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Abstract

In parametric analysis, which often referrers to parametric
optimization or parametric programming, a perturbation parameter is
introduction to the optimization problem, which means that the coefficients
in the objective function of the problem and on the other hand of the
constraints are perturbed. In this paper, we present the qualitative and
quantitative analysis of adapted approach of Min-Max differential game of
fixed duration with general parameters in the cost functions and constrains
between multiple players playing dependently (the Pareto concept) and
others independently (the Nash concept), the solvability set and the stability
sets of the first and the second kind are defined and algorithms for
determining these sets are presented.

Keywords: Parametric Analysis, Dynamic game, Stability set of the first
kind, Stability set of the second kind.

Introduction

Under the min-max (security) solution concept (Von Neumann and
Morgenstern,1944) a parametric dynamic game study introduced between
cooperative collation of players (Pareto,1896) and other players act
independently (Nash,1951) (Starr and Ho,1967,1969) where the parameters
presented in the objective functions and constraints, qualitative and
quantitative analysis of some basic notions, such as the set of feasible
parameters, the solvability set and the stability sets of the first and the second
kind, are defined and analyzed qualitatively and quantitatively for some
classes of parametric optimization problems(M.S. Osman,1977)(M.S.
Osman, A. El-Bauna and E. Youness,1986) The same notions are redefined
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in this paper and applied to Pareto ,Nash min-max differential games of fixed
duration.

Problem Formulation
Consider the differential game P(y,&)with general parameters y € R¥

in the objective functions and general parameters¢ e R¥in the constraints
between M of players that agree to form a coalition and cooperate as a
single player I to minimize their collective costs playing a min - max

differential game against the other N players outside the coalition which act
independently to minimize their own cost.Let

M
u(t)eR",i=1,2, M.,I= ZIi be the composite control of the player i

i=1

N

among the coalition, while v,(t)e R™, j=1,2,--,N.,m= ij be the
j=1

composite control of the player joutside the coalition, where the composite

control (u,v) e R® is an element

of the constrain set

Q(e) ={(u,v) e R* | x(t) = f(t,x,u,v, &), x(t,) = %,, h(t, x,u,v,&) >0},

where

X(t) = f(t,x(t),u(t),v(t),e),
represent the system of nonlinear differential equations that govern the game
motion, the problem can be formulated as the following problems:

R(r.¢): man(tlJV7) Z J.(t,G,v,y)

= (x(t )+ [ Tt x,0,v,) ot
%
subject to
Qe) ={(U,v) e R* | x(t) = f(t,x,0,v, &), x(t,) = X,, h(t, x,4,v,&) >0},

M —_—

P(r.¢): mlnmaxJ(tU V,7) =D W, (LU, V,7)

i=1

=g (x(t))+ [ TExU V) dt
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subject to

Qe) ={(u", V) e R® | x(t) = f (t,x,u”,V, &), X(t,) = X, h(t, x,u”,V,&) >0}
where

— — te— .

J,(u(®),v(r), ) = ¢i(x(tf))+jt0f 1L (¢, x(), u(®), v(t), y)dt, i=1,2,--,M
are the cost functions for the M cooperative  players

é(x(t,)) = iv‘viﬁ(x(tf)) and T(t,x,u,v,y)= iv‘vil_i(t,x,u,v,y) for each
WeW W ={weR" |w Zo’i"_"i =1},

P(y.¢):

A t ~ -
mian(t,u,Vj,V_j,)/):¢j(X(tf))+Lflj(t,x,u,vj,v_j,y) dtj=1,2,---,N.
Vj 0
subject to

Q(e) ={(u,9) € R* [ X(t) = F(t, X,U,V;,V-1,8), X(E) = %, h(t, X,U,V,,V-j, &) > 0}
and
P(r,&):

* t _ * .
minmaij(t,U,Vj,V_j,y):¢j(x(tf))+ItfIj(t,X,u,Vj,V_j,;/) dat ,j=1,2,---,N.
i 0

v

subject to
Qe) ={@, V") e R* | x(t) = f(t,x,T,v;,V ;,&),X(t,) = X, h(t,x, T, v,V ;, &) =2 0}
where

3, UV, = () + [ G XUV, ) dt =12 N, are the cost
0

functions for the N non-cooperative players.Here,[t,,t,] denotes the fixed

prescribed duration of the game,
X, : the initial state known by all players,

x(t) € R" is the state vector of the game,
h():[t,.t,]xR"xR* xR — R®
f():[t,t,]xR"xR* xR > R", s=1+m.
Ij(.):[to,tf]x R"xR*xR*¥ > R, j =1,2,---,N.
()t t,]xR"xR*xR* >R , 1=1,2,---,M.
¢,():R">R, ]=1,2-N.
4():R" >R, 1=12,---,M.are continuous differentiable functions.
In the following, we give the definition of the solvability and stability
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sets of problems.

