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Abstract 
 Weather aberrations like drought and extremely high temperatures have been 
associated with adverse impacts on crop yields particularly in agricultural production areas 
that extensively rely on rainfall. Extremely dry weather accompanied with low or negligible 
precipitation often leads to crop failure, resulting in decline of supplies and increasing crop 
prices. Among the recent climatic events of importance, U.S agriculture as a whole 
experienced one of its worst droughts in mid-year 2012 over a three decade horizon. The 
2012 drought had serious implications particularly in the major production areas of Midwest 
and Southeast U.S damaging vast portions of field crops like corn and soybeans subsequently 
leading to increase in farm prices. The objective of this study is to conduct a bivariate granger 
causality analysis for climatic indicators causing soybean price changes over a study period 
from 1975-2013. The results indicate that a significant causality was detected for precipitation 
impacting commodity price movements for soybeans. No significant evidence was obtained 
for the presence of Granger causality between temperature related indicators (maximum, 
minimum, and average) and soybeans prices. The outcome of this study provides an initial 
insight into the causality between climatic indicators and commodity price movements for 
soybeans in the study region, and emphasizes the existence of causality for commodity prices 
by precipitation changes as compared to changes in temperature, especially in the absence of 
irrigation based production in the region.  

 
Keywords: Climatic variability, Granger causality, Precipitation, Soybean prices, 
Temperature, West Tennessee 
 
Introduction 
 Weather aberrations like drought and extremely high temperatures have been 
associated with adverse impacts on crop yields particularly in agricultural production areas 
that extensively rely on rainfall. Changes in crop yields impact crop prices which influence 
the regional production systems and the overall agricultural economy. Extremely dry weather 
accompanied with low or negligible precipitation often leads to crop failure, resulting in 
decline of supplies and increasing crop prices. This is also crucial to consumers because 
higher crop prices typically lead to higher retail prices. Among the recent climatic events of 
importance, U.S agriculture experienced one of its worst droughts in mid-year 2012 over a 
three decade horizon. According to the U.S. Department of Agriculture [7] 80 percent of 
agricultural land in the United States experienced drought conditions in 2012, with the month 
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of July being the warmest throughout the country in the last hundred and thirty years. The 
2012 drought had serious implications for major field crops damaging major portions of crops 
in the Midwest and Southeast particularly field corn and soybeans [7]. This subsequently led 
to increase in the farm prices of corn, soybeans, and other farm commodities. The above 
information highlights the fact that climatic aberrations can influence the market prices of 
commodities in areas of significant production. In Southeast U.S, particularly in the state of 
Tennessee, soybeans production is of significant economic importance among row crops due 
to high planted acreages. The crop accounts for the largest planted row crop acres in 
Tennessee, with over one million acres grown annually, and ranks in the top three for cash 
receipts for row crops [18]. The average statewide yields for soybeans range from 2200-2800 
kilograms per hectare. Most soybeans are grown in Western and middle Tennessee counties 
under rainfed conditions and over 80% are grown in a no-till or conservation tillage system 
with yields being heavily dependent on rainfall [18].  

 Numerous agronomic studies have been conducted in the past to determine the 
response of soybean crop to water and temperature stresses [19]. Soil moisture stress 
throughout the growing season results in reduced leaf area, leaf duration, crop growth rate, 
shoot dry matter [21], number of pods per square meter, and number of seeds per pod [20]. 
Number of pods has been found to be the most sensitive component to drought stress [22], 
while seed weight is least affected by drought. It has also been found that moisture stress 
impacts on soybean yields differ from one variety to the other [19], and absolute yield 
reductions can vary from 1.0 megagram per hectare (Mg/ha) in the most sensitive varieties to 
0.2 Mg/ha (3.0 bu/ac) in the least sensitive varieties [23]. Adequate water is imperative after 
full bloom and during the pod fill stage for maximum yields in soybeans [27]. It has also been 
found that with rise in air temperature, the rate of development increases, which may in turn 
result in shorter durations of various stages, such as seed fill and impact yields negatively.  
Further, night temperatures also impact seed growth, and specific studies reveal that 
temperatures less than 10°C [24] and greater than 28°C lead to a reduction in seed growth. 
Also, the effects of low night temperatures on soybean pod set were not offset by high 
daytime temperatures [25].  

