
European Scientific Journal September 2014 /SPECIAL/ edition Vol.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

447

TESTABILITY OF INFORMATION LEAK IN THE SOURCE

CODE FOR INDEPENDENT TEST ORGANIZATION BY

USING BACK PROPAGATION ALGORITHM

Al-Khanjari, Z.

 Alani, A.
Department of Computer Science, College of Science,

Sultan Qaboos University, Muscat, Oman

Abstract

 A strategy for software testing integrates the design of software test cases into a well-

planned series of steps that results in a successful development of the software security. The

strategy provides the secure source code test by Independent Test Organization (ITO) that

describes the steps to be taken, when, and how much effort, time, and resources will be

required. The strategy incorporates test planning, test case design, test execution, test result

collection and test leak information and evaluation. In this work we speak about the

testability of leak information in source code and how to detect and protect it inside the ITO.

In this paper we present a privacy preserving algorithm for the neural network learning to

detect and protect the leak information in source code between two parties the programmer

(source code) and Independent Test Organization (Sensor). We show that our algorithm is

very secure and the sensor inside Independent Test Organization is able to detect and protect

all leaks information inside the source code. We demonstrate the efficiency of our algorithm

by experiments on real world data. We present new technology for software Security using

Back Propagation algorithm. That is embedded sensor to analyze the source code inside the

ITO. By using embedded sensor we can detect and protect in real time all the attacks or leaks

of information inside the source code. The connection between an Artificial Neural Networks

and source code analysis inside Independent Test Organization is providing a great help for

the software security.

Keywords: Software Security, Artificial Neural Networks, Back Propagation, Independent

Test Organization, Testability

Introduction

 Building a secure channel in source code is one of the most challenging areas of

research and development in modern communication for software security. Attacks on source

code infrastructures and software computer are becoming an increasingly serious problem

nowadays [1]. Therefore, several information security techniques are available today to

protect information systems against unauthorized use, duplication, alteration, destruction and

viruses attack. Vapnik [2] applied a supervised learning algorithm based on the pioneering

work. Joachims [3] stated that statistical learning theory have been successfully applied in a

number of classification problems.Ghosh [4] Applied machine learning algorithms in

anomaly detection. This had also received considerable attention.Honig and colleagues [5]

described Adaptive Model Generation (AMG) as a real-time architecture for implementing

data-mining-based intrusion detection systems. AMG uses SVMs as one specific type of

model-generation algorithms for anomaly detection. Mukkamala and colleagues [6]

compared the performance of neural network-based and SVM-based systems for intrusion

European Scientific Journal September 2014 /SPECIAL/ edition Vol.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

448

detection using a set of DARPA benchmark data. If labeled data is available and used as

input to a supervised network, an output representing the classes can be produced [7]. This

type of system is limited to the classifications present in the training data. IDS rules are used

as a basis for network anomaly detection reporting in the HISA algorithm [8]. Mohd and

colleagues [9] provided a roadmap to industry personnel and researchers to assess, and

preferably, quantify software testability in design phase. Li and colleagues [10] proposed an

anomaly based network intrusion detection system based on Multilayer perceptron with a

single hidden layer trained by Back Propagation learning algorithm. The system operation

was divided into three stages: Input Data Collection and Preprocessing, Training, and

Detection stage. The result for the proposed module was 95% detection rate. Agarwal and

Agarwal [11] stated that the connection between an Artificial Neural Networks and

cryptography is providing a great help for the security concerns. Singh and Ramkumar [12]

presented a new technology for Security reasons. This is represented by Robots and

embedded systems using Camera inside the devices. The authors of this paper used Back

propagation algorithm to detect the face in a proper manner and a right direction without any

errors and transferred images into memories in micro controller chip. Kemerlis and

colleagues [13] suggested to employ system tracing facilities and data indexing services, and

combine them in a novel way to detect data leaks. Chothia and Guha [14] presented a

statistical test for detecting information leaks in systems with continuous outputs. Chothia

and Guha also used continuous mutual information to detect the information leakage from

trial runs of a probabilistic system. The main contributions of this paper are:

• show how to detect the leak information in source code which can be used to

measure information leakage by using Back propagation Neural Network algorithm.