The Solvability Set
Definition 1.1 The Solvability set B of problem P(y,é&) is defined as :

B= {(y,g) e R**¥'| the solution of P(y,¢) exist for some W eVV} (1)

The Stability Set of The First Kind
Definition 1.2 Suppose that(y", ")  Bwith a corresponding set U~

of Pareto,Nash Min-Max solutions(u,v),(u",v),(u,v) and(T’,v")of
problemsP.(",¢"),P,(+",&"), P,(y", ") and P,(y",&") respectively , then the
stability set of first kind of problem P(y, &) corresponding toU " denoted by
S(U")is defined by
SU")={(y.6) eR“¥|U" solve P(y,) for some WeW | )

Lemma 1.3 If for each i=1,2,---,M. and j=1,2,---,N. the cost
functions  J,(tu,v,y) and J;(tu,v,y) are linear in , |
f(t,x(t),u(t),v(t),e) and h(t,x(t),u(t),v(t),&) are linear functions in &,
then the set S(U") is convex.
Proof. Suppose that (y,,¢,),(7,,£,) € SU") , then it follows that for

R (. &)
JU,V,7,) <T(UV,7,)
x(t) = f (t,x(t),u,v, &)
ht, x(t),u,v, ) >0

P, (71, &)
J (u*’v’yl) <J (u’v’yl)
JW,V,7) 23,V 7,)

x(t) = f(t,x(t),u”,V, &)
h(t, x(t),u”,V,&) >0

P (7. &)
36UV, 74) <3, (6,U,V, )
X(t) = f(t,x(t),u,v, &)
ht, x(t),u,v, &) >0
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P, (7. 1)
IV, 7)< 3T v, )
Jj(t,Uj,v*,yl) >J,(t,u,v',y)
x(t) = f(t,x(t),u’, v, g)
h(t, x(t),T’,v", &) >0
3)

similarly for
R(72:€,)

TUY,7,) < T(UV.7,)
X(t) = f (t, (), 0,v,&,)
h(t, X(t),U,v,,) >0

R (7,,6,)

x(t) = f(t,x(t),u",V,&,)
h(t, x(t),u",V,&,) >0

P (72.6,)
36UV, 75) <3, (6 UV, 7,)
X(t) = f(t,x(t),u,v,&,)
h(t, X(t),u,v,,) >0

Py (72:€,)
J.(6T V7)< 36TV, 7,)
J; TV ) 2 (U, )
X(t) = f(t,x(t),0’,v', &)
h(t, x(t),a’,v',&,) >0

(4)
now multiplying both sides of the sets of equations (3) by « and both sides
of the sets of equations (4) by (1—«) and adding corresponding sequence of

same problem together using the linearity property in » and & ,we get
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TV, @y +(1-a)y,) <TUV.an +(1-a)y,)
X(t) = f (t, X(t),0,v, a6, + (1-a)s,)
ht, x(t),0,V, ae, + (1-a)e,) > 0

JW\V,ay, +(1-a)y,) < IV, ay, +(1-a)y,)
JW V,ay, +(1-a)y,) 2 IV, ay, + (1-a)p,)
x(t) = f(t,x(t),u",V,ae, +(1-a)s,)

h(t, x(t),u”,V,ae, +(1-a)e,) >0

Jj(t,u,\A/,()zj/1 +(1-a)y,) < Jj(t, uv,ay +(1-a)y,)
X(t) =  (t, X(t),u,v, e, + (1-a)s,)
ht, x(t),u,V, ae, + (1-a)e,) > 0

3.0V an + (L-a)y,) < 3. (T v,ap, + (1-a)p,)

Jj(t,Uj,v*,ay/l+(1—a);/2)2Jj(t,u,v*,ayl+(l—a)7/2)

X(t) = f(t,x(t),T',v, ag, + (1-a)e,)

h(t, x(t),T’,v", ag, + (1-a)e,) >0 (5)
sets of equations (5) yields that (ay, + (1-a)y,,as +(1-a)e,) e SU)
and hence S(U") is convex.

