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Abstract 
      Kalman filter has gained popularity in the adjustment of field 
measurements since it was invented in 1960. Unlike the least squares 
technique it is relatively not renowned in the adjustment of surveying 
measurements. This work presents how it can be used in the determination of 
the electronic distance measurement zero error. First the values of the 
unknown parameters and their corresponding covariances are predicted. 
Subsequently, updates on the predicted parameters and covariances are 
estimated in several iterations. The residuals are estimated to determine the 
accuracy of the experiment. The estimated electronic distance measurement 
zero errors for three epochs are 0.015033522833m, 0.0113142487320m and 
0.0113121989063m.    
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Introduction 
      Surveying measurements are usually compromised by errors in field 
observations and therefore require mathematical adjustment. In the first half 
of the 19th century the Least Squares (LS) (Gauss, 1823) adjustment 
technique was developed. LS is the conventional technique for adjusting 
surveying measurements. The LS technique minimises the sum of the 
squares of differences between the observation and estimate. LS has a 
disadvantage of requiring matrix inversions that tend to slow down the 
process of adjusting measurements. In this research the use of the Kalman 
Filter (KF) (Kalman, 1960) technique for determining the zero error of the 
Electronic Distance Measurement (EDM) will be presented. KF easily 
resolves the adjustment of field measurements by using a recursive algorithm 
utilising part of its output as an input for the next iteration (Bezrucka, 2011). 
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The principles of Kalman filter 
      The KF is a recursive algorithm (Maybeck, 1979) that estimates the 
current state of the dynamic system out of incomplete noisy indirect 
measurements. KF is suitable for both linear and nonlinear processes. “The 
principle of KF is based on two basic phases of the process: prediction and 
update”(Bezrucka, 2011). 
 KF predicts or estimates the state of a dynamic system from a series 
of incomplete and /or noisy measurements. Suppose we have a noisy linear 
system that is defined by the following equations: 

11
ˆ

−− += kkk wXAX                                                                                         (1) 

kkk vHXZ +=                                                                                              (2) 

 Where kX  is estimated state at time k , A  is the state transition 

matrix, 1−kX  is estimated state for preceding time 1−k , w  is process noise 

at time 1−k , kZ  is the measurement, H  is the measurement design matrix 

and kv  is the measurement noise.  
 
Prediction 
      The previously estimated state 1

ˆ
−kX  can be used to predict the 

current state at time k , −
−1kX  as shown by the following equation: 

1
ˆ

−
− = kk XAX                                                                                                   (3) 

QAPAP T
kk += −

−
1

ˆ                                                                                         (4) 

 Where −
kP  and 1

ˆ
−kP  are estimated error covariance matrices at times 

k  and 1−k  respectively; while Q  is the process noise covariance matrix.  
 
Update 
      The Kalman gain kK  is estimated as, 

1)( −−− += RHHPHPK T
k

T
kk                                                                         (5) 

 R  is the measurement noise covariance matrix. Equation 5 shows 
that a more precise measurement (i.e. the lower covariance matrix elements) 
raises its weight (Welch and Bishop, 2001).  

1lim
0

−=
→

HKkR

                                                                                        (6)  

 H  is generally a nonsquare matrix, and thus cannot be inverted. 
Equation 6 should be stated in the following form, 
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IHKk
R

=
→

lim
0

                                                                                           (7) 

 The a priori covariance matrix approaching zero values means the 
low weight of the observation and a priori residual (Welch and Bishop, 
2001),  

0lim
0

=
→−

kK
kP

                                                                                           (8)

     Assuming the apriori residual ke  as the difference between the 
current observation and the expected observation determined in the last 
parameter estimate is (Bezrucka, 2011),  

−−= kkk XHZe ˆ                                                                                                (9) 
 Therefore updated estimate of state is determined as, 

kkkk eKXX += −+ ˆˆ                                                                                           
(10) 
 and its updated covariance matrix is determined as, 

−+ −= kkk PHKIP )(                                                                                       (11) 
 
Application  
      In order to determine the instrument constant or zero error ( k ) of a 
short-range EDM a straight baseline design method was implemented 
(Ayeni, 2001). Twelve measurements were made using points A, B, C and D 
(Figure 1 and Table 1).  
 