• test for the presence of information leak and detect by the Independent Test

Organization.

• use this test to find, detect and fix any information leak in the source code

from the programmers or use the trap door to remote access to the software.

 In this paper, we use the supervisor learning in Back propagation Neural Network

algorithm to find and detect information leak if any. The level of the error must be zero or

less than 0.000001. The rest of the paper is organized as follows. Section 2 explains the work

of Independent Test Organization (ITO) and what is the purpose of the ITO? What are the

different approaches to keep test costs under control? Section 3 discusses the Artificial

Neural Network (ANN), its design and usage. Also, this section explains the algorithm of

Back propagation Neural Network and the procedure of learning. Section 4 discusses the

development of a test for information leakage in source code. Section 5 provides concluding

remarks of the work.

Independent Test Organization (ITO)

 An Independent Test Organization is an organization, a person, or a company that

tests products, materials, software, etc, according to agreed requirements. The test

organization can be affiliated with the government, universities or can be an independent

testing laboratory. They are independent because they are not affiliated with the producer nor

the user of the item being tested: no commercial bias is present. These "contract testing"

facilities are sometimes called "third party" testing or evaluation facilities [15]. An

Independent Test Organization might also be an organization that tests application according

to standard requirements. Test organizations specialize in testing and are majorly independent

of the supplier of application and the company that purchases the application. Testing is a

very important aspect of any application to perform its functional and non-functional

behavior and whether it behaves as per business objective. An unsuccessful testing, project

European Scientific Journal September 2014 /SPECIAL/ edition Vol.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

449

may allow a substandard application to go live. This might be the reputation of the

organization [16]. Independent testing might have a variety of purposes, such as:

1. Verifying if the requirements of a specification, regulation, or contract are

met.

2. Deciding if a new product development program is on track: Demonstrate

proof of concept.

3. Providing standard data for other scientific, engineering, and quality assurance

functions.

4. Validating suitability for end-use.

5. Providing a basis for technical communication.

6. Providing a technical means of comparison of several options.

7. Providing evidence in legal proceedings: forensics, product liability, patents,

product claims, etc.

8. Solving problems with current products or services.

9. Identifying potential cost savings in products or services.

 Software testability is the tendency of code to reveal existing faults or information

leak.

 This paper proposes the use of a software testability to detect and protect the

information leak inside ITO throughout the development process by using Back Propagation

Algorithm. We further believe that software testability analysis to detect the leak of

information in real time can play a crucial role in quantifying the likelihood that faults are not

hiding after finishing the testing process, which does not result in any failures for the current

version. Testability is one of the major factors determining the time and effort needed to test

software system. It is costly to redesign a system during implementation or maintenance in

order to overcome the lack of testability [17]. There are different approaches to keep test

costs under control and to increase the quality of the product under test [18] as shown in

 Figure 1.

1. improve the software specification and documentation,

2. reduce or change functional requirements to ease testing,

3. use better testing techniques,

4. use better testing tools,

5. improve the testing process,

6. train people, and

7. improve the software design and implementation.

Figure 1: Steps for Increasing the Quality of the Product Under Test

3. Artificial Neural Network (ANN)

European Scientific Journal September 2014 /SPECIAL/ edition Vol.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

450

 Biologists have studied biological neural networks for many years. The human brain

looks like a network. Discovering how the brain works has been an ongoing effort that started

more than 2000 years ago. Information about the function the brain was accumulated, a new

technology emerged as the quest for an ―Artificial Neural Network‖ start. The brain processes

information super quickly and super accurately. It can be trained to recognize patterns and to

identify incomplete patterns [19]. While designing ANN we should be concerned with the

following:

1. Network topology

2. Number of layers in the network

3. Number of neurons or nodes

4. Learning algorithm to be adopted

5. Network performance

6. Degree of adaptability of the ANN (i.e. to what extent the ANN is able to

adapt itself after training).

