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Abstract  
 It is well known that the oxygen isotope composition of phosphate 

apatite (δph) in mammal bones and teeth is strongly correlated to that of the 

drinking water (δw) ingested by the mammal itself. However, the relation 

between (δph) and (δw) has to be considered with caution when used for 

palaeoclimate reconstruction because of the uncertainty of the data. Usually, 

however, the authors underestimate this problem, that may led to misleading 

results. On the basis of the phosphate - water data existing in the literature 

for humans, we estimated that the prediction uncertainty for δw calculated 

from a new value of δph is on the order of 2.5‰. It means that only in the 

case the difference between two calculated δw values is higher than about 3-

4‰, the δw values may be considered significantly different. This represents 

a big limit which cannot be underestimated in the use of human δph for 

prediction of single δw values and subsequent estimation of 

palaeotemperature. A similar evaluation would be performed also for other 

mammals. 

 
Keywords: Oxygen isotopes, bioapatite, environmental water, prediction 

uncertainty, climate reconstruction 

 

Introduction 

 Chemists always use error distribution laws to compute prediction 

uncertainty on data obtained by linear or more complex calibration. On the 

contrary, prediction uncertainty is not commonly estimated in stable isotopic 

studies of palaeoclimatology and physical archaeology.  Thus, in this paper, 

we present a case of prediction uncertainty calculation applied to oxygen 

isotope distribution between the phosphate group of human bone bioapatite 
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and the presumed drinking water. We demonstrate that this distribution must 

be used with great caution in archaeology and palaeclimatic reconstruction.   

 The potential use of oxygen isotope measurements of mammal bone 

and tooth phosphate anion of bioapatite for palaeoclimatic research was 

demonstrated more than thirty years ago (Longinelli, 1974, 1984; Luz et al., 

1984; Luz and Kolodny, 1985). Owing to the very slow biological 

replacement of the bone apatite, thermodynamic equilibrium between the 

phosphate anion and the body water may be supposed a priori. Bone and 

enamel phosphate (ph) of the biogenic apatite would acquire an isotopic 

composition4), ph ( 18Oph), which is independent from the environmental 

temperature and that, for a given species, gives constant ratio (ph+1)/(bw+1) 

= ph/bw, where ph/bw is the fractionation factor between the bioapatite 

phosphate group, ph, and the body water, bw, and bw  is the delta value for 

the body water. For instance, for domestic pigs (Longinelli, 1984), the 

relationship between (ph+1) and (bw+1)  is well represented by a regression 

line (R2 = 0.998)  whose intercept is not significantly different from zero. 

Thus, the obtained average ratio (ph+1)/(bw+1) = 1.02082 (4 couples of 

data) may be regarded as a good estimation of the oxygen fractionation 

factor, αph/bw.  

 The oxygen input in human body is related to (1) drinking water, (2) 

ingested liquid water from food, (3) food (metabolic oxygen), and (4) 

atmosphere (oxygen uptaken in the lungs), whereas the output to (1) carbon 

dioxide production, (2) water vapour emission and (3) expulsion of urine, 

sweet, etc. Since the body water has variable provenance, the relationships 

between ingested water and the oxygen of the bone and tooth phosphate 

group is difficult to define. Luz et al. (1984) and Luz and Kolodny (1989) 

defined for the first time a model which took into account the input-output 

flux of oxygen in the animal body and the role of environmental humidity. 

The model was improved by Bryant and Froelich (1995) and Kohn (1996), 

who discussed the argument on biological basis, and, recently, reconsidered 

by Daux et al. (2008) and Podlesak et al (2008). Among the important 

variables of the model, such as the diet, the mass of the body, and the 

ingested water, the latter is crucial. These models account for the attempt of 

several researchers to derive empirical linear equations with the aim of 

relating ph and w of the drinking water for different animal species.  

