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Abstract  
 A new weighted Weibull distribution has been defined and studied. 

Some mathematical properties of the distribution have been studied and the 

method of maximum likelihood was proposed for estimating the parameters 

of the distribution. The usefulness of the new distribution was demonstrated 

by applying it to a real lifetime dataset. 
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Introduction 
 The Weibull distribution has received much attention in literature 

because of the advantage it has over other distributions in modeling lifetime 

data. However, researchers continue to develop different generalizations of 

the Weibull distribution to increase its flexibility in modeling lifetime data. 

Merovci and Elbatal (2015) developed the Weibull-Rayleigh distribution and 

demonstrated its application using lifetime data. Almalki and Yuan (2012) 

presented the new modified Weibull distribution by combining the Weibull 

and the modified Weibull distribution in a serial system. The hazard function 

of the newly proposed distribution is the sum of the Weibull hazard function 

and a modified Weibull hazard function. 

 Another generalization of the Weibull distribution is the 

exponentiated Weibull distribution of Mudholkar and Srivastava (1993). 

Mudholkar et al. (1995) and Mudholkar and Huston (1996) further studied 

the exponentiated Weibull distribution with some application to bus-motor 

failure data and flood. Pal et al. (2006) gave a re-introduction of the 

exponentiated Weibull distribution in more details. Al-Saleh and Agarwal 

(2006) proposed another extended version of the Weibull distribution. They 

demonstrated that the hazard function can exhibit unimodal and bathtub 

shapes. Xie and Lai (1996) developed the additive Weibull distribution with 

bathtub shaped hazard function obtained as the sum of two hazard functions 
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of the Weibull distribution. Zhang and Xie (2007) employed the Marshall 

and Olkin (1997) approach of adding new parameter to a distribution to 

propose the extended Weibull distribution. Lai et al. (2003) proposed a 

modification of the Weibull distribution by multiplying the Weibull 

cumulative hazard function by 𝑒𝜆𝑥 and studied its properties. 

 In this article, a new generalization of the Weibull distribution based 

on a modified weighted version of Azzalini’s (1985) approach has been 

proposed. If 𝑔0(𝑥) is a probability density function (pdf) and �̅�0(𝑥) is the 

corresponding survival function such that the cumulative distribution 

function (cdf),𝐺0(𝑥), exist; Then the new weighted distribution is defined as: 

𝑓(𝑥;  𝛼, 𝜃, 𝜆) = 𝐾𝑔0(𝑥)�̅�0(𝜆𝑥)                                                   (1) 

where 𝐾 is a normalizing constant. 

 

Weighted Weibull Distribution 

 In this section, the density of the weighted Weibull distribution has 

been derived based on the definition given in equation (1). Consider a two 

parameter Weibull distribution with pdf given by: 

𝑔0(𝑥) = 𝛼𝜃𝑥𝜃−1𝑒(−𝛼𝑥𝜃),      𝑥 > 0, 𝛼 > 0, 𝜃 > 0              (2) 

 The cdf is given by: 

𝐺0(𝑥) = 1 − 𝑒(−𝛼𝑥𝜃)                                                                   (3) 
 The survival function is given by: 

�̅�0(𝑥) = 𝑒(−𝛼𝑥𝜃)                                                                             (4)  
 Using equations (1), (2) and (4) the pdf of the weighted weibull 

distribution is defined as: 

𝑓(𝑥;  𝛼, 𝜃, 𝜆) = (1 + 𝜆𝜃)𝛼𝜃𝑥𝜃−1𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)                       (5) 

 The corresponding cdf  of the weighted Weibull distribution is given 

by: 

𝐹(𝑥;  𝛼, 𝜃, 𝜆) = 1 − 𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)                                             (6) 

where 𝛼 is a scale parameter and,  𝜃 and  𝜆  are shape parameters. Figure 1 

and 2 illustrates possible shapes of the pdf and the cdf of the weighted 

Weibull distribution for some selected values of the parameters 𝛼, 𝜃  and 𝜆. 
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Figure 1: Probability density function of weighted Weibull distribution 

 

 
Figure 2: Cumulative distribution function of weighted Weibull distribution 

 

 The survival function is given by: 

�̅�(𝑥;  𝛼, 𝜃, 𝜆) = 1 − 𝐹(𝑥;  𝛼, 𝜃, 𝜆) = 𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)               (7)  
and the hazard function is: 