 A Neural network‘s ability to perform computations is based on the hope that we can

reproduce some of the flexibility and power of the human brain by artificial means. Network

computation is performed by a dense mesh of computing nodes and connections. They

operate collectively and simultaneously on most or all data inputs. The basic processing

elements of neural networks are called artificial neurons, or simply neurons [19]. Therefore,

neural network is a system composed of many simple processing elements operating in

parallel whose function is determined by network structure, connection strengths and

processing performed at computing elements or nodes [20].

Back Propagation Neural Network

 An Artificial Neural Network (ANN) is an information processing paradigm that is

inspired by the way biological nervous systems process information. It is configured for a

specific application through a specific learning process. The most commonly used family of

neural networks for pattern classification tasks is the feed-forward network, which includes

multilayer perceptron and Radial-Basis Function (RBF) networks.

 Back Propagation is a feed forward supervised learning network. The general idea

with the back propagation algorithm is to use gradient descent, to update the weights and to

minimize the squared error between the network output values and the target output values.

The update rules are derived by taking the partial derivative of the error function with respect

to the weights to determine each weight‘s contribution to the error. Then, each weight is

adjusted. This process occurs iteratively for each layer of the network. The concept of the

process is to start with the last set of weights, and work back towards the input layer. This

concept is named as ―Back Propagation‖.

 The network is trained to perform its ability to respond correctly to the input patterns

that are used for training. Also, to provide good response to input that are similar.

Propagation analysis is the process concerned with determination of the probability that a

forced change in an internal computational state causes a change in the program‘s output. In

other words, it is the probability that an error in the data state at a location causes an output

error for a given input distribution. Propagation of a data state error occurs when the output is

affected by the data state.

 Propagation analysis involves three things:

1. Obtaining a data state at a location in the code.

2. Perturbing the data state.

3. Executing the code to completion and examining the resulting output to see if the

perturbed data state has changed the output.

European Scientific Journal September 2014 /SPECIAL/ edition Vol.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

451

 Propagation analysis is similar to a strong mutation testing in that the results at the

end of the execution of the original program are compared with the results obtained when a

data state is corrupted [21]. The algorithm Works as shown in Table 1 [22]:
Table 1: Back Propagation Neural Network Algorithm

 After choosing the weights of the network randomly, the back propagation algorithm

is used to compute the necessary corrections. The algorithm can be decomposed in the

following four steps:

1. Feed-forward computation

2. Back propagation to the output layer

3. Back propagation to the hidden layer

4. Weight updates

 The algorithm is stopped when the value of the error function has become sufficiently

small.

Back propagating – Learning

 The network is first initialized by setting up all its weights to be small random

numbers between –1 and +1. The input pattern is applied and the output calculated (this is

called the forward pass). The calculation gives an output which is completely different to

what you want (the Target), since all the weights are random. We then calculate the Error of

each neuron, which is essentially: Target – Actual Output (i.e. what you want – What you

actually get). This error is then used mathematically to change the weights in such a way that

the error will get smaller.

 In other words, the Output of each neuron will get closer to its Target (this part is

called the reverse pass). The process is repeated again and again until the error is minimal.

Learning Procedure
1. Randomly assign weights (between +1 and -1)

2. Present inputs from training data, propagate to outputs

1. Apply the inputs to the network and work out the output – remember this initial output could be
anything, as the initial weights were random numbers.

2. Work out the error for neuron B. The error is what you want? What you actually get? in other
words:
Error

B
 = Output

B
*(1-Output

B
)*(Target

B
 – Output

B
)

The “Output*(1-Output)” term is necessary in the equation because of the Sigmoid

Function – if we only were using a threshold neuron it would just be (Target –Output).