                                                        
4) According to the IUPAC (International Union of Pure and Applied Chemistry) 

recommendation, we consider  = (R/Rst) - 1, where R and RST are the isotope ratio in the 

sample of interest and in the international standard V-SMOW, respectively. Moreover, in 

defining the regression line, we use (+1) values in place of  because it makes easier to 

recognise possible fractionation factors, . Symbols frequently used are reported in Table 1. 
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 A very important questionable point is the following: from ph of 

ancient or fossil enamel and bone is it really possible to make enough 

accurate estimation of the delta value of the palaeoenvironmental water and 

hence of palaeoenvironmental temperature? 

 This paper takes into consideration the published data regarding the 

measured ph for humans (Longinelli, 1984; Luz et al., 1984; Levinson et al., 

1987; Daux et al., 2008). The aim is to demonstrate by statistical 

computation that, although the oxygen isotope characteristics of presumed 

drinking water (w) and phosphate group of bone and tooth apatite (ph) are 

significantly correlated, the ph values may be used with great caution for 

accurate prevision of the environmental water and, thus, for accurate 

inference of palaeotemperature. 
 

Evaluation of the data 

What drinking water? 

 The models cited before take into account total ingested liquid water. 

However, the authors who investigated oxygen isotopes in bones (Longinelli, 

1984; Luz et al., 1984; Levinson et al., 1987; Daux et al., 2008) do not take 

into account the total ingested liquid water, but considered a presumed 

drinking water (w), i.e. precipitation water, modelled precipitation water 

and, in one case, tap water. Longinelli (1984) use meteoric water, which 

”were measured directly or taken from previous papers, from the data 

reported by IAEA, or were “extrapolated” from values obtained from nearby 

areas” (p. 386). This author does not indicate if the water data are averages 

on many years or just on one year and how the “extrapolation” (probably 

used in place of interpolation) of the meteoric water values was done. 

Levinson et al (1984) analysed directly drinking water from all the localities 

of interest; these authors, however, state that, since their isotopic values 

“come from a single sample measurement, they do not represent the entire 

range of water compositions which may be found in a specific locality” (p. 

369). At last, Daux et al. (2008) report two sets of water data: values of 

measured tap waters as well as values estimated from a global dataset 

(International Energy Association/World Meteorological Organization) using 

an algorithm developed by Bowen and Wilkinson (2002) and refined by 

Bowen and Revenaugh (2003).  

 Assimilation of oxygen into the phosphate group of biogenic apatite 

is a slow process because the residence time of oxygen in phosphate is of the 

order of five to twenty years depending on the bone considered. Thus, any 

investigation on the relationship between the environmental water and 

phosphate should consider time-integrated values of the water. From the 

papers, however, it is not always evident if the author/s use long-term 
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integrated data or not; actually the time of integration would be comparable 

to the residence time of oxygen in the phosphate of bioapatite.  

 In the opinion of Longinelli (1984), the value for meteoric waters 

would be reliable within plus or minus a few tenths of one per mil. Luz et al 

(1984) suggest a meteoric water uncertainty of 1‰ (1) at low latitudes and 

2‰ at high latitudes. Daux et al (2008) do not give any indication of the 

water values uncertainty. Thus the experimental standard deviation, s(w), of 

w is not known with good approximation.  

 Summarising, we must remember that (a) meteoric waters are only 

presumed drinking waters, (b) drinking and totally ingested water are not 

exactly the same, (c) the assimilated oxygen does not come only from 

ingested water, (d) uncertainty on the environmental water is not well known 

and evaluated in different way by the different authors. 

 

Phosphate 18O of biogenic apatite  

 We have considered four published data sets from Longinelli (1984), 

Luz et al. (1984), Levinson et al. (1987) and Daux et al. (2008). Several data 

reported by Longinelli (1984) and by Luz et al. (1984) are averages of 

different measurements (up to ten); thus, hereafter, in most cases, in place of 

single measurements, we are compelled to use ph data which actually are 

mean values of several measurements. Moreover, the reported experimental 

standard deviation, s(ph), of the phosphate data is variable. Longinelli (1984) 

states generically that the standard deviation of his ph measurements is 

about 0.2‰; Luz et al. (1984) report a value of 0.5‰ as analytical 

reproducibility; Levinson et al. (1987) and Daux et al. (2008) a value of 

0.2‰. These analytical uncertainties, however, are of scarce relevance for 

the investigation of the ph vs w because the authors frequently report only 

data which are averages of several measurements rather than the single 

measurements. 