Lemma 1.4 If for each i=1,2,---,M. and j=1,2,---,N. the cost
functions  J,(t,u,v,y) and J(t,u,v,y) are continuous on R¢ |
f(t, x(t),u(t),v(t), ) and h(t,x(t),u(t),v(t),s) are continuous on R* , then
the set S(U™) is closed.
Proof. Let {y,,¢,} be a sequence in S(U") such that {y,,&,} converges to
(70.€,) @ n— oo forall (u,v) e Q(e) then for
R )

Ju,v,7,)<JUv,7,)

X(t) = f(t,x(),u,v,z,)
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h(t, x(t),U,v,&,) >0
P (7n:81)
JW,v,y)<J(u,v,y)
JW,V,7,)=JW,v,y,)
x(t) = f(t,x(),u",V,¢,)
h(t, x(t),u",v,&,) >0
P(7.€,)
36UV, 7,) <3, (6 U, v, 7,)
X(t) = f (t, (), u,v,&,)
h(t, X(t),u,v,&,) >0
AN
IV, 7,) <360, )
Jj(t,Uj,v*,yn)zJj(t,u,v*,yn)
x(t) = f(t,x(t),d’,v", )
h(t,x(t),a’,v’,&,)>0 (6)
Now taking the limit of both sides of the sets of equations (6) as

n — oo it yields that
R

TV 75) STV, )
X(t) = f(t,x(t),u,v,¢,)
ht, x(t),u,v,&,) >0

\]_(U*’VJ/O) < ‘]_(U,VJ/O)
J_(U*:VJ/O) = ~J_(U*1V’7/o)
x(t) = f(t,x(t),u",V,&,)
h(t, x(t),u",V,&,) >0

3. (6,U,V,75) < 3, (6,U,V,7)
X(t) = f(t,x(t),u,v,¢,)
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h(t, X(t), u,v, &) >0

VNATERYA RV ATERA

Jj(t,Uj,v*,;/o)zJj(t,u,v*,;/o)

X(t) = f(t,x(t),T' V", &)

h(t,x(t),a’,v", &) >0 (7)
from equations (7) we deduce that (y,,&,) € S(U™) and S(U") is closed.

Theorem 1 If (u,v) e Q< R® is Pareto solution for the M players

inside the coalition with state trajectory X corresponding to problem
P.(y,¢) .then there exist continuous costate functions p:[t,,t;]—R" ,

5 € RY such that the following relations are satisfied

X(t)=f(t.x,0v,e) X (t,)=x )
o(0) :_aH (t,x ,u,v,v_vé;(-(-t-),v_vM, P,0,7,€) ©)
IO () N N
p(t,) S Ta) ¢ —;w«zz(x () (10)
8I-_I(t,x*,l],v,v_vl,-~-,v_vM,p,g,y,g)_o (11)
ou -
Sh(t,x",u,v,)=0 (12)
h(t,x",0,v,&) =0 (13)
5>0 (14)

where

[e— M [—
H(t XU, v, W, Wy, p, 5, 7,6) = D W1 (t,xu,v,7)+ p' f(t,xu,v,e)
i=1

5 "h(t,x,u,v, &) (15)
is the Hamiltonian function of the players inside the coalition and its partial
derivatives.Furthermore , If (u",V)e P c Qc R® is Min-Max point for the

M cooperative players with state trajectory X corresponding to problem
P,(y,¢) ,then there exist continuous costate functions p:[t,,t.]—> R" ,

ZeR® and 777 € R® such that the following relations are satisfied
X'(t)=f(t,x,u",V,e) ,X(t,) =X, (16)
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H(t, X UV, W,, -, W,,, P.5, 77,7, €)

p(t) =- 0 (17)
o (X (t _ e
o(t,) % 7= YRAK () (18)
f i=1
aﬁ(nxiuﬂvxm,n,wM,pgﬁf,%g)=0 (19)
OH(t, X\ UV, Wy, Wy, .57, 7:8) _ (20)
v,

ch(t,x’,u",v,g)=0 (21)
7ih(t,x",u",V,&)=0 (22)
h(t, X", u",7, &) >0 (23)
z>0 (24)
nl<0 ,j=1,2,---,N. (25)
where
H(t, X,u,v, W, W,,, P,G,7,7,&) = iv‘vil_i(t,x,u,v,y)wt p' f(t,x,u,v,¢)
-ZTh(t, x,u,v, &) (26)

is the Hamiltonian function of the players inside the coalition and its partial
derivatives evaluated using the two sets of multipliers ¢ and 777 .

