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Abstract 
 Computer sciences need suitable methods for numerical calculations of interpolation, 

extrapolation, quadrature, derivative and solution of nonlinear equation. Classical methods, 

based on polynomial interpolation, have some negative features: they are useless to 

interpolate the function that fails to be differentiable at one point or differs from the shape of 

polynomial considerably, also the Runge‘s phenomenon cannot be forgotten. To deal with 

numerical interpolation, extrapolation, integration and differentiation dedicated methods 

should  be constructed. One of them, called by author the method of Hurwitz-Radon Matrices 

(MHR), can be used in reconstruction and interpolation of curves in the plane. This novel 

method is based on a family of Hurwitz-Radon (HR) matrices. The matrices are skew-

symmetric and possess columns composed of orthogonal vectors. The operator of Hurwitz-

Radon (OHR), built from that matrices, is described. It is shown how to create the orthogonal 

and discrete OHR and how to use it in a process of function interpolation and numerical 

differentiation. Created from the family of N-1 HR matrices and completed with the identical 

matrix, system of matrices is orthogonal only for dimensions N = 2, 4 or 8. Orthogonality of 

columns and rows is very significant for stability and high precision of calculations. MHR 

method is interpolating the function point by point without using any formula of function. 

Main features of MHR method are: accuracy of curve reconstruction depending on number of 

nodes and method of choosing nodes, interpolation of L points of the curve is connected with 

the computational cost of rank O(L), MHR interpolation is not a linear interpolation. 

 
Keywords: Point extrapolation, zero of function, curve interpolation, numerical integration, 

numerical differentiation, MHR method 

 

Introduction 

 Many applications of numerical methods don‘t use the formula of function, but only 

finite set of the points (nodes). The following question is important in mathematics and 

computer sciences: is it possible to find a method of function interpolation and extrapolation, 

numerical integration and differentiation without building the interpolation polynomials or 

other functions? This paper aims at giving the positive answer to the question. Current 

methods for numerical calculation of derivatives are mainly based on classical polynomial 

interpolation: Newton, Lagrange or Hermite polynomials and spline curves which are 

piecewise polynomials (Dahlquist et al. 1974; Jankowska et al. 1981). Classical methods are 

useless to interpolate the function that fails to be differentiable at one point, for example the 

absolute value function  f(x)=xat x = 0. If point (0;0) is one of the interpolation nodes, then 

precise polynomial interpolation of the absolute value function is impossible. Also when the 

graph of interpolated function differs from the shape of polynomial considerably, for example  

f(x)=1/x, interpolation is very hard because of existing local extrema and the roots of 

polynomial. We cannot forget about the Runge‘s phenomenon: when nodes are equidistance 
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then high-order polynomial oscillates toward the end of the interval, for example close to -1 

and 1 with function f(x)=1/(1+25x
2
) (Ralston 1965). 

 This paper deals with the problem of interpolation (Kozera 2004; Jakóbczak 2009) 

and numerical differentiation without computing the polynomial or any fixed function. 

Coordinates of the nodes are used to build the orthogonal Hurwitz-Radon matrix operators 

(OHR) and a linear (convex) combinations of OHR operators lead to calculation of curve 

points. Main idea of MHR method is that the curve is interpolated point by point and 

computing the unknown coordinates of the points. The only significant factors in MHR 

method are choosing the interpolation nodes and fixing the dimension of HR matrices (N = 2, 

4 or 8). Other characteristic features of function, such as shape or similarity to polynomials, 

derivative or Runge‘s phenomenon, are not important in the process of MHR interpolation. 

The curve is parameterized for value  [0;1] in the range of two successive interpolation 

nodes. 

 In this paper computational algorithm is considered and then we have to talk about 

time. Complexity of calculations for one unknown point in Lagrange or Newton interpolation 

based on n nodes is connected with the computational cost of rank O(n
2
). Complexity of 

calculations for L unknown points in MHR interpolation based on n nodes is connected with 

the computational cost of rank O(L). This is very important feature of MHR method. 

 

The method of Hurwitz-Radon Matrices (MHR) 

Adolf Hurwitz (1859-1919) and Johann Radon (1887-1956) published the papers 

about specific class of matrices in 1923. Matrices Ai,i = 1,2…m satisfying  

AjAk+AkAj = 0, Aj
2 

= -I  for j ≠ k; j, k = 1,2...m                            (1) 

are called a family of Hurwitz-Radon matrices. A family of HR matrices (1) has important 

features: HR matrices are skew-symmetric (Ai
T
= - Ai) and reverse matrix Ai

-1 
= - Ai.Only for 

dimension N = 2, 4 or 8 the family of Hurwitz-Radon matrices consists of N-1 matrices 

(Citko et al. 2005). 