 The experimental standard deviation for the ph data reported by 

Longinelli (1984) ranges from 0.15‰ to 0.5‰, for Luz et al. (1984) from 

0.2‰ to 0.8‰ (data deduced from their Fig.1), for Levinson et al. (1987) 

from 0.2‰ to 1.15‰, for Daux et al. (2008) from 0.2‰ to 0.8‰. The 

distribution of these dispersions is not normal; thus, we used their median 

(0.40‰) to define the central value, and the 16th percentile and 84th 

percentile to estimate the dispersion ( = 0.32) around the true median M: 

(0.40 - 0.20)‰  M  (0.40 + 0.39)‰. For our laboratory experience, the 

dispersion of 0.40% may be considered as a satisfactory approximation of 

measure reproducibility. In any case, for the purposes of our calculations, 

this value is not really important as we will see later (Paragraph 4). 
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Aproximate uncertainty computation  
 Symbols used are reported in Table 1; the few reported bibliographic 

references are sufficient to understand the discussion.  

 To avoid ambiguity, the following considerations must be taken into 

account before approaching in detail the estimation of the uncertainties on w 

. As discussed above, s(w) and  s(ph) are only approximately known and the 

number of {w, ph}data couples used in this paper are 43 (see later). Thus, 

we may assume the Student’s t value equal to unit and write (w)  s(w) 

and (ph)  s(ph).  

 Let us consider a regression with X and Y as independent and 

dependent variable, respectively. Let us denote by  as the Y value at the 

point X of the population regression line. Since this line may be only 

estimated, we can only obtain an estimation, Ŷ, of  by using the sample 

regression line. The estimated uncertainty of Ŷ, u(Ŷ), which represents the 

uncertainty on the height, , of the experimental regression line at X; is 

given by the following equation (Snedecor and Cochran, 1968): 

u(Ŷ)   k() S(Ŷ) = k() √
s(yx)2 

n
 +  

x2s(yx)2

Ʃx2
 = k() s(yx) √

1

𝑛
 +  

x2

Ʃx2
            

(1a) 

where n is the number of {X,Y} couples of data used in the regression, s(yx) 

 (yx), x = (X - Xm), Xm is the average of the values of the variable X used 

in the regression, k() is the coverage factor for a normal distribution at  

significance level (k() = 1 for  = 0.32, k() = 1.96 for  = 0.05, and so on). 

Thus  

Ŷ - u(Ŷ)    Ŷ + u(Ŷ) 

 Actually, we use the regression to estimate the individual true value 

Y corresponding to a new measurement X. The obtained value is again Ŷ, 

but its standard uncertainty is different and related to the difference Ŷ - Y; 

thus, the prediction uncertainty of an individual Y value, u(Y), includes the 

uncertainty on the regression line as well as the uncertainty, s(yx), on an 

individual Y: 

u(Y)   k()  S(Y) = k() √s(yx)2 +
s(yx)2 

𝑛
 +  

x2s(yx)2

Ʃx2  = 

= k()  s(yx)√1 +
1

𝑛
 +  

x2

∑ x2      (1b) 

Thus  

Ŷ - u(Y)  Y  Ŷ + u(Y) 

 This means that there are (1 - ) probability that the individual value 

of Y for a new X falls in the defined interval. Using this equation and 

varying X, two curves are defined around the experimental regression line; 

they limit the prediction interval (P.I.) for a new observation.  
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 Equations (1a) and (1b) are valid assuming that uncertainty on X is 

zero, that is usually not true. However, according to Taylor (1997, p. 190), 

the value (X) may transferred to the uncertainty (yx) of Y; i.e., (yx)tot = 

[(yx)2 + [B (X)]2}0.5; thus (yx)tot  s(yx)tot = [s(yx)2 + [B s(X)]2}0.5. If 

where B is the slope of the regression line. Now equations (1a) and (1b) 

becomes 

u(Ŷ)   k()   s(yx)tot √
1

𝑛
 +  

x2

Ʃx2       (1c) 

and 

u(Y)   k()   s(yx)tot √1 +
1

𝑛
 + 

x2

∑ x2
     (1d) 

 At last, it is very important to remember that uncertainties on  and 

on ( + 1) have the same value. 