ℎ(𝑥;  𝛼, 𝜃, 𝜆) = (1 + 𝜆𝜃)𝛼𝜃𝑥𝜃−1                                              (8) 
Figure 3 illustrates possible shapes of the hazard function of the weighted Weibull 

distribution for some selected values of the parameters 𝛼, 𝜃  and 𝜆. 
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Figure 3: Hazard function of weighted Weibull distribution 

 

Statistical Properties 

 In this section, the statistical properties of the weighted Weibull 

distribution is studied. The quantile function, skewness, kurtosis, mode, 

moment and moment generating function have been derived. 

 

Quantile function and Simulation 

  Let 𝑄(𝑢), 0 < 𝑢 < 1 denote the quantile function for the weighted 

Weibull distribution. Then 𝑄(𝑢) is given   by: 

𝑄(𝑢) = 𝐹−1(𝑢) = [
ln (

1
1 − 𝑢)

𝛼(1 + 𝜆𝜃)
]

1
𝜃

                                         (9) 

 In particular, the distribution of the median is: 

𝑄(0.5) = [
ln 2

𝛼(1 + 𝜆𝜃)
]

1
𝜃
 

 To simulate from the weighted Weibull distribution is straight 

forward. Let 𝑢 be a uniform variate on the unit interval (0,1). Thus by means 

of the inverse transformation method, we consider the random variable  𝑋 

given by: 
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𝑋 = [
ln (

1
1 − 𝑢)

𝛼(1 + 𝜆𝜃)
]

1
𝜃

                                                        (10) 

 

Mode 
    Consider the density of the weighted Weibull distribution given in 

(5). The mode is obtained by solving 
𝑑 ln 𝑓(𝑥)

𝑑𝑥
= 0 for 𝑥. Therefore the mode 

at 𝑥 = 𝑥0 is given by: 

𝑥0 = [
(𝜃 − 1)

𝛼(1 + 𝜆𝜃)
]

1
𝜃

                                                            (11) 

 

Skewness and Kurtosis 

 In this study, the quantile based measures of skewness and kurtosis 

was employed due to non-existence of the classical measures in some cases. 

The Bowley’s measure of skewness based on quartiles is given by: 

𝐵 =
𝑄(3/4) − 2𝑄(1/2) + 𝑄(1/4)

𝑄(3/4) − 𝑄(1/4)
 

and the Moors’ kurtosis is on octiles and is given by: 

𝑀 =
𝑄(7/8) − 𝑄(5/8) − 𝑄(3/8) + 𝑄(1/8)

𝑄(6/8) − 𝑄(2/8)
 

 

where 𝑄(. ) represents the quantile function. 

 

Moment and Moment Generating Function 

 In this section, the 𝑟𝑡ℎ non central moment and the moment 

generating function have been derived. 

Theorem 1. If a random variable 𝑋 has a weighted Weibull distribution, then 

the 𝑟𝑡ℎ non central moment is given by the following: 

𝜇𝑟
′ = [

1

𝛼(1 + 𝜆𝜃)
]

𝑟
𝜃

Γ (1 +
𝑟

𝜃
)                            (12) 

 Proof. 

𝜇𝑟
′ = ∫ 𝑥𝑟𝑓(𝑥)

∞

0

𝑑𝑥 

 This implies 

𝜇𝑟
′ = ∫ 𝑥𝑟(1 + 𝜆𝜃)𝛼𝜃𝑥𝜃−1𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)

∞

0

𝑑𝑥           (13) 

Let 𝑦 = 𝛼𝑥𝜃 + 𝛼(𝜆𝑥)𝜃, 𝑑𝑦 = 𝛼𝜃(1 + 𝜆𝜃)𝑥𝜃−1𝑑𝑥 and 𝑥 = [
𝑦

𝛼(1+𝜆𝜃)
]

1

𝜃
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𝜇𝑟
′ = ∫ [

𝑦

𝛼(1 + 𝜆𝜃)
]

𝑟
𝜃

𝑒−𝑦𝑑𝑦
∞

0

                                              (14) 

= [
1

𝛼(1 + 𝜆𝜃)
]

𝑟
𝜃

∫ 𝑦(
𝑟
𝜃

+1)−1𝑒−𝑦𝑑𝑦
∞

0

                               

= [
1

𝛼(1 + 𝜆𝜃)
]

𝑟
𝜃

Γ (1 +
𝑟

𝜃
)                                               

 This completes the proof. 