 Given the above argument about the influence of climatic variability on crop 
production which in turn impacts crop prices, it becomes imperative to understand the 
causality between the two, particularly for high soybeans production areas in the state of 
Tennessee. This investigation becomes inevitable given the limited literature and regional 
studies for the state of Tennessee that address climatic influence on agricultural production of 
row crops. However, it is important to note that crop prices are not just a function of 
production parameters, and are influenced by other exogenous factors like farm programs, 
and crop insurance programs. Programs like direct payments and crop insurance subsidies are 
government tools to stabilize food prices for consumers while protecting farmers from 
weather-related losses. Recent statistics reveal that the Federal crop program insured $117 
billion worth of crops for the year 2012, including almost all the corn, soybeans, cotton and 
wheat grown in the U.S, and made a record $14 billion worth of payouts and subsidies in 
2012 [26]. This is a heavy price to pay on behalf of the taxpayers, even if the instruments are 
intended to stabilize crop prices. These situations further emphasize the uncertainty that 
agricultural production brings along with the economic costs involved. Understanding the 
influence of climatic parameters especially in areas of rainfed production could be an initial 
step towards exploring the contribution of weather related uncertainty on crop price 
fluctuations. Therefore, this study starts with an initial exploration into the movement of 
historical crop prices with weather parameters, in West Tennessee as the study region. In the 
past, broader studies have been conducted for the Southeastern U.S including the state of 
Tennessee as part of the national climate assessment [4] and this study attempts to enhance 
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the currently available literature in the area of climatic variability assessment on agricultural 
production of economically important row crops like soybeans for the specific study region of 
West Tennessee.  

 According to the recently released Third National Climate Assessment for the 
Southeast U.S and the Caribbean [4], the agricultural sector is likely to experience uneven 
impacts on account of future climatic variability throughout the country including the state of 
Tennessee. This report also indicates that increasing temperatures will eventually nullify the 
initial economic gains derived from altered growing conditions, and events like regional 
droughts, water shortages, excess precipitation, as well as pest and disease incidences will 
negatively impact agriculture in most regions. Although, the report suggests that crop 
production may likely be increased for crops like soybeans due to an increase in three major 
climatic variables - temperature, precipitation, and carbon dioxide levels, extreme events such 
as heat waves, droughts, and floods, which are highly unpredictable bring forth a large 
amount of uncertainty for future agricultural productivity in the state of Tennessee. For 
instance, an early study by [6] revealed that climate variability can severely impact the overall 
profit margin in the Midwest states. The results indicated that an increase of 10-25 percent in 
the variability of temperature and precipitation would lead to increased agricultural losses in 
the range of 150 percent and above, even when holding average temperature and total 
precipitation increases constant. This could also lead to increased crop pests incidences, due 
to rising temperatures primarily resulting in higher wintertime lows which eventually would 
make the winters in the future incapable of killing off pest generations [16]. Furthermore, in a 
study by [17] it was found that lengthening of the warm season will allow greater numbers of 
pest generations to coexist. It has not been found yet how climate change will affect cotton 
and soybean crop pests, but a general conclusion is that crop pests incidences will become 
more prevalent with climate change [4]. From the point of view of the capacity of agricultural 
producers to adapt to these climatic changes, there are studies that bring to light the 
consideration that effects of climate change are likely to appear both in gradual terms and in 
episodic crises such as outbreaks of new pests and in the onset of severe droughts [28].  This 
study further suggests that historical records provide evidence in the favor of farmers being 
able to develop technologies to expand production into areas that were considered unsuitable 
on account of unfavorable climatic conditions. Also, while it is expected that technological 
advances will be able to counter some problems brought about by global warming, the ability 
of farmers to deal with events like episodic pest occurrences is still under question.   

 In light of the above information and past studies, it is evident that specific climatic 
information of regional emphasis in areas of high agricultural production in the state of 
Tennessee may be a starting point for understanding future climate variability and subsequent 
impacts in these areas. This study utilizes a bivariate granger causality approach to create a 
basis for future predictive studies which may be extremely useful for evaluating how future 
climate variability could impact agricultural production in West Tennessee. The specific 
objective of this study is to explore the granger causality between climatic indicators (like 
temperature and precipitation) and soybean crop prices, using West Tennessee as the study 
region. This becomes extremely important given the future projections of increasing 
temperatures and declining precipitation for most agricultural production regions in the 
country including the study area [12]. 
 
Experimental Section 
Study area 
 The specific area chosen for this study is West Tennessee (Figure 1). Climatic data 
was gathered for the outlined counties (Figure 1: Weakley, Henry, Gibson, and Carroll) to 
derive representative observations for the study area.  
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Data 
 Observations for daily maximum, minimum, and average temperature and 
precipitation for individual weather stations in the study area are obtained from the GHCN 
daily legend (Global Historical Climatology Network) of the National Climate Data center 
[15]. Further, observations from different weather stations for the climatic variables of 
interest are averaged to represent a local climate for the study region. Monthly data for 
commodity prices for soybeans (historical prices received by U.S producers by marketing 
year) are obtained from the National Agricultural Statistics Service [14]. We use the study 
region’s consumer price index (July 2013) to adjust the prices for inflation [3]. A descriptive 
statistics of climatic variables and soybeans prices in West Tennessee used in the study is 
provided in Table 1. 