3. Change the weight. Let W
+AB

 be the new (trained) weight and W
AB

 be the initial weight.
W

+AB
 = W

AB
 + (Error

B
 x Output

A
)

Notice that it is the output of the connecting neuron (neuron
A
) we use (not

B
). We update all the

weights in the output layer in this way.

4. Calculate the Errors for the hidden layer neurons. Unlike the output layer we can’t calculate these
directly because we don’t have a Target, so we Back Propagate them from the output layer. Hence
the name of the algorithm. This is done by taking the Errors from the output neurons and running
them back through the weights to get the hidden layer errors. For example if neuron A is connected
to B and C then we take the errors from B and C to generate an error for A.
Error

A
 = Output

A
*(1 - Output

A
)*(Error

B
 + Error

C
)

Again, the factor “Output*(1 - Output)” is present because of the sigmoid squashing function.

5. Having obtained the Error for the hidden layer neurons now proceed as in stage three to change
the hidden layer weights. By repeating this method we can train a network of any number of
layers.

European Scientific Journal September 2014 /SPECIAL/ edition Vol.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

452

3. Compute outputs O; adjust weights according to the delta rule, back propagate

the errors. The weights will be nudged closer so that the network learns to give

the desired output.

4. Repeat; stop when no errors, or less than 0.000001.

Detect Leakage Information

 The concept of the brain as a computer has been part of the modern scientific. This

path has led to new fields of research including artificial intelligence and neural networks.

Connections between computation and the brain have been studied extensively using

Artificial Neural Networks (ANN) and inspired by biological neural networks. One aspect of

the complexity of nervous systems is their intricate morphology, particularly the

interconnectivity of their neuronal processing elements. Synapses are the ends of the

connections within the nervous system [23].

 There are two types of synapses:

1. Chemical synapses, which use neurotransmitters,

2. Electrical synapses, which provide direct electrical coupling to the synapsed

cell. Neurons are very polarized cells, with long and thin extensions.

 ANNs consist of ‗neuron‘ nodes connected by ‗synapses‘ of variable strength. They

can be trained to perform a given task through algorithmic modification of the synaptic

weights. A desired input-output relationship can be generated for a known set of examples,

after which the ANN can be used to process unknown inputs.

 In this paper we focus on source code as our measure of information leakage. We

describe how it can be calculated and learned to detect the information leakage. There are two

main obstacles to detecting the leak of information of a real system in the source code:

1. We must find random numbers assigned for weights that reflect the source

code under test. In order to detect the leakage through present inputs from

training data: propagate to outputs, compute outputs O, adjust weights according

to the delta rule and back propagate the errors. The weights will be nudged closer

so that the network learns to give the desired output

2. We must calculate the error when learning and stop it when the leakage is zero

or less than 0.000001. This is the biggest challenge to discover the accuracy of

information leaking in the source code. This works as embedded sensor inside the

source code to detect the leakage of information. Figure 2 shows Weights of

Network Back Propagation.

Figure 2: Weights of Network Back Propagation

European Scientific Journal September 2014 /SPECIAL/ edition Vol.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

453

 We could stop it once the network can recognize all the letters successfully, but in

practice it is usual to let the error fall to a lower value first. This ensures that the letters are all

being well recognized. You can evaluate the total error of the network by adding up all the

errors for each individual neuron and then for each pattern in turn to give you a total error as

shown in Figure 3.

