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Abstract: 

In this paper, the Lippmann-Schwinger (LS) formalism is applied to spin-polarized atomic 

tritium (T↓). The total and viscosity cross sections of T↓- T↓ collisions are calculated, using 

two triplet-state potentials: a Morse- and a Silvera- type potentials. Also, the scattering length 

and the binding energy of T↓ atoms are calculated. Our results are found to be in good 

agreement with previous calculations. Our results for the Morse potential are smaller in 

magnitude than those for the Silvera potential, because the Morse-potential well is shallower 

than that of the Silvera potential. In the low-energy limit, the cross sections are dominated by 

S-wave scattering. In this limit, the S-wave scattering length 0a  0 for both potentials. This 

means that the interaction between the T↓ atoms is attractive. The Ramsauer-Townsend (RT) 

effect and phase transitions in the cross sections are found at low temperatures. The effect of 

the D-wave scattering appears as a resonance-like behavior in the total cross section. This 

peak corresponds to a quasi-bound state.  

 

Keywords: Spin-polarized tritium, Total and viscosity cross sections, Ramsauer-Townsend 

effect, Scattering length. 

 

1. Introduction 

Spin-polarized tritium (T↓) is an interesting quantum many-body system  which obeys 

Bose statistics. It is expected to be liquid at zero temperature and pressure (Etters et al., 1975; 

Miller and Nosanow, 1976;  Joudeh et al., 2007), thanks to its larger mass. Stwaley and 

Nosanow (1976) suggested that T↓ should behave very much like 
4
He, and therefore 

constitute another example of a bosonic superfluid (Stwaley and Nosanow, 1976). 
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Various microscopic methods have been adopted for studying this system. First  there 

has been the variational track, including Monte Carlo simulation (Blume et al., 2002; Bešlić 

et al., 2008; Bešlić et al., 2009; Stipanović et al., 2011) and the lowest-order constrained 

variational method (Hangen and Østgaard, 1989). Blume et al. (2002) used the Diffusion 

Monte Carlo (DMC) method to study the microscopic properties of tritium clusters with up to 

N=40 atoms and compared them to bosonic 
4
He clusters. In that work, it is shown that (T↓) 

clusters are more weakly-bound and diluted than 
4
He clusters with the same number of 

atoms. In addition, they have shown that the trimer (T↓)3  is the smallest spin-polarized 

tritium cluster with a ground state-energy of only -4.2(7) mK. The stability of mixed clusters 

of T↓ with  spin-polarized hydrogen (H↓) and spin-polarized deuterium (D↓) has also  been 

investigated (Bešlić et al., 2009; Stipanović et al., 2011). For the clusters with D↓, the 

stability limits depend on the number of D↓  atoms and the occupation of its nuclear spin 

states. On the other hand, because of the small mass of H↓, it has been shown that even 60 T↓ 

atoms are not enough to bind one H↓ atom. Second, there  has been the perturbative track 

(Solís et al., 1993). The ground-state properties of the spin-polarized bosonic fluids H↓ and 

T↓ have been determined using a quantum thermodynamic perturbation theory, with 

emphasis on the repulsive-sphere gas.  

In this work, we shall apply the Lippmann-Schwinger (LS) formalism to our system 

so as to calculate the cross sections, and then the Ramsauer-Townsend (RT) effect and phase 

transitions in T↓-T↓ scattering will be explored. RT effect is the phenomenon occurring in the 

collision between two particles when the total cross section is a minimum at a particular 

value of the relative energy (Borghesani, 2001). Also, the S-wave scattering length and then 

the binding energy of T↓ will be calculated at very low energy.  

We consider an extended system consisting of N spin-polarized tritium atoms, each of 

mass m, occupying a volume Ω at zero temperature and pressure such that the particle density 

is given by  N  and in a very-large magnetic field of order 10 T. The system is assumed 

to interact through the triplet-state potential.  

The rest of the paper is organized as follows. The underlying theoretical framework is 

presented in Section 2. The results are summarized and discussed in Section 3. Finally, 

Section 4 comprises a summary of our results and the main conclusions. 
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2. Cross Sections of T↓-T↓ Scattering 

The basic elements of the theory of scattering by a potential V(r), where r is the 

interatomic distance, are one known. We have already distilled the necessary equations and 

expressions for our present purposes in a previous publication (Al-Maaitah et al., 2011). 