For N = 2 we have one matrix : 











01

10
1A . 

For N = 4 there are three matrices with integer entries: 
























0100

1000

0001

0010

1A
, 
























0010

0001

1000

0100

2A
, 
























0001

0010

0100

1000

3A
. 

For N = 8 we have seven matrices with elements 0, ±1 (Sieńko et al. 2004). 

 Let‘s assume there is given a finite set of points of the function, called further nodes 

(xi,yi)R
2
 such as:  

1. nodes are settled at key points (for example local extrema: maximum or minimum) 

and at least one point between two successive key points; 

2. there are five nodes or more. 

 Assume that the nodes belong to a curve in the plane. How the whole curve could be 

reconstructed using this discrete set of nodes? Proposed method (Jakóbczak 2007; Jakóbczak 

et al. 2007) is based on local and orthogonal matrix operators. Values of nodes‘ coordinates 

(xi,yi) are connected with HR matrices (Eckmann 1999) build on N dimensional vector space. 

It is important that HR matrices are skew-symmetric and only for dimension N = 2, 4 or 8 

columns and rows of HR matrices are orthogonal (Lang 1970). 

 If the function is described by the set of nodes {(xi,yi), i = 1,2,…,n} then HR matrices 

combined with identity matrix are used to build an orthogonal Hurwitz-Radon Operator 

(OHR). For nodes (x1,y1), (x2,y2) OHR of dimension N = 2 is constructed: 
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






 












12

21

12

21

2

2

2

1

1

yy

yy

xx

xx

xx
M .    (2) 

For nodes (x1,y1), (x2,y2), (x3,y3), (x4,y4) OHR of dimension N = 4 is constructed: 




























0123

1032

2301

3210

2

4

2

3

2

2

2

1

1

uuuu

uuuu

uuuu

uuuu

xxxx
M

      (3) 

where          

443322110 yxyxyxyxu  ,          344312211 yxyxyxyxu  ,                    

241342312 yxyxyxyxu  ,         142332413 yxyxyxyxu  . 

For nodes (x1,y1), (x2,y2), …, (x8,y8) OHR M of dimension N = 8 is built (Jakóbczak 2007) 

similarly as (3):  






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

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
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
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

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


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i
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    (4) 

where                                                                                                                            
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
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


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

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x

x

x

x

x

x

x
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u

.   (5) 

 The components of the vector u = (u0, u1,…, u7)
T
, appearing in the matrix M (4), are 

defined by (5) in the similar way to (2)-(3) but in terms of the coordinates of the above 8 

nodes. Note that OHR operators (2)-(4) satisfy the condition of interpolation 

                                                                              Mx = y          (6)                                                               

for x = (x1,x2…,xN) R
N
, x 0, y = (y1,y2…,yN) R

N
, N = 2, 4 or 8. 

How can we compute coordinates of points settled between the interpolation nodes? 

On a segment of a line every number ―c‖ situated between ―a‖ and ―b‖ is described by a 

linear (convex) combination c = a+(1-)b for 

ab

cb




  [0;1].          (7) 

 Extrapolation is possible for < 0 and > 1. 

 Average OHR operator M2 of dimension N = 2, 4 or 8 is constructed as follows: 

102 )1( MMM       (8) 

with the operator M0 built (2)-(4) by ―odd‖ nodes (x1=a,y1), (x3,y3), …, (x2N-1,y2N-1) and M1 

built (2)-(4) by ―even‖ nodes (x2=b,y2), (x4,y4), …, (x2N,y2N). Notice that having the 

operator M2 for coordinates xi < xi+1it is possible to reconstruct the second coordinates of 

points (x,y) in terms of the vector C defined with 
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ci = x2i-1+(1-)x2i      for    i = 1,2,…,N                                (9) 

as C = [c1, c2,…, cN]
T
. The required formula is adequate to (6): 

CMCY  2)(                                                        (10) 

in which components of vector Y(C) give the second coordinates of the points (x,y) 

corresponding to the first coordinates, given in terms of components (9) of the 

vector C. 