 

Oxygen isotope value in apatite phosphate group (ph) of humans, body 

water (bw) and presumed drinking (w)  

 Linear correlation between ph (oxygen of the phosphate group of 

bioapatite) and bw (oxygen of the body water) may been supposed a priori 

because we can reasonably assume equilibrium between oxygen of body 

water and phosphate group of biogenic apatite, that is confirmed, for 

instance, by the data on pigs (Longinelli, 1984) discussed before (paragraph 

1). On the other hand, linear correlation between ph and w, could be 

assumed a priori only in the case a model exists which relates linearly ph 

and w. Actually, the models of Luz et al. (1984) and Bryant and Froelich 

(1995), under particular conditions predict linearity between bw and delta 

values of totally ingested liquid water (lw). Rearranging these equations, the 

linear function (bw + 1) = f(lw +1), where lw refers to the total ingested 

liquid water, may be transformed into the linear relation (ph + 1) = g(lw + 

1), and, approximately, in the linear relation (ph + 1) = h(w + 1).  

 From equation (7) of Bryant and Froelich (1995, p. 4526), we obtain 

the following steady-state mass-balance equation: 

bw + 1  = b1 (lw + 1) + bo      (2) 

 The slope b1 is the ratio between the input flux of total ingested liquid 

water and the sum of output flux of liquid water, CO2 and water vapour; bo 

depends on the same parameters of b1 and, in addition, on the 18O of 

metabolic oxygen incorporated into the body and on the 18O of oxygen 

uptaken in the lungs (uptaken O2 is fractionated in respect to atmospheric 

O2). Taking into account the fractionation coefficient, αph/bw, = (ph + 1)/(bw 

+ 1) between phosphate and body water, equation (2) becomes 

(ph + 1) = αph/bw b1 (lw + 1) + αph/bw bo 
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 As a first approximation, assuming for all the investigated humans a 

constant ratio (lw  + 1)/(w + 1), where w is referred to the drinking water, 

we obtain an equation of the form Y = B X + A, i.e 

(ph + 1)  = B (w + 1) + A    (3) 

where B and A may be calculated by regression of (ph + 1) and (w + 1) data 

from the literature. With the aim of defining equation (3), forty three couples 

of data, {ph+1, w+1}, for humans have been collected from Longinelli 

(1984), Luz et al. (1984), Levinson et al. (1987) and Daux et al. (2008). Tests 

of normality (Table 2) are good for (ph+1) and acceptable for (w+1) (see 

Paragraph 2). 

 The obtained ordinary last-squares regression line (OLS) (equation 3) 

is reported in Table 3 together with other important statistical parameters. 

The most important preliminary tests concern the correlation coefficients, 

homoscedasticity, autocorrelation and normal distribution of residuals, the 

last one being very important for hypothesis tests and for confidence and 

prediction interval evaluation. All the parametric and non-parametric 

correlation coefficients (Pearson, Spearman, Kendall) are highly significant 

( << 0.001), autocorrelation of residuals may be rejected (p(no-positive 

autocorrelation) = 0.607, Durbin-Watson’s test) homoscedasticity, however, 

is not high (p-homosc = 0.105, Breusch-Pagan’s test); the null hypothesis for 

the intercept, i.e. Ho: A = 0, may be rejected at  = 0.001. The resulting 

regression line is the following: 

ph + 1  = 0.5414 (w + 1) + 0.4793     (4a) 

or, alternatively, 

ph  = 0.5414 w + 0.0306      (4b) 

 Since the intercept of equation (4a) is significantly different from 

zero, the ratio (ph + 1)/(w + 1) cannot be regarded as a fractionation 

coefficient. 