 
Figure 1. Study area depicting West Tennessee counties used for climatic analysis  

Table 1. Descriptive statistics of climatic variables and soybeans prices in West Tennessee (1975-2013) 

 
Precipitation 
(mm) 

Max temp 
(0C) 

Min temp 
(0C) 

Avg. annual 
temp (0C) 

Soybeans price 
($/bu, 
1 bu=27 kg) 

Mean 111.82 21.64 9.45 15.55 6.81 
Standard Error 2.85 0.15 0.12 0.13 0.37 
Median 111.38 21.65 9.49 15.56 5.98 
Std. Deviation 17.59 0.92 0.75 0.79 2.25 
Range 68.63 5.60 4.47 4.70 10.02 
Minimum 80.02 17.73 6.43 12.07 4.38 
Maximum 148.65 23.33 10.90 16.77 14.40 
Observations 38 38 38 38 38 
 
Granger causality 
 The primary tool used in our analysis is the notion of Granger causality between two 
time series [9]. The Granger causality approach has been applied to climatic time series in 
several studies in various fields of interest. However, the literature on causality between 
climatic indicators and agricultural commodity prices is scarce. Some studies have utilized 
the concept of granger causality to evaluate agricultural market integration and performance 
as impacted by climatic shocks [1] [13]. The most relevant study to this analysis that utilized 
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a similar framework was conducted by [2], where they used granger causality to evaluate the 
trend changes in climatic parameters and agricultural production in Nigeria, as well as the 
dimension and linkage between the same. The results revealed that changes in rainfall 
positively affected agricultural production in Nigeria, while temperature, on the other hand, 
remained relatively constant and did not affect agricultural output. The Granger Causality 
test, according to [8], involved the estimation of the following pairs: 
              Wt= ∑ α1  

n
t=1 Zt-1+ ∑ β1  

n
j=1 Wt-1+U1t      (1) 

              Wt= ∑ α1  
n
t=1 Zt-1+ ∑ δ1  

n
j=1 Wt-1+U2t      (2) 

where U1t and U2t  is a disturbance term; Wt represents climatic element at time t; Zt 
represents  soybeans prices at time t; and t-1 represent lag variables. By this model, a variable 
that causes the order is identified. This leads to a regression model with a lag variable, which 
is given as: 
             Yt= β0+ β1X1+ β2Xt-1+β3Yt-1+Ut          (3) 
where Yt is a dependent variable estimated by the Granger model (Wt or Zt); Yt-1, X t-1 are 
lagged dependent and independent variables; Ut is an error term. Before testing for causality, 
it is important to go through the process of testing for stationarity of a time series data, which 
can strongly influence its behaviour and properties. If the variables in the regression model 
are not stationary, then the standard assumptions for asymptotic analysis do not hold (like the 
t-distribution for the t-ratios) and the mean or variance is not constant as we go over 
progressive units in time. On the other hand, when a process is stationary, the distribution 
does not depend on time t. Thus the data is i.i.d (identically and independently distributed). 
The test for stationarity is carried out in terms of the unit root using a Dickey Fuller test [5]. 
The basic objective of the Dickey Fuller test is to test the null hypothesis that φ=1 in:  Yt= 
φYt-1+ ut  
H0:  φ = 1 (φ (z) = 0 has a unit root) 
H1: Series is stationary 
 If we fail to reject the null hypothesis of unit root for the time series in question, we 
conclude that the series is non-stationary and take differences to transform it into a stationary 
series. Subjecting the data to the Augmented Dickey Fuller (ADF) test, we fail to reject the 
null hypothesis of unit root for the climatic indicators as well as soybean crops prices and 
conclude that the series is non-stationary. We further take first differences of each of the 
climatic variables as well as crop prices to transform the data and again apply the ADF test. 
The first differenced values show stationarity and we go ahead and proceed with the analysis.  
The plots for the climatic indicators and prices as well as their first differenced values are provided in Figures 2, 

3, 4, and 5.     

