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Abstract:  

In  this  work  we  formed  a  neural  network  to  coding  homogeneous  iterated  function  

system.  Our approach  to  this  problem  consists  of  finding  an  error  function  which  will  

be  minimized  when  the  network coded attractor is equal to the desired attractor.  Firstly we 

start with a given fractal attractor; find a set of weights  for  the  network,  which  will  

approximate  the  attractor.  Secondly  we  compare  the  consequent  image using  this  

neural  network  with  the  original  image,  with  the  result  of  this  comparison  we  can  

update  the weight functions and the code of (IFS). A common metric or error function used 

to compare between the two image  fractal  attractors  is  the  Hausdorff  distance. The  error  

function  gets  us  good  means  to  measurement the  difference  between  the  two  images.  

The  distance  is  calculated  by  finding  the  farthest  point  on  each  set relative to the other 

set and returning the maximum of these two distances. 
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1. Introduction: 

Fractals have been used for modeling natural images [8]. These natural images have 

common properties such that the magnified local subsets look identical to the whole set. This 

property is referred to as self-similarity. This means that they usually contain small copies of 

themselves buried deep within the original. On other hand, Neural  networks have been  

hailed  as  the  paradigm  of  choice for problems which  require "Human  Like" perception.  

A network could be performing  its function  perfectly, responding correctly to every input 
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that it is given, however its internal workings could still be construed as a black box, leaving 

its user without knowledge of what is happening internally. We are interested in different 

ways to tease neural networks open, to analyze what they are representing, how they are 

"thinking".  In this work we present a novel algorithm to introduce the code of the iterated 

function system which generate a fractal image.  Its features being that it is exact fully 

describing a network's function, concise, not an incremental collection of approximations and 

direct mapping a network's input directly to its output. 

 

2. Preliminaries 

In this section, we _rst summarize the existing knowledge which is 

necessary for understanding this paper. 

 

2.1. Definition of Non-homogeneous IFSs 

In this paper, we limit our consideration to an IFS consisting of affine maps with 

associated probabilities in the complex plane. Within this important class, we will discuss a 

particular IFS with non-uniform (nonhomogeneous) contraction mappings and unequal 

probabilities. 

The IFS is called a non-homogeneous IFS with unequal probabilities, or non-

homogeneous IFS for short, and defined by 

 

 
 

Where N denotes the order of the IFS; C denotes the set of complex numbers;  and  

denote the deformation and displacement coefficients of the IFS's respectively.  denotes 

the associated probability, which controls the gray level of the reconstructed image. A set of 

coefficients  is referred to as an IFS code. A 

fractal image generated by a homogeneous IFS of order N is called a homogeneous fractal 

image of order N. 

 

2.2. Review of Basic IFS Properties 

Let H(C) denote a set of images in the complex plane. Put 

. Then  defined by 
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is a contraction mapping on the Hausdorff distance. Thus, W has a unique fixed point 

, which obeys 

 
and is given by 

 
 

for any , where  denotes  iteration of . The fixed point  is called the 

attractor of the IFS. The IFSs can be extended to IFSs with probabilities in order to represent 

the gray level of an image. Then the fractal image is defined as the fixed point of a 

contraction mapping on the space of the probability measures . 

 

2.3. The inverse problem of fractals 

In several mathematical fields, many problems have inverses, for example integration, 

in a certain sense, is an inverse problem for differentiation, the problem of determining the 

forces under the action of which a particle moves along a given curve, is another example of 

an inverse problem in dynamics of particles, etc. In an analogous way, the problem of 

generating fractals by the use of IFS, calls for an inverse problem, namely: For a given set in , 

construct a suitable IFS whose attractor is the given set (to a certain desired degree of 

accuracy)[2]. The tackling of this inverse problem, as it stands, is difficult, if it is not 

impossible. However, if the given set is self-similar, then the required construction is almost 

straightforward. The IFS can be found easily by making mathematical translation of the 

property of self-similarity. 

 

2.4. Collage theorem [2] 

Let  be a complete metric space, let  be given, and let  be given 

chose an iterated function system (IFS)  with contractivity factor 

 so that 

 
where h(d) is the hausdorff  metric. Then 
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where A is the attractor of the IFS. 

 

3. Using Neural Networks for coding Homogeneous IFS 

3.1. design of neural network 

The Hopfield network uses the fixed points of the network dynamics to represent 

memory elements. Networks studied by [6,10] use the current activation of the network as a 

state in a state machine while using the dynamics of the network which is treated as an 

Iterated Function system that is coding for its fractal attractor[3]. 

 
Fig. 1: Neural Network 

 

Melnik [9], applying one of the transforms on a random point for a number of steps, 

until it converged. There is still no general algorithm for fractals image coding, the problem 

we want to solve in this paper, which is given a fractal attractor, find a set of weights for the 

neural network which will approximate the attractor. A neural network (figure 3.1) consists 

of two input units and two output units and six weights for all transform (IFS) represent 

scalar function. The transform is selected randomly, and all input neurons receive a 

coordinate of each point of fractal image, one neuron for x coordinate and the other for y 

coordinate for each transform. And return as x and y output, consists of TanSigmoid function 

[7,9] with a bias (figure 3.2). The equations of x and y output are given as 
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and 

 
where 

 
and 

 
 

 
Fig. 2: Sigmoid Function 

 

At the last of this operation for large number of points with random iterations, we get 

an image. Of course this image is different in general with the image we want to find the 

iterated function system (IFS) of. Then we must update the weight functions of the neural 

network to get better approximation to the target image. 

This change of weights is depending with the measure of the difference between the 

tow images. This difference is known as error function, which must minimize with every 

update of weight functions. The error function used to compare fractals attractors, is the 

hausdorff distance[2,3,4]. The distance between two images A and B is calculated as 

following: We first calculate the distance between the element  and the set B which is 

the smallest distance between  and each element . 

 

 
 
Then the distance between  and  is the largest distance for each element   

 
. 
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Also the distance between  and  is equal to 

 
  

And then the distance between two sets is the largest of tow distances  and  

 
Our error function is defined as: 

 

 
 

Where  is the image of the point  with respect to the transform . And  is 

the all image of . The value of the error function with respect to the iteration of neural 

network is shown in table (3.1). 

 

iteration  Error 

1 2.22790405672408 

18  9.42187049043963E-03 

39  4.47490221672919E-03 

50  3.50195369895845E-03 

100  1.74568350616262E-03 

135  1.28726669405809E-03 

150  1.15642714675241E-03 

1500  1.11474721E-03 

2500 1.01474721E-03 

5000 1.01621654E-04 

10000  1.0121654E-05 

Table 1: the values of error function with some iterations 
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And fig (3.3) show the relation between number of iterations and  the error of neural network. 

 
Fig. 3: error function 

 

3.2. The procedure of fractals image coding 

1. Input: fractal image, random weights, n the number of (IFS), , and . 

2. compute the error function E(A,T). 

3. If  then. 

3.1.  Compute  

3.2. Update the weights. 

3.3. Go to step 2 

4. Else stop 
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4. 4 Future Work 

This paper focused on the inverse problem of fractals with related to iterated function 

systems for 2- dimension linear fractals. Solving the inverse problem of 3-dimension fractals 

remains an open problem, as does the same problem of non linear iterated function systems. 
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