 The R2 values for equation (4) is high (0.841), thus indicating that the 

variation of the dependent variable is largely explained by the independent 

one and, through equation (2), that the role of the drinking water is the most 

important factor in determining the isotopic feature of the oxygen of the 

apatite phosphate group. 

 Both the uncertainty, u(Ŷ), on Ŷ and prediction uncertainty, u(Y), for 

a new individual Y ( ph + 1), have been calculated assuming the standard 

deviation s(X) on w equal to 1‰ (see Luz et al., 1984). Results are reported 

in Table 3. The s(yx) and s(yx)tot values are higher than the evaluated 

bibliographic standard uncertainties on ph, which have a median of 0.4‰ 

(see Paragraph 2). This result was expected considering the complexity of 

the relation between w and ph discussed before and confirms significant 
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contribution to the (ph +1) variance other than the uncertainty of the 

bibliographic (ph + 1). Results are graphically reported in Fig. 1. 

 
Fig.1 +1 and  in ‰ for phosphate bioapatite and presumed water. The pointed lines define 

the confidence interval for Ŷ and the dotted lines delimite the prediction interval for a new 

Y value. 

 

 Estimation of u(Ŷ) and u(Y) has been performed assuming s(w) 

=1‰ in agreement with Luz et al. (1984) evaluation. The estimated standard 

uncertainty, on the response Ŷ ( δph + 1)̂  is about 0.35‰ ([Max+ Min]/2, 

see foot note of Table 3) with interval from 0.2‰ to 0.55‰. The prediction 

standard uncertainty, u(Y), for an individual Y ( ph + 1) is 1.35‰ (from 

1.3‰ to 1.4‰). It is noteworthy that also large variation of s(w) do not 

change largely the uncertainty evaluation. For instance, for s(w) = 0.5‰, 

both uncertainty of Ŷ, u(Ŷ), and prediction uncertainty of an individual Y, 

decrease only of about 0.1‰ because of the small slope of the equations (4). 

This is very important for our calculation since, as stated before (see 

Paragraph 2), the value of s(X) is not well known.  

 

Oxygen isotope in phosphate group of apatite (ph) used for water w 

prediction 

 As seen before, (ph + 1) of phosphate is strongly dependent on (w + 

1) of water and the related uncertainties u(Ŷ) is minor than unit; in other 

words, according to the linear equation Y = B X + A, where Y  (ph + 1) 

and X  (w + 1), (ph + 1) could be considered as a satisfactory response to 
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the regressor (w + 1). This, however, does not guarantee that (ph + 1) is a 

satisfactory predictor of (w + 1) for applications to archaeological sciences 

and environmental studies regarding the past.  

 Actually, phosphate of the bone and tooth bioapatite is frequently 

analysed in order to obtain information on past environmental water. This, 

however, may be done only in the case the uncertainty on the calculated new 

w values is small in comparison to the experimental range of w values. 

Moreover, if we assume that the estimated w has the same value of the local 

precipitation, ph could be also used to infer palaeoclimatic conditions. This 

assumption, however, may be misleading if no evidence exists supporting 

that local precipitation has similar delta value of drinking water. Discrepancy 

may occur, for instance, when the drinking water used derives from long 

rivers (e.g.: the Nile, in Africa), which are fed by precipitation occurring in 

areas far from that of interest. 

 There are two different ways to estimate (w + 1) from (ph + 1): (1) 

On the basis of the classical approach (Snedecor and Cochran, 1968; Parker 

et al., 2010, and reference therein), an estimation X̂ of X ( w + 1) is 

obtained using the reverse equation X = (Y - A) / B. (2) The value of X̂ may 

also be determined by inverse regression, i.e. considering X as dependent on 

Y. According to Parker et al. (2010), the last approach is intuitively 

appealing; however, in this case bias seems to be higher than in the classical 

approach (Parker et al., 2010, Fig. 3 p. 337-338). In this paper, both the 

approaches have been used in processing the 43 data used above. The results 

are reported in Table 3 for the classical approach. 