Figure 2. Plot of a). Soybean prices and precipitation (mm), and b). First difference of prices and precipitation 
(mm) 
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Figure 3. Plot of a). Soybean prices and maximum temperature (0C), and b). First difference of prices and 

maximum temperature (0C) 
     

 
   Figure 4. Plot of a). Soybean prices and minimum temperature (0C), and b). First difference of prices and 

minimum temperature (0C) 
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Figure 5. Plot of a). Soybean prices and average annual temperature (0C), and b). First difference of prices and 

average annual temperature (0C) 
 
 In this study, it is relevant to test if there is causality between soybean prices and each 
of the climate variables during the study period. Generally stating, an X variable Granger 
causes Y if Y can be better predicted using the histories of both X and Y (lagged values) than 
it can using the history of Y alone. The analysis is done using a bivariate VAR (Vector 
Autoregression) for soybean crop prices and climatic indicators. The general null hypothesis 
to be tested for each of the climatic variables (precipitation, Tmax, Tmin, and Taverage) and 
crop prices for soybeans is given as following: 
 H0 :  Climate variable does not Granger cause soybean prices 
 H1 :  Climate variable Granger causes soybean prices  
 
VAR specification 
 Vector autoregression (VAR) is an econometric technique used to capture the 
evolution and interdependencies between multiple time series, generalizing the univariate AR 
models [10]. In a VAR model, all variables are treated symmetrically by the use of each 
variable as an equation that details its evolution based on its own lags and the lags of all the 
other variables in the model [10]. A VAR model describes the evolution of a set of k 
variables over the same sample period (t = 1, ...,T) as a linear function of only their past 
evolution. The variables are collected in a k × 1 vector yt, which has as the i-th element yi,t, 
the time t observation of variable yi [11]. For instance, if the i-th variable is precipitation, 
then yi,t is the value of precipitation at t.  
 A (reduced) p-th order VAR, denoted VAR (p), is: 
 yt = c + Φ1yt−1 +⋯ + Φpyt−p + εt           (4) 
 where c is a k × 1 vector of constants (intercept), Φi is a k × k matrix (for every i = 1, 
..., p) and εt is a k × 1 vector of error terms. The i-periods back observation yt−i is called the 
i-th lag of y. In this manner, a p-th-order VAR is also called a VAR with p lags.  
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Results and Discussion 
Results of VAR Lag Order Selection  
 The lag order selection is considered an important preliminary step in model building 
and further conducting a causality analysis. In this study we use some commonly used lag-
order selection criteria to choose the lag order, such as AIC (Akaike Information Criterion), 
HQ (Hannan-Quinn), and SC (Schwartz Criterion). Using the “VARselect” in R, the lag 
length selection under different criterion for individual analyses of climatic indicators and 
soybean crop prices was calculated. The results are provided in Tables 2, 3, 4 and 5.  

Table 2. Precipitation and Prices: lag length selection in VAR model: AIC (Akaike      Information Criterion) - 
SC ( Schwarz Criterion) and HQ (Hannan–Quinn information criterion). The minimum for each criterion is    

provided in bold type-face.  
Lag (m) AIC SC HQ 
1 -6.6301 -6.4469 -6.5694 
2 -6.7019 -6.3354 -6.5804 
3 -6.4935 -5.9439 -6.3113 
4 -6.5218 -5.789 -6.2789 
5 -6.5562 -5.6402 -6.2526 
  

Table 3. Maximum temperature and prices: lag length selection in VAR model: AIC (Akaike Information 
Criterion) - SC (Schwarz Criterion) and HQ (Hannan–Quinn information criterion). The minimum for each 

criterion is provided in bold type-face.  
Lag (m) AIC SC HQ 
1 -8.9318 -8.7486 -8.8711 
2 -8.9696 -8.6032 -8.8482 
3 -8.91 -8.3603 -8.7278 
4 -8.774 -8.0411 -8.5311 
5 -8.8947 -7.9786 -8.5911 
 

Table 4. Minimum temperature and Prices: lag length selection in VAR model: AIC (Akaike     Information 
Criterion) - SC (Schwarz Criterion) and HQ (Hannan–Quinn information criterion). The minimum for each 

criterion is provided in bold type-face.  
Lag (m) AIC SC HQ 
1 -7.7059 -7.5226 -7.6451 
2 -7.7289 -7.3625 -7.6074 
3 -7.6591 -7.1095 -7.4769 
4 -7.4417 -6.7088 -7.1988 
5 -7.5701 -6.654 -7.2665 
 
   Table 5. Average annual temperature and prices: lag length selection in VAR model: AIC (Akaike Information 

Criterion) - SC ( Schwarz Criterion) and HQ (Hannan–Quinn information criterion). The minimum for each 
criterion is provided in bold type-face.  