 After computing (7)-(10) for any  [0;1], we have a half of reconstructed points 

(j = 1 in Algorithm 1). Now it is necessary to find second half of unknown coordinates (j = 2 

in Algorithm 1) for 

ci = x2i+(1-)x2i+1      ,    i = 1,2,…,N.                                     (11) 

 There is no need to build the OHR for nodes (x2=a,y2), (x4,y4), …, (x2N,y2N) because 

we just find M1. This operator will play as role as M0 in (8). New M1 must be computed for 

nodes (x3=b,y3), …, (x2N-1,y2N-1), (x2N+1,y2N+1). As we see the minimum number of 

interpolation nodes is n = 2N+1= 5, 9 or 17 using OHR operators of dimension N = 2, 4 or 8 

respectively. If there is more nodes than 2N+1, the same calculations (7)-(11) have to be done 

for next range(s) or last range of 2N+1 nodes. For example, if n = 9 then we can use OHR 

operators of dimension N=4 or OHR operators of dimension N = 2 for two subsets of nodes: 

{(x1,y1), …,(x5,y5)} and {(x5,y5), …,(x9,y9)}.  We summarize this section in the following 

algorithm of points reconstruction for 2N+1 = 5, 9 or 17 successive nodes. 

Algorithm 1: let j = 1. 

Input: Set of interpolation nodes {(xi,yi), i = 1,2,…,n; n = 5, 9 or 17}. 

Step 1. Determine the dimension N of OHR operators: N = 2 if n = 5, N = 4 if n = 9, 

       N = 8 if n = 17. 

Step 2. Build M0 for nodes (x1=a,y1), (x3,y3), …, (x2N-1,y2N-1) and M1 for nodes (x2=b,y2),   

       (x4,y4), …, (x2N,y2N) from (2)-(4). 

Step 3. Determine the number of points to be reconstructed Kj> 0 between two 

       successive nodes (for example 9 or 99), let k = 1. 

Step 4. Compute  [0;1] from (7) for c1 = c = a+(1-)b. 

Step 5. Build M2 from (8). 

Step 6. Compute vector C = [c1, c2,…, cN]
T
 from (9). 

Step 7. Compute unknown coordinates Y(C) from (10). 

Step 8. If k < Kj , set k = k+1 and go to Step 4. Otherwise if j = 1, set M0 = M1,         

        a = x2, b = x3,build new M1for nodes (x3,y3), (x5,y5), …, (x2N+1,y2N+1), let j = 2 and go 

to Step 3. Otherwise, stop. 

 The number of reconstructed points in Algorithm 1 is K = N(K1+K2). If there is more 

nodes than 2N+1 = 5, 9 or 17, Algorithm 1 has to be done for next range(s) or last range of 

2N+1 nodes. Reconstruction of curve points using Algorithm 1 is called by author the method 

of Hurwitz-Radon Matrices (MHR). 

 

MHR numerical applications 

In this section we consider the number of multiplications and divisions for MHR method 

during reconstruction of K = L - n points having n interpolation nodes of the curve consists of 

L points. First we present a formula for computing one unknown coordinate of a single point. 

Assume there are given four nodes (x1,y1), (x2,y2), (x3,y3) and (x4,y4). OHR operators of 

dimension N = 2 are built (2) as follows: 

















33111331

31133311

2

3

2

1

0

1

yxyxyxyx

yxyxyxyx

xx
M

,
















44222442

42244422

2

4

2

2

1

1

yxyxyxyx

yxyxyxyx

xx
M . 

Let first coordinate c1 of reconstructed point is situated between x1 and x2:  

c1 = x1+x2       for            0  = 1 -  1.                        (12) 
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Compute second coordinate of reconstructed point y(c1) for Y(C) = [y(c1), y(c2)]
T
from 

(10): 

.)(
)(

)(

43

21

10

2

1























xx

xx
MM

cy

cy




          (13) 

After calculation (13): 





 )()( 3411433321212

3

2

1

2

2

1

2

1 yxxyxxyxxyxx
xx

yycy


  

).( 4322434412212

4

2

2

yxxyxxyxxyxx
xx








          (14) 

So each point of the curve P = (c1,y(c1)) settled between nodes (x1,y1) and (x2,y2) is 

parameterized by P() for (12), (14) and  [0;1]. 