Classical approach. The linear equation becomes X = (Y/B) - A/B, i.e. 

(w + 1)  = [(ph + 1)/B] – (A/B) 

and, thus, taking into account, the values of A and B reported in equations 

(4),   

(w + 1)  = ((ph + 1) - 0.4793)/0.5414  = 

= 1.8471 (ph + 1) - 0.8853    (5a) 

or, alternatively, 

w   = 1.8471 ph - 0.0382      (5b) 

 Granted that c2  k() s(xy)2
tot / Ʃx2 (Snedecor and Cochran, 1968) is 

minor than 0.05 (Miller, 1993), the uncertainty may be calculated using 

equations (1) after substitution s(yx)tot/B for s(yx)tot and (Y - Ym)/B for x 

(Snedecor and Cochran, 1968), where B is the slope of equations (4). The 

obtained values of u(X) ( u(w)) (Table 3) is high, about 2.5‰ at α = 0.32. 

It is noteworthy that differences in the isotope composition of local water 

less than 2.5‰ (similar to our uncertainty on w) was already suggested by 
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Kirsanow and Tuross (2011) to be invisible in tissues values of 

archaeological, palaeontological and ecological interest.  

Inverse regression. We calculated the OLS regression line X = B’ Y + 

A’, i.e. 

(w + 1) = B’ (ph + 1) + A’ 

and obtained 

(w + 1)  = 1.5539 (ph + 1) - 0.5877    (6a) 

or, alternatively,    

w  = 1.5539 ph - 0.0338     (6b) 

with intercept value significantly different from zero (Table 3).  

 Prediction uncertainty, u(X) ( u(w)) has been calculated from the 

uncertainty on the median, 0.4‰, and the upper, 1.15‰, and lower, 0.2‰, 

values of s(Y) ( s(ph)). Also in this case, the prediction uncertainty is high, 

about 2.1 to 2.5‰ at α = 0.32, and comparable to that obtained by the 

classical approach. The influence of the uncertainty s(Y) on u(X) is low to 

moderate as suggested by the differences between s(xy) and s(xy)tot (from 

1.97‰ to 2.27‰).  

 In spite equations (5) and (6) are apparently different, they lead to 

similar results in the limits of the uncertainty. For instance, two ph values 

are considered: one is 15.7‰, in the middle of the regression line, the other, 

8.9‰, at the lower limit of the ph data. Actually, using equation (5) we 

obtain w values of -9.2‰ and -21.8‰ respectively; on the other hand, using 

equation (6), we obtain -9.4‰ and -20.0‰.  

 

Use of calculated w values for palaeotemperature evaluation 

 Sometimes the w values calculated from ph (both for humans and 

animals) are used for palaeotemperature, T, evaluation. It is noteworthy that 

the estimation of the prediction uncertainty on T must take into account 

uncertainty related to the equation used for the temperature computation 

 T(°C)   = C w + D, 

with standard deviation of residuals s(Tw), as well as uncertainty S(w ) (see 

equation 1b) related to the equation  

(w + 1)  = [(ph + 1)/B] – (A/B)    (7) 

Thus, transferring S(w ) to the T axis, we obtain 

s(Tw)tot = [s(Tw)2 + S(w )
2]0.5 

 At last, the calculated value s(Tw)tot would be used in equation (1d) 

to obtain the prediction uncertainty on T at different w values.  

 

Conclusion 

 We can conclude recalling the question posed thirty years ago by 

Longinelli (1984) in the title of his pioneer paper: “Oxygen isotopes in 
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mammal bone phosphate: A new tool for palaeohydrological and 

palaeoclimatological research?” The answer, of course, depends on what we 

want. In the case ph is used for quantitative evaluation, the following points 

should be taken into consideration: 

 On the basis of the discussion reported in Paragraph 2, the calculated 

uncertainty u(w)  2.5‰ must be only considered as an approximate 

evaluation. Moreover, it is noteworthy that this value is a little 

underestimated because it has been calculated starting from ph data which, 

generally, are not single measurements but, mostly, arithmetic means of 

several measurements.  