 However, for reference purposes as well as to establish our notation, we summarize 

here the necessary expressions. 

In compact form, a general expression for the integral cross sections may be defined 

by (Merzbacher, 1998) 

    
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where n = 1 corresponds to the diffusion cross section D , and n=2 to the viscosity cross 

section  ;   is the center-of-mass scattering angle, and  
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 f being the scattering amplitude and is defined by (Landau,1996)          
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  (3)        

 cosP  being the first-kind Lengendre polynomial of  order  . 

The total cross section  T  is given by 





 


dsin
d

d
2

0

T                                                 (4) 

 

Substituting n = 1 in Eq. (1), we have 
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The first integral is even; whereas the second is odd and therefore vanishes. It follows that   
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Substituting Eq. (3) in Eq.( 6), we have 
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The viscosity cross section   is obtained by substituting n = 2 in Eq. (1):    
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The total cross section for spin-polarized bose atoms (Jamieson et al., 1999) is given by 
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Then, the viscosity cross section   for spin-polarized bose atoms is given by 
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The starting point in computing the T↓-T↓ cross sections is the determination of 

the relative phase shifts. This can be done by solving the Lippmann-Schwinger (LS) 

integral equation using a matrix-inversion technique (Bishop et al.,1977).  

 

The Lippmann-Schwinger (LS) t-matrix which best describes two-body scattering 

in vacuum may be written as (Bishop et al., 1977, Joudeh  et al., 2010, Joudeh , 2011): 
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Here: the operator V
2
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V

2
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2






, where V is the Fourier transform of a static central 

tow-body potential and   is the reduced mass of the interacting pair: m
2

1
 . 

Throughout this work we shall use units such that 1km2 B  , kB being Boltzmann's 

constant. The conversion factor being K 085.16
m

2




Å
2
 . The other parameters shown 

explicitly in the t-matrix equation-namely, p


, p

 , P


 and s denote, respectively, the 

relative incoming momentum, the relative outgoing momentum, the center of mass 
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momentum, the total energy of the interacting pair in the center-of-mass frame and is 

given by  

;
m

P
P22s

2

0 



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


                                                                                                           (12) 

0P is the kinetic energy of the pair; 2P is the energy carried by the center of mass.  

Using our system of units, we have 

.PPs 2

0                                                                                                                        (13) 

 

The  free two-body Green's function  sg 0  is  defined as (Joudeh  et al., 2010): 
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The system of interacting real particles is described in terms of weakly interacting 

quasiparticles; this justifies the use of free Green's functions. The quantity is a positive 

infinitesimal in the scattering region and zero otherwise. 

To calculate the real and imaginary parts of the t-matrix, it is convenient to define a 

real K-matrix:  
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The relative phase shift  p  can now be obtained from the parameterization 

   ptan
p
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The waves  scattering length 0a for spin-polarized systems at low energy is defined as 

(Landau, 1987; Sakurai, 1987) 
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The basic input in our present framework is the triplet-state potential. It is convenient 

to separate the pair potential V (r) into repulsive and attractive parts (Solís et al., 1993): 

 

)18(10)r(V)r(V)r(V attrep   

 

where Vatt(r) is negative and =1 corresponds to the full interaction. Here we have used  two 

forms for the triplet-state potential. The first is Morse (Dugan et al.,1973) : 
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where 


A1527.4r;K19.6 m   is the position of the potential minimum; and 0458.6c   is 

a dimensionless constant. 