If nodes (xi,yi) are equidistance in coordinate xi, then parameterization of unknown 

coordinate (14) is simpler. Let four successive nodes (x1,y1), (x2,y2), (x3,y3) and (x4,y4) are 

equidistance in coordinate xiand a = x1, h/2 = xi+1 - xi = const. Calculations (13) and (14) 

are done for c1 (12): 

syycy   211)(                 (15) 

and 

)
584

22

244

2
(

22

422

22

311

haha

hyhyay

haha

hyhyay
hs









 .         (16) 

 As we can see in (15) and (16), MHR interpolation is not a linear interpolation. It is 

possible to estimate the interpolation error of MHR method (Algorithm 1) for the class of 

linear 

function f: 

scyyycycf   )()()( 12111
.            (17) 

 Notice that estimation (17) has the biggest value ¼s for  =  = ½, when c1 is 

situated in the middle between x1and x2. 

  The goal of this paper is not a reconstruction of single point, like for example (14) 

and (15), but interpolation of curve consists of L points. If we have n interpolation nodes, 

then there is K = L – n points to find using Algorithm 1 and MHR method. Now we consider 

the complexity of MHR calculations.  

Lemma 1. Let n = 5, 9 or 17 is the number of interpolation nodes, let MHR method 

(Algorithm 1) is done for reconstruction of the curve consists of L points. Then MHR method 

is connected with the computational cost of rank O(L). 

Proof. Using Algorithm 1 we have to reconstruct K = L – n points of unknown curve. 

Counting the number of multiplications and divisions D in Algorithm 1 here are the results: 

1) D = 4L+7     for n = 5   and L = 2i + 5; 

2) D = 6L+21   for n = 9   and L = 4i + 9; 

3) D = 10L+73 for n = 17 and L = 8i + 17;   i = 2,3,4... 

 Thelowest computational costs appear in MHR method with five nodes and OHR 

operators of dimension N = 2. Therefore whole set of n nodes can be divided into subsets of 

five nodes. Then whole curve is to be reconstructed by Algorithm 1 with all subsets of five 

nodes: {(x1,y1),…,(x5,y5)},{(x5,y5),…,(x9,y9)},{(x9,y9), …, (x13,y13)}… If the last node (xn,yn) is 

indexed n ≠ 4i +1 then we have to use last five nodes {(xn-4,yn-4), …, (xn,yn)} in Algorithm 1. 

 Function f(x) = 1/x is an example when the graph of interpolated function differs from 

the shape of polynomials considerably. Then classical interpolation is very hard because of 

existing local extrema and the roots of polynomial (Fig.2). Here is the application of 

Algorithm 1 for this function and five nodes. 
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Figure 1- Twenty six interpolated points of function f(x) = 1/x using  MHR method (Algorithm 1) together with 

5 nodes: (5;0.2), (5/3;0.6), (1;1), (5/7;1.4), (5/9;1.8) 

 

 Figure 1 contains not too many (twenty six) interpolated points (xi,yi) and minimal 

number of nodes (five), so numerical calculations of integral (precise value I = 2.196) by 

trapezoidal rule I1=2.213 are not always satisfying. Greater number of nodes and interpolated 

points gives us more accurate value of quadrature. 

 As the example, numerical calculations of derivative f‟(x) = -1/x
2
 for xi= 1.421 look as 

follows: 

1. precise value f‘(1.421) = -0.495; 

2. two-point estimation 5.0)('
1

1 









ii

ii
i

xx

yy
xf ; 

3. three-point estimation 488.0)('
11

11 









ii

ii
i

xx

yy
xf . 

 Second example - numerical calculations of derivative for xi= 3.719 (Fig.1): 

1. precise value f‘(3.719) = -0.0723; 

2. two-point estimation 06245.0)('
1

1 









ii

ii
i

xx

yy
xf ; 

3. three-point estimation 07353.0)('
11

11 









ii

ii
i

xx

yy
xf . 

 Greater number of nodes and interpolated points gives us more accurate value of 

differentiation. 

Lagrange interpolation polynomial for functionf(x) = 1/x and nodes (5;0.2), (5/3;0.6), 

(1;1), (5/7;1.4), (5/9;1.8) has one local minimum and two roots. 

 
Figure 2 –  Lagrange interpolation polynomial for nodes (5;0.2), (5/3;0.6), (1;1), (5/7;1.4), (5/9;1.8) differs 

extremely from the shape of function f(x) = 1/x 

 

Other examples of MHR interpolation, numerical integration and differentiation: 

 
Figure 3 - Twenty two interpolated points of functions f(x) = 1/(1+25x

2
) using MHR method with 5 nodes for xi 

= -1; -0.5; 0; 0.5 and 1: no Runge‘s phenomenon 

0

1

2

0 2 4 6



European Scientific Journal  September 2014  /SPECIAL/ edition Vol.3   ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

442 

 Figure 3 contains minimal number of nodes (five) and only twenty two interpolated 

points, so numerical calculations of integral (precise value I = 0.549) are not always 

satisfying: 

a) trapezoid method: I1 = 0.534; 

b) Simpson‘s rule: I2 = 0.538. 