 Consider u(w)  2.5‰ and compare two values obtained using 

equations (5), e.g. -12‰ and -8.5‰, which are apparently largely different 

and could indicate significant temperature variation. The difference between 

these values is Δ = w(1) - w(2) = (12 - 8.5)‰ = 3.5‰, the uncertainty on Δ 

is uΔ = (2.42 + 2.42)0.5 = 3.5‰ and thus Δ/uΔ = 1. The value of his ratio give 

about 32% probability that w(1) and w(2) are different and, thus, we can 

conclude that only differences Δ = w(1) - w(2) of the order of at least 3-4 

delta unit ‰ may realistically assume an acceptable significance.  

 Uncertainty u(w) is reduced if we dispose of several (m) ph data for 

humans who were drinking the same water, a condition, however, which 

must be verified. Actually, in this case, in equation (1d), the value 1 under 

square roof is substituted by 1/m. 

 The w and ph values used in the regression range from -21.7‰ to -

2‰ and from 8.9 to 21.25‰, respectively; to avoid increase of uncertainty, 

no extrapolation from these ranges would be done. 

 Inference about the isotope values of meteoric water in the past could 

be made only if, for the period considered, the assumption meteoric water  

drinking water at that time is supported by some evidence or assumed on the 

basis of reliable considerations. 

 The use of calculated w for temperature prediction must take into 

account not only the value s(Tw), related to the function T(°C) = C w + D, 

but also the value S(w) (see equation 1b) related to the function (w + 1)  = 

[(ph + 1)/B] – (A/B), otherwise the total uncertainty could be 

underestimated. Unfortunately, at our knowledge, the values of s(Tw) are 

never reported in the articles, thus making impossible a reliable evaluation of 

prediction uncertainty on the calculated T. 

 Concluding, the answer to the Longinelli's question could be yes only 

in the case the ph vs w relation is used with caution, always taking into 

consideration that the uncertainty on the calculated w is broad and that for 

palaeoclimatic studies it cannot be overlooked. A similar uncertainty 

evaluation would be performed also for other mammals. 
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Table 1. Symbols frequently used in the text and in Tables 2 and 3 

 Delta value:  [(18O/16O)sample / (18O/16O)V-SMOW)] -1 

w, lw, ph Presumed drinking water, total ingested liquid water, phosphate group 

of biogenic apatite, respectively 
n Numbers of couples {X,Y} of isotopic data 

 Significance level 

Xm, Ym Arithmetic mean for X and Y, respectively 

A, B or A’, 

B’ 

Intercept and slope of the calculated regression line, respectively 

sA, sB or sA’, 

sB’ 

Estimated  standard error on the intercept and on the slope, respectively 

e Residuals 

(X), (Y) Standard deviation of the X and Y population, respectively 

s(X), s(Y) Experimental standard deviation for the bibliographic data X and Y 

(yx), (xy) Standard deviation of residuals on Y and X, respectively 

 s(yx), s(xy) Experimental standard deviation of residuals on Y and X, respectively 

s(yx)tot, 

s(xy)tot 

{s(yx)2 + B s(X)2}0.5, {s(xy)2 + B’ s(Y)2}0.5,  respectively, and similar (see 

text) 
X̂,  Ŷ 

Ŷ ,  

X̂u 

X and Y estimated by regression lines, respectively 

S( X̂ ), S( Ŷ ) Standard uncertainty on the average response X̂ and Ŷ, respectively 

u( X̂ ), u( Ŷ ) Uncertainty on the average response X̂ and Ŷ, respectively 

S(X), S(Y) Prediction standard uncertainty for individual X and Y, respectively 

u(X), u(Y) Prediction uncertainty for individual X and Y, respectively 

 

Table 2. Statistic results 

Number of data couples, n 43 

Range of w from -21.7‰ to -2.0‰ 

Range of ph from 8.9‰ to 21.3‰ 

Mean of w + 1 (± experimental standard deviation) 0.9906 (± 0.0049) 

Mean of  ph+ 1 (± experimental standard deviation) 1.0157 (± 0.0029) 