 
 
 

Figure 1. Baseline measurements (Ayeni, 2001) 
 

Table 1. Observations (Ayeni, 2001) 
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      The unknown parameters to be determined are the adjusted distances 
AB , BC , CD  and zero error k . The observation equations are (Ayeni, 
2001),   
 
 
 
 
 
 
 
 
 
 
 
 
 
 Where iaD  are the adjusted distances; 1X , 2X , 3X  represent 
adjusted distances  AB, BC and CD respectively; while k  represents the 
adjusted EDM instrument zero error. The solution to the stated problem was 
implemented using the MATLAB programming software.  

The solution is, 

k
X
X
X

X
3

2

1

=  furnished by equation 10.  
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The values of 0=kX , 0=kP , Q , kZ , H , A  and R  are given as,  
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0 ==kX  , 
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0 ==kP , 
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0000500.0

=Q ,  

1113.657
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2202.304
5107.101

=kZ  ,    
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 kZ  is the measurement shown in Table 1. H  was derived from the 

observation equations, while the stated values for 0=kX , 0=kP , Q , A  and R
were assumed a priori.   
 
Results 
      Three iterations were run to determine the values of −

kX , −
kP , +

kX  

and +
kP for nk ,...,1= , where 3=n  (Table 2). A posteriori residuals were 

calculated for 1=k , 2=k  and 3=k  (Figure 2). The residuals showed the 
errors in computing the adjusted values of the unknown parameters. Figure 3 
was calculated by summing the absolute values of the residuals for 1=ke , 2=ke  

and 3=ke . From Figure 3, 2=k  yielded the lowest residual value and 
therefore the most accurate while 1=k  yielded the highest residual value 
and therefore the least accurate. From Table 2, 00.015033522833m, 
0.0113142487320m and 0.0113121989063m were the estimated EDM zero 
errors for three epochs 1=k , 2=k  and 3=k  respectively.   

Table 2. Estimated results for the unknown parameters and their covariances 

−
=1kX  

−
=1kP  

0 1.0498000 0 0 0 
0 0 1.0498000 0 0 
0 0 0 1.0498000 0 
0 0 0 0 1.049800 
+
=1kX  

+
=1kP  

101.486066359826 0.100434e-4 0.00868e-4 0.072341 e-4 -0.099439 e-4 
202.694571635624 0.00868e-4 0.037717 e-4 -0.019596 e-4 -0.015682 e-4 
352.856367289952 0.072341 e-4 -0.019596 e-4 0.101530  e-4 -0.073375e-4 
0.015033522833 -0.099439 e-4 -0.015682 e-4 -0.073375 e-4 0.106519e-4 

−
=2kX  

−
=2kP  

101.4860663598256 0.0500100 0.000000867778 0.00000723268 -0.00000994191 

202.6945716356237 0.000000867768 0.0500038 -0.0000019592 -0.00000156784 

352.8563672899521 0.00000723268 -0.0000019592 0.0500102 -0.000007336 
0.0150335228326 -0.00000994191 -0.00000156784 -0.000007336 0.0500106 

+
=2kX  

+
=2kP  

101.4997768205013 0.100386e-4 0.00867688 e-4 0.0722998e-4 -0.0993895 
202.7149962351165 0.00867688e-4 0.0377138 e-4 -0.0195942e-4 -0.0156781e-4 
352.8953807316197 0.0722998e-4 -0.0195942 e-4 0.101489e-4 -0.0733329e-4 
0.0113142487320 -0.0993895 -0.0156781e-4 -0.0733329e-4 0.1064681e-4 

−
=3kX  

−
=3kP  
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Figure 2. Residuals 
 

 

Figure 3. Sum of absolute values of the residuals 
       
 Various values of R  were used to compute the adjusted values of the 
actual measurements (Figure 4). From Figure 4, )0( =kR  (whose matrix 
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was given in the previous section) yielded the best fit of the actual 
measurements. While )12(*010 eyeeR −=  yielded the least fit of the actual 
measurements.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Computed adjusted measurements using various R values 
 
Conclusion  
      The KF has the benefit of furnishing several solutions in successive 
iterations as shown in this work. Other advantages of the KF include the 
possibility of altering the values of the process noise covariance matrix Q  
and measurement noise covariance matrix R  in order to improve the 
accuracy of the prediction.  
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