Figure 3: Artificial Neural Network Flowchart

Forward Pass for Training and Detection of the Word (Class) in the Source Code

Activations of the Hidden Layers

 An important special case of feed-forward networks is the layered networks with one

or more hidden layers. We give explicit formulas for the weight updates and show how they

can be calculated using linear algebraic operations. We also show how to label each node

with the back propagated error in order to avoid redundant computations.

netH1= I1 *wI1H1+ I2* wI2H1+ I3 *wI3H1+ I4* wI4H1+bH1+bH1

=0.6*0.1 + 0.1* (-0.2) + 0.2*0 + 0.3*0 + 0.1*0 + 0.1=0.14

oH1=1/ (1+e- netH1) =0.53

netH2= I1 *wI1H2+ I2* wI2H2+ I3 *wI3H2+ I4* wI4H2+bH2+bH2

=0.6 *0 + 0.1*0.2 + 0.2*0 +0.3*(-0.1) + 0.1*0.3 + 0.2=0.22

oH2=1/ (1+e- netH2) =0.55

netH3= I1 *wI1H3+ I2* wI2H3+ I3 *wI3H3+ I4* wI4H3+bH3+bH3

=0.6*0.3 + 0.1*(-0.4) + 0.2*(-0.3) + 0.3*.0.4 + 0.1* (-0.6) + 0.5=0.64

oH3=1/ (1+e- netH3) =0.65

European Scientific Journal September 2014 /SPECIAL/ edition Vol.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

454

Activations of the Output Layers

 It is important not to update any weights until all errors have been calculated. It is

easy to forget this and if new weights were used while calculating errors, results would not be

valid. Here, a quick second pass using new weights is needed to see if error has decreased.

The vector O is presented to the network. The vectors O(1) and O(2) are computed and

stored. The evaluated derivatives of the activation functions are also stored at each unit.

netO1=oH1*wH1O1+ oH2*wH2O1 + oH3*wH3O1 +bO1

=0.53*(-0.4) + 0.55* 0.1 + 0.65* 0.6+ (-0.1) =0.13

oO1=1/ (1+e- netO1) =0.53

netO2=oH1*wH1O2+ oH2*wH2O2 + oH3*wH3O2 +bO2

=0.53*0.2+0.55*(-0.1) +0.65*(-0.2) +0.6=0.52

 oO2=1/ (1+e- netO2) =0.63

Backward Pass for Detecting Word (Class) in the Source Code

Calculate the Output Errors: errerO1 and errerO2 (note that doO1=1, doO2=0)

 Now errors have to be propagated from the hidden layer down to the input layer. This

is a bit more complicated than propagating error from the output to the hidden layer.

errerO1 = (doO1- oO1) * oO1 * (1- oO1) = (1-0.53)*0.53*(1-0.53) = 0.12

errerO2 = (doO2- oO2) * oO2 * (1- oO2) = (0-0.63)*0.63*(1-0.63) = -0.15

Calculate the New Weights Between the Hidden and Output Layers (η=0.1)

 It is important not to update any weights until all errors have been calculated. It is

easy to forget this and if new weights were used while calculating errors, results would not be

valid. Here, a quick second pass using new weights is needed to see if error has decreased.

After computing all partial derivatives, the network weights are updated in the negative

gradient direction. Learning constant defines the step length of the correction.

ΔwH1O1= η * errerO1 * oO1 = 0.1*0.12*0.53=0.006

wH1O1
new

 = wH1O1
old

 + ΔwH1O1 = -0.4+0.006= -0.394

ΔwH1O2= η * errerO2 * oO1 = 0.1*-0.15*0.53=-0.008

wH1O2
new

 = wH1O2
old

 + wH1O2 = 0.2-0.008=-0.19

Similarly for wH2O1
new

, wH2O2
new

, wH3O1
 new

 and wH3O2
 new

For the biases bO1 and bO2 (remember: biases are weights with input 1):

ΔbO1= η * errerO1 * 1 = 0.1*0.12=0.012

bO1
new

 = bO1
old

 + ΔbO1 = -0.1+0.012=-0.012

Similarly for bO2

Calculate the Errors of the Hidden Layers: errerH1, errerH2 and errerH3

 In the case of error > 1 input - output patterns, an extended network is used to

compute the error function for each of them separately. The weight corrections are computed

for each pattern and so we get the corrections

errerH1 = oH1 * (1- oH1) * (wH1O1* errerO1 + wH1O2 * errerO2)