If 𝑟 = 1,   𝐸(𝑋) = [
1

𝛼(1+𝜆𝜃)
]

1

𝜃
Γ (1 +

1

𝜃
) 

If 𝑟 = 2,  𝐸(𝑋2) = [
1

𝛼(1+𝜆𝜃)
]

2

𝜃
Γ (1 +

2

𝜃
) 

 Therefore the variance is given by 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − {𝐸(𝑋)}2 
Theorem 2. Let 𝑋 have a weighted Weibull distribution. The moment generating function  of 

𝑋 denoted by 𝑀𝑋(𝑡) is given by: 

𝑀𝑋(𝑡) = ∑
𝑡𝑖

𝑖!

∞

𝑖=0

[
1

𝛼(1 + 𝜆𝜃)
]

𝑖
𝜃

Γ (1 +
𝑖

𝜃
)                              (15) 

 Proof. 

 By definition 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥
∞

0

𝑓(𝑥)𝑑𝑥 

 Using Taylor series 

𝑀𝑋(𝑡) = ∫ (1 +
𝑡𝑥

1!
+

𝑡2𝑥2

2!
+ ⋯ +

𝑡𝑛𝑥𝑛

𝑛!
+ ⋯ ) 𝑓(𝑥)𝑑𝑥

∞

0

 

= ∑
𝑡𝑖𝐸(𝑋𝑖)

𝑖!

∞

𝑖=0

                                                      

 

= ∑
𝑡𝑖

𝑖!

∞

𝑖=0

[
1

𝛼(1 + 𝜆𝜃)
]

𝑖
𝜃

Γ (1 +
𝑖

𝜃
)                      

 This completes the proof. 

 

Renyi Entropy 

 If 𝑋 be a random variable having a weighted Weibull distribution. An 

important measure of the uncertainty of 𝑋 is the Renyi entropy. The Renyi 

entropy is defined as: 
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𝐼𝑅(𝛿) =
1

1 − 𝛿
log[𝐼(𝛿)] 

where 𝐼(𝛿) = ∫ [𝑓(𝑥)]𝛿𝑑𝑥
𝑅

, 𝛿 > 0 and 𝛿 ≠ 1. 

Theorem 3. For a random variable 𝑋 having a weighted Weibull distribution, the Renyi 

entropy is given by: 

𝐼𝑅(𝛿) =
1

1 − 𝛿
log [𝜃(1

+ 𝜆𝜃)
𝛿

(𝛼𝜃)𝛿 ∑
(−1)𝑖(𝛼𝛿𝜆𝜃)

𝑖
(𝛼𝛿)−(𝛿𝜃+𝛿+𝑖𝜃+1)

𝑖!
Γ(𝛿𝜃 − 𝛿

∞

𝑖=0

+ 𝑖𝜃 + 1)] (16) 

 Where Γ(∙) is the gamma function. 

 

Reliability 

 Reliability of a component plays a significant role in Stress-Strength 

analysis of a model. If 𝑋 is the strength and 𝑌 is the stress, the component 

fails when 𝑋 ≤ 𝑌. Then the estimation of the reliability of the component 𝑅 

is Pr (𝑌 < 𝑋). 

𝑅 = ∫ 𝑓(𝑥)𝐹(𝑥)𝑑𝑥
∞

0

= 1 − ∫ 𝑓(𝑥)�̅�(𝑥)𝑑𝑥
∞

0

 

Theorem 4. If 𝑋 is the strength and 𝑌 is the stress, then the reliability of the component 𝑅 is 

given by: 

𝑅 = 1 − ∑
(−1)ℎ𝛼ℎ(1 + 𝜆𝜃)

ℎ
[𝛼(1 + 𝜆𝜃)]

−ℎ

ℎ!