For the players outside the coalition , If (u,v)e Q< R® is Nash
equilibrium point for the N players corresponding to problem P,(y,¢) ,
then there exist continuous costate functions g’ :[t,,t.]— R" , 51 e R%such
that the following relations are satisfied

X ()= f(t,%x,u,v,8),X (t,) = X, 27)

g OH (t, X", u,v,q/, 87,7, ¢)

() =—— 28

Gi (1) 0 (28)

i og, (X (t;)) .

It :J—’kzliz’...,n , :1’2’...’N 29

G (t;) () i (29)

Hx uva s

0 J(t,x,u,v,q,c?,;/,e):o’ i=1.2.N (30)
avi

Sh(t,x,u,v,£)=0, j=1,2,---,N (31)

h(t,x",u,v,&) =0 (32)
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5'>0, j=1,2,---,N (33)
where

Htx,u,v,q’ 6%, 7,8) = 1,(t,xu,v, 7))+’ f(t,x,u,v,e)

-5h(t, x,u,v,¢), j=1,2,---,N (34)
are the Hamiltonian functions of each of the N players and its partial
derivatives.Furthermore ,if (T’,v')eD<cQcR® is a Min-Max point for
player j of the Nash players corresponding to problem P,(y,¢) , then there
exist continuous costate functions q’:[t,,t,]—>R",s' eR? and n’'eR®
such that the following relations are satisfied

X'(t) = f(t,x, 0V, &), X' (t,) = %, (35)
i aH'(taX*!UJ1V*!qj!gle7j1}/18)
Gy () = —— p (36)
X, (1)
i o, (X (t)) :
It y="1 "7 k=12..n j=1,2,---N 37
O (t) o (t) i (37)
OH.(t,x", T V', q' ¢l n' y e .
J( q sanLy ):O, j:1121""N" j:1,2,---1N (38)
v
H(tx. T v gl ol nl
oH;(t,x.u',v,q' ¢y ,7,8):0’ i=12..N  (39)
) ou
ch(t,x, i v,e)=0, j=1,2,---,N j=1,2,---,N (40)
n'h(t,x,ul,v,e)=0,j=1,2,---,N (41)
h(t, X", T V', £) >0 (42)
¢'>0, j=1,2,-,N (43)
n'<0, j=1,2,---,N (44)
where
H txuv,a ¢ nly,e) =1t xuv, ) +q " f(t,x,u,v,e)
—Th(t,x,u,v,¢), j=1,2,---,N (45)

are the Hamiltonian functions of the Nash players and its partial derivatives
evaluated using the two sets of multipliers ¢’ and 7’ .

Determination of The Stability Set of The First Kind
In this section we introduce method to determining the stability set

of first kind S(U™) for Pareto,Nash Min-Max continuous differential game
that can be summarized in the following steps:
1. Start with (y",¢") € B corresponding to Pareto,Nash Min-Max solutions
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*

U
2. Substituting in the system of equations given by theorem (2) we obtain

A (X, 0V, ) of (t,X,U,v,6)  &w B (X, 0,V &)
Y =0
Z ou ,—Z_;‘pj ou 27 ou
oh(t, x” .V, g)=0
_ ol (t,x U ), of (6, X", UV, &) &_ oh (t,x",u",V,¢)
- r =0
Z S ", >3

j r
u =i ou ) ou

Mooal (X UtV n o of (t,X7,u,V, Q. TeR vV
ZV_Vi ol (t,x",u ’V’7)+ 9 i 5)_277rJ oh (t,x",u",V,¢) ~0
i v = ov ov
Zh(t,x’,u",v,&)=0

7'h(t,x",u",V,e)=0 ,j=1,2,---,N.

al (t,x",u,v, o Af(t XUV Q. * UV
i( 7)+Zqi, of. (t, x ,u,v,g)_25rj oh (t, X", u,v, &)

=0
o, o, o,
Sh(t,x",u,v,e)=0 j=1,2,---,N.
O (6, X, T V') & - of (6, X, TV 8) & - oh (6, X, T,V €)
J + 'J 1 ) i) ) ) _ J r 1 ) ) ) e 0
o, Zl:q . Z;g o,

Sn,x,ui,v,e)=0 ,j=1,2,---,N., j=1,2,---,N.
al(txu NV, 7) Z”:,af(txu WV, E) Z“: h(txu Vg)
ou =
n'h(t, x", T’ ,v,g)—O ,j=1,2,---,N. (46)
This system of equations (46) denoted by
Fw,5,2,7 8", ¢l ,n,7,e) , represent S=25+N(m+I)+2q+Nq(3+N)
equations of the M+k+k'+2g(1+2N) unknowns, which are nonlinear in
yeR* , €eRY and linear in W,5,5,7,8),c) and n'(eRY). If
S=M+k+k'+2q(1+2N) then we may obtain the unknowns explicitly.If
_ , T o
S=k+k' and V.FW,0,5,7',6"¢"\n'y.e) \V.F(W,0,5,7",6" . ¢"\n'y,&)
exist and continuous for every
W,6,2,77,6",¢'\n',y,e)eD,(W,6" ¢ 7",67,¢ 'y ) , where D, is the
neighborhood of the point of solution (W',6 ", ,77,87,¢,n", 7", &) of
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the system F , then by the implicit function theorem ,, and & can be
expressed as function of W,5,2,7',6%,¢%,1'.