Normality test for w + 1  

PPCCr (PPCCr*, α = 0.05) 0.975 (0.974*) 

p (normal) W 0.044 

p ( normal) A 0.126 

Normality test for  ph+ 1  

PPCCr (PPCCr*, α = 0.05) 0.984 (0.974*) 

p ( normal) W 0.254 

p (normal) A 0.220 

Normality test: PPCCr = Probability Plot Correlation Coefficient (Looney & Gulledge, 

1985) and PPCCr* = critical PPCCr at defined . W = Shapiro and Wilk, A = Anderson-

Darling. 
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Table 3. Results of regression and inverted regression 

 
Regression 

(OSL) 
 

Inverted 

regression 

(OSL) 

X =  (w+1), Y = ( ph+1) Y = B X + A X = (Y/B) - A/B X = B’ Y + A’ 

    

B (± sB) and B’ (± sB’), 
0.5414 (± 

0.0405) 
 1.5539 (± 0.105) 

A (± sA) and A’ (± sA’) 
0.4793 (± 

0.0402) 
 

-0.5877 (± 

0.107) 

1/B  1.8471  

A/B  0.8853  

R (p-uncorrelated) 
0.917 (5.5*10-

18) 
 0.917 (5.5*10-18) 

rs (p-uncorrelated) 
0.882 (5.9*10-

15) 
 0.882 (5.9*10-15) 

 (p-uncorrelated) 
0.740 (2.8*10-

12) 
 0.740 (2.8*10-12) 

Null hypothesis for the intercept 
t > t*(α = 0.001, df = 

41) 
 

t > t*(α = 0.001, df = 

41) 

s(X) and s(Y) 0.0010  
from 0.0002 to 

1.15 

s(yx) and s(xy) 0.00116  0.00196 

s(yx)tot and s(xy)tot 0.00128  
from 0.00197 to 

0.00227# 

Normality test for residuals, e    

PPCCr (PPCCr*, α = 0.05) 0.988 (0.974*)  0.977 (0.974*) 

p-normal W 0.356  0.094 

p-normal A 0.306  0.042 

Homoscedasticity, Autocorrelation 

of residuals 
   

p-homosc BP 0.105  0.923 

p-no autocorr DW 0.607  0.748 

Uncertainty on the average response 

�̂�or �̂� 

 

u(Ŷ) (in ‰) u(X̂) (in ‰) u(X̂) (in ‰) 

Uncertainty range 
from ±0.2 to 

±0.55 
from ±0.35 to ±1.0 

from ±0.3 to 

±0.8 

Prediction uncertainty for individual 

X or Y 
u(Y) (in ‰) u(X) (in ‰) u(X) (in ‰) 

Uncertainty range, ([Max+Min]/2) 
from ±1.3 to 

±1.4 (±1.35) 

from ±2.4 to ±2.6 

(±2.5) 

from 2.0 to 2.5 

(±2.1)## 
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e = residual. Correlation coefficient: R = Pearson, rs = Spearman,  = Kendall. t* = critical t-

Student at defined  and degree of freedom. Normality test: PPCCr = Probability Plot Correlation 

Coefficient (Looney & Gulledge, 1985) and PPCCr* = critical PPCCr at defined . W = Shapiro 

and Wilk, A = Anderson-Darling. Homoscedasticity test: BP = Breusch-Pagan; autocorrelation 

test: DW = Durbin-Watson. u(X̂) and u(Ŷ) = uncertainty ( = 0.32) on the average response X̂ and 

Ŷ, respectively; u(X) and u(Y) = prediction uncertainty ( = 0.32) for individual X and Y, 

respectively. Max and Min = maximum and minimum uncertainty values. #, values obtained 

assuming s(Y) equal to 0.2‰ and to 1.15‰, respectively. ##, the data represent, in the order, the 

minimum value obtained for s(Y) = 0.2‰, the maximum value obtained for s(Y) = 1.15‰, and 

the (Max+Min)/2 value obtained for the median s(Y) = 0.40‰,  
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