∞

ℎ=0

Γ(ℎ + 1)           (17) 

 

Order Statistics 

 Let 𝑋(1) denote the smallest of {𝑋1, 𝑋2, … , 𝑋𝑛}, 𝑋(2) denote the 

second smallest of {𝑋1, 𝑋2, … , 𝑋𝑛}, and similarly 𝑋(𝑘) denote the 𝑘𝑡ℎ smallest 

of {𝑋1, 𝑋2, … , 𝑋𝑛}. Then the random variables 𝑋(1), 𝑋(2), … , 𝑋(𝑛), called the 

order statistics of the sample 𝑋1, 𝑋2, … , 𝑋𝑛, has probability density function 

of the 𝑘𝑡ℎ order statistic, 𝑋(𝑘), as: 

𝑔𝑘:𝑛(𝑥) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
𝑓(𝑥)[𝐹(𝑥)]𝑘−1[1 − 𝐹(𝑥)]𝑛−𝑘 

for 𝑘 = 1, 2, 3, … , 𝑛. 

 The pdf of the 𝑘𝑡ℎ order statistic is defined as: 
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𝑔𝑘:𝑛(𝑥) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
(1 + 𝜆𝜃)𝛼𝜃𝑥𝜃−1𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)  

×  [1 − 𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)]
𝑘−1

  

× [𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)]
𝑛−𝑘

                                            (18) 

            The pdf of the largest order statistic 𝑋(𝑛) is therefore: 

𝑔𝑛:𝑛(𝑥) = 𝑛(1 + 𝜆𝜃)𝛼𝜃𝑥𝜃−1𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)

×  [1 − 𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)]
𝑛−1

    (19) 

            and the pdf of the smallest order statistic 𝑋(1) is given by: 

 

𝑔1:𝑛(𝑥) = 𝑛(1 + 𝜆𝜃)𝛼𝜃𝑥𝜃−1𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)

× [𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)]
𝑛−1

                 (20) 

Theorem 5. The 𝑟𝑡ℎ non central moment of the 𝑘𝑡ℎ order statistics is given by: 

𝜇𝑟
′(𝑘:𝑛)

=

𝑛!

(𝑘−1)!(𝑛−𝑘)!
∑ ∑ ∑ (𝑘−1

𝑗
)

(−1)𝑗+𝑙+𝑚(𝛼𝑗+𝛼𝑗𝜆𝜃)
𝑙
[𝛼(𝑛−𝑘)+𝛼𝜆𝜃(𝑛−𝑘)]

𝑚

𝑙!𝑚!

∞
𝑗=0

∞
𝑙=0

∞
𝑚=0 ×

[𝛼(1 + 𝜆𝜃)]
−(

𝑟+𝑙𝜃+𝑚𝜃

𝜃
)
Γ (

𝑟+𝑙𝜃+𝑚𝜃

𝜃
+ 1)                      (21)  

 

Maximum Likelihood Estimation 

 In this section, the method of maximum likelihood was considered 

for the estimation of the parameters of the weighted Weibull distribution. 

Consider a random sample of size 𝑛, consisting of value 𝑥1, 𝑥2, … , 𝑥𝑛 from 

the weighted Weibull density 

𝑓(𝑥;  𝛼, 𝜃, 𝜆) = (1 + 𝜆𝜃)𝛼𝜃𝑥𝜃−1𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃) 

 The likelihood function of the above density is given by: 

𝐿(𝒙;  𝛼, 𝜆, 𝜃) = ∏ [(1 + 𝜆𝜃)𝛼𝜃𝑥𝜃−1𝑒−(𝛼𝑥𝜃+𝛼(𝜆𝑥)𝜃)]

𝑛

𝑖=1

 

where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛 ]′. The log-likelihood function is given by: 

ln 𝐿(𝒙;  𝛼, 𝜆, 𝜃) = 𝑛 ln(1 + 𝜆𝜃) + 𝑛 ln 𝛼 + 𝑛 ln 𝜃 + (𝜃 − 1) ∑ ln 𝑥𝑖

𝑛

𝑖=1

 

                                              −𝛼(1 + 𝜆𝜃) ∑ 𝑥𝑖
𝜃

𝑛

𝑖=1

                       (22)   

 Taking the partial derivatives of the log-likelihood function in (22) 

with respect to the parameters 𝛼, 𝜆 and 𝜃 yields: 
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𝜕 ln 𝐿(𝒙;  𝛼, 𝜆, 𝜃)

𝜕𝛼
=

𝑛

𝛼
− (1 + 𝜆𝜃) ∑ 𝑥𝑖

𝜃

𝑛

𝑖=1

                                       (23) 

𝜕 ln 𝐿(𝒙;  𝛼, 𝜆, 𝜃)