Lag (m) AIC SC HQ 
1 -8.5397 -8.3565 -8.479 
2 -8.5825 -8.216 -8.461 
3 -8.5352 -7.9855 -8.353 
4 -8.3642 -7.6313 -8.1212 
5 -8.5212 -7.6051 -8.2175 
 
Results of Granger analysis 
 Given the results for the lag order selection for the VAR model above, the lag orders 
chosen for conducting the Granger analysis are both VAR (1) and VAR (2) (under different 
criteria – AIC, SC, and HQ) for the various combinations of climatic indicators and soybeans 
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prices. The results of Granger test for causality analysis between each climatic indicator and 
soybeans prices are provided in Table 6. It was observed that significant results at 5% were 
obtained for precipitation granger causing prices for both lag lengths under different criteria 
(2, 1). Further, no significant causality was detected for maximum, minimum, and average 
annual temperatures granger causing soybean prices, under both lag orders of the VAR 
model. The results from this analysis clearly support the existing literature discussed earlier in 
this study and reinstate the importance of precipitation variability as a significant factor in 
rainfall based agricultural production thereby impacting commodity prices in the markets. It 
is not clear why the temperature values did not show significance in the granger tests for 
prices. The lack of significance for temperature causing future prices could be related to the 
discussion mentioned early in this study, that suggest specific night temperatures may lead to 
reduction in seed growth, which may impact yields. The drawback of this explanation 
however, comes from the climatic data in hand being available for average daily values, and 
not for specific night or daytime temperatures (to which the soybean yields are sensitive). A 
more extensive climate dataset may be needed to address these points in future studies of 
relevance. 
 Table 6. Results of Granger causality test with lag lengths m=1 and m=2 for climatic variables. Here A/→B 

stands for "A fails to Granger cause B"; the null hypothesis is that the past values of A do not help in 
predicting future values of B. 

Null Hypothesis Lag length (m) P-value 
Precipitation /→ Soybean prices 1 0.0304* 
Precipitation /→ Soybean prices 2 0.0219* 
Maximum Temp /→ Soybean prices 1 0.3304 
Maximum Temp  /→ Soybean prices 2 0.7311 
Minimum Temp /→ Soybean prices 1 0.1607 
Minimum Temp /→ Soybean prices 2 0.4941 
Avg. Annual Temp /→ Soybean prices 1 0.2229 
Avg. Annual Temp /→ Soybean prices 2 0.6158 

*significant at 5%  
 
 Further, based on the IRF’s for VAR(1) and VAR (2), in Figures 6 and 7 respectively, 
we conclude that a shock to the precipitation levels increases the soybean price levels in the 
initial 2-3 time periods to a peak and then takes a dip in the next few time periods.  However, 
the impulse responses of soybean prices on account of precipitation shocks stays longer as 
forecasted by the VAR (2) model relative to VAR (1) where the curve dies out relatively 
earlier.  
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Figure 6. Impulse response function for VAR (1) depicting the response of soy-prices to a shock in precipitation 

with significant granger causality (Precipitation /→ Soybean prices) 

 

 
Figure 7. Impulse response function for VAR (2) depicting the response of soy-prices to a shock in precipitation 

with significant granger causality (Precipitation /→ Soybean prices) 
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Conclusion 
 This study evaluated the causality between climatic indicators and commodity price 
movements of soybeans in the West Tennessee region. A Granger causality test was applied 
to understand the relationship between climatic indicators and commodity price movements 
for soybeans. The results indicate that a significant causality was detected for precipitation 
impacting commodity price movements for soybeans. No significant evidence was obtained 
for the presence of Granger causality between temperature related indicators (maximum, 
minimum, and average) and soybean prices. These results concur with the agronomic 
framework mentioned earlier in this study, that moisture stress is a significant factor affecting 
soybeans yields. A major limitation of this study was the availability pf climate data. 
Currently, no specific climatic data sets, or Mesonet exist for West Tennessee. The results 
from this study intend to draw attention, and promote the thought among research agencies 
and organizations in the region about this impending need. The outcome of this study 
provides an initial insight into the causality between climatic indicators and commodity price 
movements for soybeans in the study region, and emphasizes that commodity prices are more 
influenced by precipitation changes as compared to changes in temperature, especially in the 
absence of irrigation based production in the region. This information can be used to highlight 
the impact of climatic variables like rainfall on commodity prices and to forecast price 
fluctuations in the regional markets for commodities given future climatic projections. It will 
serve as an initial framework for developing economic studies that will incorporate multiple 
secondary climatic indicators besides temperature and precipitation, that impact plant growth 
and yields at critical stages of production and ultimately the crop prices for various crops of 
importance.   
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