= 0.53*(1-0.53) (-0.4*0.12+0.2*(-0.15)) = -0.019

Similarly for errerH2 and errerH3

Calculate the New Weights Between the Input and Hidden Layers (η=0.1)

 We speak of batch or off-line updates when the weight corrections are made in this

way. Often, however, the weight updates are made sequentially after each pattern

presentation (this is called on-line training). In this case, the corrections do not exactly follow

the negative gradient direction. However, if the training patterns are selected randomly the

search direction oscillates around the exact gradient direction. On average, the algorithm

European Scientific Journal September 2014 /SPECIAL/ edition Vol.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

455

implements a form of descent in the error function. The rationale for using on-line training is

that adding some noise to the gradient direction can help to avoid falling into shallow local

minima of the error function. Also, when the training set consists of thousands of training

patterns, it is very expensive to compute the exact gradient direction since each epoch (one

round of presentation of all patterns to the network) consists of many feed-forward passes and

on-line training becomes more efficient.

ΔwI1H1= η * errerH1 * I1 = 0.1*(-0.019)*0.6= -0.0011

wI1H1
new

 = wI1H1
old

 + ΔwI1H1 = 0.1-0.0011=0.0989

Similarly for:

wI2H1
new

, wI3H1
new

, wI4H1
new

, wI5H1
new

, wI1H2new, wI2H2
new

, wI3H2
new

, wI4H2
new

,

wI5H2
new

, wI1H3
new

, wI2H3
new

, wI3H3
new

, wI4H3
new

 and wI5H3
new

; bH1, bH2 and

bH3

Usefulness of Other Training

 Repeat the procedure for the other training to detect the information leak in the source

code such as class, mail, web, URL etc. The back propagated error can be computed in the

same way for any number of hidden layers and the expression for the partial derivatives of E

keeps the same analytic form.

Conclusion

 In this paper was designed a method to detect information leakage in the source code

to help independent test organization to detect the trap door of leak information.

 The proposed system classifies an architecture based on learning using an enhanced

resilient Back Propagation Neural Network algorithm. It is used to detect information leakage

in the source code. The system is monitored by real time technology. It is able to extract

leakage of information from the source code that designed with high detection, and accuracy

and calculate the error when learning and stop it when the error is zero or less than 0.000001.

 The following points are concluded from the proposed system.

1. The excellent detection rate for information leakage is very encouraging.

2. The sensors after learning have been the simplest in the cases where they embedded

themselves in the source code and checked all attacks.

3. This detection of leak information can operate without any external components.

4. The prototype implemented is able to detect information leak.

5. Using automatic audit for detecting all information leakage provides high security to

the independent test organization without using any other protection programs.

6. The proposed method to detect the leak of information using Java language is very

flexible in dealing with any kind of operating systems.

 By using the real time technique, we can use our method to detect the information

leak in the source code which deals with them without returning to the programmer or getting

the help of the owner of the source code.

References:

Abraham, A., Grosan, C. & Chen, Y. (2006). Evolution of Intrusion Detection Systems.

[Online] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16 [Accessed on 18

October 2011].

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer, New York, USA.

Joachims, T. (1998). Making large-scale support vector machine learning practical. In B.

Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector

Machines. MIT Press, Cambridge, MA,USA.

European Scientific Journal September 2014 /SPECIAL/ edition Vol.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

456

Ghosh, A., Schwartzbard, A. & Schatz, M. (1999). Learning program behavior profiles for

intrusion detection. In ID‘99: Proceedings of the 1
st
 conference on Workshop on Intrusion

Detection and Network Monitoring.

Honig, A., Howard, A., Eskin, E. & Stolfo, S. (2002). Adaptive model generation: An

architecture for the deployment of data mining-based intrusion detection systems. Data

Mining for Security Applications.