 

The second is Silvera (Silvera, 1980): 
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3. Results and Discussion 

Our results are calculated using the Morse and Silvera triplet-state potential. The (LS) 

t-matrix, which can be considered as the pairwise interaction in momentum space, was 

determined using a matrix-inversion technique (Ghassib et al.,1976). In all Gaussian-

quadrature integrations, a 96-mesh points was used to give accurate results. The total 

(diffusion) and viscosity cross sections for T↓- T↓ scattering are calculated using Eqs. (9) 

and (10), respectively. It was found to be necessary to include partial waves up to 14  to 

obtain results accurate to better than ~ 0.5%. 
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Figure 1 displays the total cross section T for T↓- T↓ scattering as a function of k in 

vacuum [LS], using both the Morse and Silvera potentials. At small energies the total cross 

section satisfies the condition of the Ramsauer-Townsend (RT) effect. T shows a deep 

minimum at k~ 0.26 Å
-1

 and 0.28 Å
-1

 for Morse and Silvera potentials, respectively. This 

minimum appears as a result of a delicate balance between attractive short-range and 

repulsive zero-range interactions. The physical observation is that, at a particular value of the 

T↓- T↓ collision energy, the total scattering cross section is anomalously small; or 

equivalently, the mean free path of T↓ atoms is correspondingly large. At this energy, 

therefore, T↓ atoms propagate as essentially free, unscattered particles. Our results for RT 

effect are summarized in Table 1. The peak in T (resonance-like behavior) for Morse 

potential is smaller in magnitude  than that for the Silvera potential, as shown in Table 2. This 

peak may be interpreted as an indicator of a quasi-bound state ( Alm et al., 1994, Sandouqa et 

al., 2010).   

 

 

Figure 1:  The total cross section T [Å
2
] for T↓- T↓ scattering as a function of k [Å

-1
] in 

vacuum [LS], using the Morse potential and the Silvera potential.  
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Table 1: The Ramsauer-Townsend total cross section T [Å
2
] for T↓- T↓ scattering using the 

Morse and Silvera potentials in vacuum [LS]. 

 

 

  

Table 2: The peak in the total cross section T [Å
2
] for T↓- T↓ scattering using the Morse and 

Silvera potentials in vacuum [LS]. 

 

 

 

 

 

 

Figure 2 displays the viscosity cross section  for T↓- T↓ scattering as a function of k 

in vacuum , using both the Morse and Silvera potentials.  has the same behavior as the total 

cross section, i.e., they have an RT minimum and a resonance-like behavior. Table 3 shows 

T (0) and (0) for  the Morse and the Silvera potentials. Our results for the Morse potential 

are smaller in magnitude than those for the Silvera potential, because the Morse-potential 

well is shallower than that of the Silvera potential. 

Triplet-state 

potential 

      T [Å
2
] 

Morse         2.50 

Silvera         27.93 

Triplet-state 

potential 

      T [Å
2
] 

Morse         105.12 

Silvera         143.94 
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Figure 2:   The viscosity cross section  [Å
2
] for T↓- T↓ scattering as a function of k [Å

-1
] 

in vacuum [LS], using the Morse potential and the Silvera potential. 

 

Table 3: T (0) [Å
2
] and (0) [Å

2
] for T↓- T↓ scattering using the Morse and Silvera 

potentials in vacuum [LS]. 

                   

Triplet-state 

potential 

T(0) [Å
2
] (0) [Å

2
] 

Morse  

 

538.42 358.95 

Silvera 

 

33213.20 22142.14 

  

Figures 3 and 4 represent the S-wave cross section 0 and the total cross section T as 

a function of k in vacuum using the Morse and the Silvera potentials, respectively. From 

these two figures, it is noted that the S-wave is the most significant partial scattering 

contributing to the total cross section at low energy. Therefore, the RT minimum arises 
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because S-scattering becomes small. The S-wave scattering length 0a , which is the most 

important parameter governing the interactions of low-energy atoms, has been calculated for 

our system at low energy using the Morse and Silvera triplet-state potentials, as shown in 

Table 4. It is noted that the S-wave scattering length 0a  0 for both potentials, this means that 

the interaction between T↓ atoms is attractive. These results are in good agreement with those 

obtained by (Blume et al., 2002). The negative scattering length suggests the existence of a 

bound state for T↓ atoms.   The binding energy EB for two types of T↓- T↓ interaction 

potentials can be determined using ).amE( 2

0

2

B   Our results for EB are presented in Table 

4. It is noted that the value of EB depends on the type of the interaction potential employed. 

Our results for EB using the Morse and the Silvera potentials are in good agreement with the 

previous calculations (Etters et al.,1975, Joudeh et al., 2007) and (Blume et al., 2002), 

respectively.  