The Stability Set of The Second Kind
Definition 1.5 Suppose that (y*,¢") € B with a corresponding set U’
of Pareto,Nash Min-Max solutions (G,v),(u*,v),(u,Q) and (T’,v") of
problems P (y",¢"),P,(y",¢") , P(y",&") and P,(y",&") respectively,and
o e, 1) ={u,v) e R° | x(t) = f(t,x,u,v,&"),X(t,) = X,
h (t,x,u,v,e)=0,rel c{1,2,---,q}h (t,x,u,v,e") = 0,r ¢ 1} 47)
which denote either the unique side of & or int(c) which contains U then
the stability set of second kind of problem P(y,&) corresponding to
o(y", & ,1) denoted by Q(a(y", &7, 1)) is defined by
Qo(y' e 1) ={(r.€) eBIQ (r.e)no(y,&",1) % ¢} (48)
where
Q' (y,¢)={(U",vV)eQ(e) | (u",V") solve P(y,&) for some WeW} (49)
Lemma 1.6 If for each i=1,2,---,M. the cost function J. (t,u,v,) is

. i L .
strictly convex with respect to U, € R' and concave with respect to veR"
,and for each j=1,2,---,N. the cost function J;(t,u,v, ) is strictly convex

with respect to v,eR™ and concave with respect to ueR' and let
oy, el o(7,.€,,1,) are two distinct sides of Q(¢), then
Qo (11,6, 1)) N Q(c(ry,6,,1,)) = ¢
Proof. Consider that (y,&") e Q(o (11, &, 1,)) " Q(a(r,,¢,,1,)) , then we
have
Q' e)nolre ) =4,
Q*(y*,g*)ﬂa(y2,82,|2)¢¢
which contradict that o (y,, &, 1,) , o(y,,¢,,1,) are two distinct sides.

Determination of the Stability Set of the Second Kind
To determine the stability set of second kind Q(o(y,é&,1)) for

Pareto,Nash Min-Max continuous differential game that can be summarized
in the following steps:

1. Start with (y",&)eB corresponding to Pareto,Nash Min-Max
solutions U™ for problem P(y,¢).
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2. Determining the side o(y,&,1) by substituting in the constraints to

obtain the active set of constraints.
3. From the definition of the stability Set of The Second Kind by taking

I ={1,2,---,d}<={1,2,---,q} then we have the system of equations:

Al (t,x,0,v,7) 5f,—(t,X*,l],V,8) < _ oh (t, X, 0,V, &)
-5 r =0
Z ou ij ou 20 ou

j=1 r=1

h(t,x UVg):O r=1,2,---,d.
of (t,x” u*,V,g)_ d._ oh (t,x",u",V,¢) 0o

_al(txu,v,y) i(LX, _ on (L, X,
L= Y 2u 25T A

u j=1 r=1
_ ol (t, XUV, ) of (t, XUV, 8)  &_; oh, (t,x',u",V,¢)
— r :0
Z v ;p' ov Zln v
h(t,X U, V,e)=0 r=12,-d.
al, (6, X", u,v,7) zjaf(tx RTRPS! Z:5,(9r1(t>< uV,g) _
ov, = ov, = ov,
h(tX,uv,e)=0 r=1,2,d.
5li(t,x*,Uj,V*,y) Z L of (t, X, TV i on (6. X TV e) _
ov, - . o ov,
8|(’[XUV,7/)Z”:laf(tXUV€ i ah(tXUVg)
ou pry ou
h(t,x,u',v,e)=0 r=1,2,---,d.

50

©0 This system of equations (50) represent 2S+N(m+1+d)+3d
equations of the M +k+k'+2d(1+2N)+s unknowns, which are nonlinear
in yeR*,¢cR“,ueR' ,veR™ and linear in w,5,5,7',6',¢c’ and
n'(eR%), from which we can obtain , and & as function of
w,5,2,7",6",¢'\n',uand v.
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