 As the example, numerical calculations of derivative for xi= 0.0 look as follows: 

1. precise value f‘(0.0) = 0.0; 

2. three-point estimation 0.0)('
11

11 









ii

ii
i

xx

yy
xf . 

 Second example- numerical calculations of derivative for xi= -0.35 (Fig.3): 

1. precise value f‘(-0.35) = 1.06; 

2. two-point estimation 04.1)('
1

1 









ii

ii
i

xx

yy
xf ; 

3. three-point estimation 9.0)('
11

11 









ii

ii
i

xx

yy
xf . 

 
Figure 4 - Thirty six interpolated points of functions f(x) = 1/(1+5x

2
) using MHR method with 5 nodes for xi = -

1; -0.5; 0; 0.5 and 1: no Runge‘s phenomenon 

 

 Figure 4 contains minimal number of nodes (five) and not too many interpolated 

points (thirty six), but numerical calculations of integral (precise value I = 1.029) are 

interesting: 

a) trapezoid method: I1 = 1.000; 

b) Simpson‘s rule: I2 = 0.999. 

 As the example, numerical calculations of derivative for xi= 0.0 look as follows: 

1. precise value f‘(0.0) = 0.0; 

2. three-point estimation 0.0)('
11

11 









ii

ii
i

xx

yy
xf . 

 Second example - numerical calculations of derivative for xi= 0.15 (Fig.4): 

1. precise value f‘(0.15) = -1.212; 

2. two-point estimation 2.1)('
1

1 









ii

ii
i

xx

yy
xf ; 

3. three-point estimation 23.1)('
11

11 









ii

ii
i

xx

yy
xf . 

 Here are the graphs of functions interpolated by MHR method with 5 nodes as MHR-

2 (Fig.5,6,7,9) and 9 nodes as MHR-4 (Fig.8): 
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Figure 5 - Function f(x) = x

3
+x

2
-x+1 with 396 interpolated points using MHR method with 5 nodes:    (-2;-1), (-

1.75; 0.453125), (-1.5;1.375), (-1.25;1.859375) and (-1;2) 

 Solving the equation x
3
+x

2
-x+1 = 0 via MHR interpolation, we will search a root of 

the function only between nodes (-2;-1) and (-1.75;0.453125). Points calculated between 

other pairs of nodes are useless in the process of root approximation and they do not have to 

be computed. Considering points between nodes (-2;-1) and (-1.75;0.453125), coordinate y is 

near zero at (-1.835;0.00184). Solution of equation x
3
+x

2
-x+1 = 0 via MHR-2 method is 

approximated by x = -1.835. True value is x = -1.839. The same equation for nodes (-2;-1), (-

1.95;-0.662), (-1.9;-0.349), (-1.85;-0.059) and (-1.8;0.208), solved by MHR-2 method, gives 

better result x = -1.839. So shorter distance between first and last node is of course very 

significant. 

MHR calculations are done for function f(x) = x
3
+ln(7-x) with nodes: (-2;-5.803), 

(-1.75; -3.190), (-1.5;-1.235), (-1.25;0.1571) and (-1;1.0794). So a root of this function is 

situated between 3
rd

 and 4
th

 node. MHR-2 interpolation gives the graph of function (Fig.6): 

 
Figure 6 - Function f(x) = x

3
+ln(7-x) with 396 interpolated points using MHR method with 5 nodes:   (-2;-

5.803), (-1.75;-3.190), (-1.5;-1.235), (-1.25;0.1571) and (-1;1.0794) 

 Considering points between nodes (-1.5;-1.235) and (-1.25;0.1571), coordinate y is 

near zero at (-1.2825;0.00194). Solution of equation x
3
+ln(7-x) = 0 via MHR method is 

approximated by x = -1.2825. True value is hardly approximated (even for MathCad) by x = -

1.28347. 