 

Figure 3:  The S-wave cross section 0 [Å
2
] and the total cross section T for T↓- T↓ 

scattering as a function of k [Å
-1

] in vacuum [LS], using the Morse potential. 
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Figure 4:  The S-wave cross section 0 [Å
2
] and the total cross section T for T↓- T↓ 

scattering as a function of k [Å
-1

] in vacuum [LS], using the Silvera potential. 

 

Table 4:  The S-wave scattering length ao[Å] and the binding energy EB(K) of the weakly     

bound tritium using the Morse and Silvera potentials.  

 

Triplet-state 

potential 

ao[Å] EB(K) 

Morse  

 

-4.628 0.75 

[0.75(2)]
a 

[0.75]
b
 

Silvera 

 

-36.367 

[-42.692]
c
 

0.012 

[0.0042(7)]
c
 

 

a
[Etters et al.,1975] 

b
[Joudeh et al., 2007] 

c
[Blume et al., 2002] 

 

Figures 5 and 6 show the behavior of the total cross section T and the wave  cross 

section (  =0, 2) for T↓-T↓ scattering as a function of k in vacuum, using the Morse and 
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Silvera potentials. The odd partial waves are absent in the Bose-Einstein statistics (Aldridge 

and Davis, 1967, Joudeh et al., 2010). In the low-energy limit (k  0.3 Å
-1

) the D-wave(  =2) 

cross section is negligible compared to that of the S-wave and with increasing k (increasing 

energy) 0 tends to decrease; but this decrease is overcome by the higher partial-wave 

contributions, especially the D-wave, which initially increase with energy from zero before 

passing through a maximum, and then begin to decrease. Sharper structures are due to shape 

resonances. The most prominent is the D-wave resonance corresponds to a quasi-bound state 

trapped by the  =2 centrifugal barrier. This resonance occurs at k~ 0.56 Å
-1

 and 0.50 Å
-1

 for 

Morse and Silvera potentials, respectively. For k>1Å
-1

, T is nearly constant. The oscillatory 

behavior of the cross section as a function of momentum is clearly observed into the high-

energy region and originates from the indistinguishability of the T↓ atoms, which are 

scattered by the repulsive part of the potential (Cantini et al., 1972; Feltgen et al., 1982). The 

amplitude of the oscillations decreases in the first approximation as the inverse of the relative 

velocity of the colliding atoms (Dondi et al., 1969; Cantini et al., 1972). This behavior was 

first noticed by Bernstein (1963) who also pointed out that the number of oscillations was 

related (semiclassically) to the number of bound states of the potential. 

 

 Figure 5:  The total cross section T and the wave  cross section (  =0,2) for T↓- T↓ 

scattering as a function of k [Å
-1

]  in vacuum[LS], using the Morse potential. 
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Figure 6:  The total cross section T and the wave  cross section (  =0,2) for T↓- T↓ 

scattering as a function of k [Å
-1

]  in vacuum[LS], using the Silvera potential. 

 

4. Conclusion 

In this paper, the cross sections of T↓- T↓ collisions are calculated, namely, the total 

and viscosity cross sections, using two triplet-state potentials: a Morse- and a Silvera- type 

potentials. The achievements of the paper are:  (1) the prediction of the Ramsauer-Townsend 

effect in this system; (2) the prediction of a phase transition due to resonance-like behavior in 

the total cross section; (3) the calculation of the S-wave scattering length and (4) the 

calculation of binding energy of spin-polarized tritium using both potentials. 

 In the low-energy limit, the cross sections are dominated by S-wave scattering. In this 

limit, the S-wave scattering length 0a  0 for both potentials, this means that the interaction 

between the T↓ atoms is attractive. The effect of the D-wave scattering appears as a 

resonance-like behavior on the total cross section. Our results for the Morse potential are 

smaller in magnitude than those for the Silvera potential, because the Morse-potential well is 

shallower than that of the Silvera potential.  
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 In conclusion, our calculations for cross sections show that these quantities are useful 

indicators of quasi-bound states in spin polarized tritium atoms and how sensitive the 

scattering length of T↓- T↓ collisions is to the potential employed.  
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