Mukkamala, S. , Janoski, G. & Sung, A. (2002). Intrusion detection using neural networks

and support vector machines. The Proceedings of the International Joint Conference on

Neural Networks (IJCNN 2002), Vol. 2, pp. 1702 – 1707, Honolulu, HI.

Khan, L., Awad, M., Thuraisingham, B. (2007). A new intrusion detection system using

support vector machines and hierarchical clustering‘, The VLDB Journal, Vol. 16, pp. 507-

521, 2007.

Vollmer, T. & Manic, M. (2009). Human Interface for Cyber Security Anomaly Detection

Systems, HSI2009, 2
nd

 International Conference on Human Systems Interactions, Catania

Italy, May 28-30, 2009.

Mohd, N., Khan, R. & Mustafa, K. (2010). Testability Estimation Framework, International

Journal of Computer Applications (0975 – 8887), 2(5), pp. 9-14, June 2010.

Li, J., Zhang, G. & Gu, U. (2004). The Research and Implementation of Intelligent Intrusion

Detection System Based on Artificial Neural Network. Proceedings of the Third

International Conference on Machine Laming and Cybernetics, pp. 26-29, Shanghai.

Agarwal, N. & Agarwal, P. (2013). Use of Artificial Neural Network in the Field of Security,

MIT International Journal of Computer Science & Information Technology, pp. 42–44 ISSN

2230-7621 ©MIT Publications, 3(1), January 2013.

Singh, R. & Ramkumar, E. (2013). Embedded Systems and Robotics that Improving Security

Model with 2D and 3D of Face -Recognition Access Control System Using Neural Networks

International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, 2(6), pp.

197-200, January 2013.

Kemerlis, V., Pappas, V., Portokalidis, G. & Keromytis, A. (2010). iLeak: A Lightweight

System for Detecting Inadvertent Information Leaks, IEEE Conference Publications -

Computer Network Defense (EC2ND), pp. 21 - 28, European Conference, 2010.

Chothia, T. & Guha, A. (2011) Statistical Test for Information Leaks Using Continuous

Mutual Information, Computer Security Foundations Symposium (CSF), IEEE 24
th

, pp. 177 –

190, 2011.

Wikipedia (2014). Independent Test Organization [Online]

http://en.wikipedia.org/wiki/Independent_test_organization [Accessed on: 12 January 2014].

The Mobile Guru (2014). Why Independent Testing & QA Makes Sense [Online]

http://harshalkharod.blog.com/2011/03/02/independent-testing-outsource-testing/ [Accessed

on: 20 January 2014].

Khatri, S., Chhillar, R. & Singh, V. (2011). Improving the Testability of Object-oriented

Software during Testing and Debugging Processes, International Journal of Computer

Applications, (0975 – 8887), 35(11), pp. 24-35, December, 2011.

Jungmayr, S. (2002). Design for Testability, In Proceedings of CONQUEST 2002, pp. 57-

64, September 18
th

-20
th

, 2002, Nuremberg, Germany,.

Ranjana, R. & Aziz-ur-Rahman, M. (2006). Multivariable System Security Using ANN in the

Libraries: Designing and Development, The 4
th

 International Convention CALIBER-2006,

INFLIBNET Centre, 2-4 February 2006, Gulbarga.

Jojodia, S. & Kogan, B. (1990). Transaction Processing in Multilevel-Secure databases using

Replicated Architecture, The Proceedings of the 1990 Symposium on Research in Security

and Privacy, pp. 360-368, May 1990.

European Scientific Journal September 2014 /SPECIAL/ edition Vol.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

457

Al-Khanjari, Z.A. (2006). Partial Automation of Sensitivity Analysis by Mutant Schemata

Approach, the International Arab Journal for Information Technology (IAJIT), 3(1), pp. 82-

93, January, 2006.

Rojas, R. (1996). Neural Networks, Springer-Verlag, Berlin, 1996.

Thomas, A. & Kaltschmidt, C. (2014). Bio-inspired Neural Networks, Springer International

Publishing Switzerland, 2014.