MHR calculations are done for function f(x) = x
3
+2x-1 with nodes: (0;-1), 

(0.25;-0.484), (0.5;0.125), (0.75;0.9219) and (1;2). So a zero of this function is situated 

between 2
nd

 and 3
rd

 node. MHR-2 interpolation gives the graph of function (Fig.7): 

 
Figure 7 - Function f(x) = x

3
+2x-1 with 396 interpolated points using MHR-2 method with 5 nodes 
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 Considering points between nodes (0.25;-0.484) and (0.5;0.125), coordinate y is near 

zero at (0.4625;0.00219). Solution of equation x
3
+2x-1 = 0 via MHR-2 method is 

approximated by x=0.4625. The only one real solution of this equation is x = 0.453. 

Now MHR calculations are done for the same equation x
3
+2x-1 = 0 with seven nodes 

between (0;-1) and (1;2) for xi = 0; 0.125; 0.25; 0.375; 0.5; 0.625; 0.75; 0.875 and 1. The 

solution is approximated by MHR-4 method with nine nodes. MHR-4 interpolation gives the 

graph of function (Fig.8): 

 
Figure 8 - Function f(x) = x

3
+2x-1 with 792 interpolated points using MHR method with 9 nodes for xi= 0; 

0.125; 0.25; 0.375; 0.5; 0.625; 0.75; 0.875 and 1 

 

 Considering points between nodes (0.375;-0.197) and (0.5;0.125), coordinate y is near 

zero at (0.45625;0.00018). Solution of equation x
3
+2x-1 = 0 via MHR-4 method is 

approximated by x=0.45625. This is better result than MHR-2: greater number of nodes (with 

the same distance between first and last) means better approximation. And seventeen nodes in 

MHR-8 guarantee more precise results then MHR-4. 

MHR calculations are done for equation 3-2
x
 = 0 with nodes: (1;1), (1.2;0.7026), 

(1.4;0.361), (1.6;-0.031) and (1.8;-0.482). MHR-2 interpolation gives the graph of function 

(Fig.9): 

 
Figure 9 - Function f(x) = 3-2

x
 with 396 interpolated points using MHR method with 5 nodes: (1;1), 

(1.2;0.7026), (1.4;0.361), (1.6;-0.031) and (1.8;-0.482) 

 

 Considering points between nodes (1.4;0.361) and (1.6;-0.031), second coordinate is 

near zero at (1.586;-0.000311). Solution of equation 3-2
x
 = 0 via MHR-2 method is 

approximated by x = 1.586. Precise solution x = log23 is approximated by 1.585. 

 Interpolated values, calculated by MHR method, are applied in the process of solving 

the nonlinear equations. Shorter distance between first and last node or greater number of 

nodes guarantee better approximation. Approximated solutions of nonlinear equations are 

used in many branches of science. MHR joins two important problems in computer sciences: 

interpolation of the function with the solution of nonlinear equation. After computing of K 

points for interpolated function (algorithm 1), it is possible to calculate the derivative via 

two-point or three-point estimation. Greater number of nodes and interpolated points gives us 

more accurate value of differentiation. 
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Conclusion 

 The method of Hurwitz-Radon Matrices (MHR - Algorithm 1) leads to curve 

interpolation and extrapolation depending on the number of nodes and location of nodes. No 

characteristic features of curve are important in MHR method: failing to be differentiable at 

any point, the Runge‘s phenomenon or differences from the shape of polynomials. These 

features are very significant for classical polynomial interpolations. MHR method gives the 

possibility of curve reconstruction and then numerical calculations of roots, quadratures and 

derivatives for interpolated function are possible. The only condition is to have a set of nodes 

according to assumptions in Algorithm 1. Curve modeling (Jakóbczak 2010) by MHR 

method is connected with possibility of changing the nodes coordinates and reconstruction of 

new curve for new set of nodes, no matter what shape of curve or function is to be 

reconstructed. Main features of MHR method are: 

1) accuracy of curve modeling and reconstruction depending on number of  nodes and 

method of choosing nodes; 

2) reconstruction of curve consists of L points is connected with the computational cost of 

rank O(L); 

3) Algorithm 1 is dealing with local operators: average OHR operator M2 (8) is built by 

successive 4, 8 or 16 nodes, what is connected with smaller computational costs then using 

all nodes. 

 Future works are connected with: geometrical transformations of curve (translations, 

rotations, scaling)- only nodes are transformed and new curve (for example contour of the 

object) for new nodes is reconstructed; estimation of curve length (Jakóbczak 2010); 

possibility to apply MHR method to three-dimensional curves; object recognition (Jakóbczak 

2011), shape representation (Jakóbczak 2010) and parameterization in image processing; 

curve extrapolation (Jakóbczak 2011). 
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