𝜕𝜆
=

𝑛𝜃𝜆𝜃−1

(1 + 𝜆𝜃)
− 𝛼𝜃𝜆𝜃−1 ∑ 𝑥𝑖

𝜃

𝑛

𝑖=1

                            (24) 

𝜕 ln 𝐿(𝒙;  𝛼, 𝜆, 𝜃)

𝜕𝜃

=
𝑛𝜆𝜃 ln 𝜆

(1 + 𝜆𝜃)
+

𝑛

𝜃
+ ∑ ln 𝑥𝑖

𝑛

𝑖=1

− 𝛼 ∑[𝑥𝑖
𝜃 ln 𝑥𝑖 + (𝜆𝑥𝑖)𝜃 ln(𝜆𝑥𝑖)]

𝑛

𝑖=1

  (25) 

 

 Setting equations (23), (24) and (25) to zero and solving them 

simultaneously yields the maximum likelihood estimates of the three 

parameters. By taking the second partial derivatives of (23), (24) and (25) the 

Fisher’s information matrix can be obtained by taking the negative 

expectations of the second partial derivatives. The inverse of the Fisher’s 

information matrix is the variance covariance matrix of the maximum 

likelihood estimators. 

 

Empirical Study 

 In this section, an empirical study was carried out to investigate the 

effect of change in the values of the new parameter 𝜆 for 𝛼 = 1.5 and 𝜃 =
2.5. Table 1 provides the mean, variance, Bowley’s coefficient of Skewness 

and Moor’s coefficient of kurtosis. From Table 1, the mean and the variance 

of the weighted Weibull distribution decreases for an increase in the value of 

𝜆. However, the coefficient of skewness and kurtosis are not affected by 

increase in the value of 𝜆. 
Table 1: Mean, Variance, Skewness and Kurtosis of weighted Weibull distribution 

𝜆 

𝛼 = 1.5                        𝜃 = 2.5 

Mean Variance Skewness Kurtosis 

0.2 0.7490938 0.1027476 0.03727047 0.1043721 

0.3 0.7400435 0.1002798 0.03727047 0.1043721 

0.4 0.7258902 0.09648081 0.03727047 0.1043721 

0.5 0.7068685 0.09149059 0.03727047 0.1043721 

1.0 0.5717475 0.059856 0.03727047 0.1043721 

1.5 0.4443662 0.03615607 0.03727047 0.1043721 

2.0 0.3534343 0.02287265 0.03727047 0.1043721 

2.5 0.2903561 0.01543693 0.03727047 0.1043721 

3.0 0.2452979 0.03727047 0.03727047 0.1043721 
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Application 

 In this section, the application of the new weighted Weibull 

distribution is demonstrated using the lifetime data of 20 electronic 

components (see Murthy et al., 2004, pp. 83,100). Teimouri and Gupta 

(2013) studied this data using a three-parameter Weibull distribution. In this 

study, the weighted Weibull distribution is fitted to this data and the results 

compared to that of Teimouri and Gupta (2013). The data is shown in Table 

2. From Table 3, the Anderson-Darling (AD) statistics revealed that the 

weighted Weibull fits the data better than the three-parameter Weibull 

distribution. 
Table 2: Lifetimes of 20 electronic components 

0.03 0.22 0.73 1.25 1.52 1.8 2.38 2.87 3.14 4.72 

0.12 0.35 0.79 1.41 1.79 1.94 2.4 2.99 3.17 5.09 

 

Table 3: Estimated Parameters of dataset 

Distribution Estimated Parameters AD Statistic 

Weighted Weibull 𝛼 = 0.363        𝜃 = 1.196        𝜆 = 0.233 0.419 

Three-parameter Weibull 𝛼 = 1.217    𝛽 = 2.072     𝜇 = −0.008 0.432 

 

Conclusion 

 A new weighted Weibull distribution based on modified weighted 

version of Azzalini’s (1985) approach has been proposed. Some important 

and mathematical properties of the distribution have been derived. An 

empirical study was carried out to determine the effect of the new parameter 

on the mean, variance, skewness and kurtosis of the distribution. The 

application of the new distribution has been demonstrated using real life 

data. Future works include comparison of the new distribution with other 

modified weibull distributions, application of the distribution to censored 

dataset and comparison of different techniques for estimating the parameters 

of the distribution. 
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