 

generalization of the U(1) gauge character of the nonlocal effects proposed here to cases with 

a spin-orbit coupling (now with an SU(2) character) would have an additional importance for 

modern applications and, as already noted, deserves a separate note. This demonstrates that, 

if the above proximity effects turn out to be real, the experimental and application 

possibilities of exploiting them, as well as their generalizations, seem to be almost limitless. 
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