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Abstract  
 In this paper, an original method has been suggested to find a 

numerical solution of initial value problem for a fourth order degenerate 

diffusion equation which models the thin film flow. For this, an auxiliary 

problem established in a special way and having some advantages over the 

main problem has been introduced. Advantages of the auxiliary problem 

allow us to apply one of the well-known methods in literature, and thus the 

numerical solution of the main problem can be calculated by using the 

obtained solution.  
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Introduction 

 Let 
2R  be an Euclidean space of  points ),( tx  and let 2RG  be a 

rectangular region as )[0,= TIG  , where ],[= aaI   and a , T  are given 

constants. 

 In ,G  we consider the fourth-order double degenerate nonlinear thin 

film equation as 
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conditions. Here, the function )(0 xu  describes the finite mass, therefore, 

0)(0 xu  and the boundary conditions show that the fluid is permitted to 

drain over the edges ax = . 

 An analysis of the solution obtained in [5], shows that ),,( txu  
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 for .1x  On the basis of these estimates we can say 

that problem (1)-(3) does not have a  classical solution.    

 Since equation (1) is degenerated at 0=),( txu , following [1] we 

consider the approximating equation as 
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where   is a positive parameter. In this situation, it is also necessary to 

approximate )(0 xu  in )(1H  norm by 4C  functions )(0 xu  satisfying 

the conditions (3), and replacing (2). 

).(=,0)( 0 xuxu                                                                  (5) 

 Under the assumption that ),( txu  is a solution of problem (4), (5) in 

Q , for some T<<0   we derive estimates to be used later. 
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 and integrating over )<<(0 TQT  and 

using the last identity, we obtain 
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 Now, integrating (4) over T  we also obtain 
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 Integrating (4) over T  we obtain 
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Auxiliary Problem 

 Integrating equation (1) with respect to x  from a  until to x  and 

using condition (3), we obtain 
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and once more integrating equation (8) with respect to x  from a  until to x
, and compensating relation of integration to zero, we get 
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 Integrating again in last formula (10), we have 
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 Using the Cauchy formula, we get 
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 It is clear that if the functions ),( txu  and 
x

txu



 ),(
 are differentiable 

continuous then the equations (12) or (11) and (1) are equivalent. By 

differentiating four times the last equation with respect to x , we prove this 

claim.    

 

Numerical Algorithm 
 To approximate of equation (12) by the finite difference formulas, at 

first we cover the domain G by the grid 
txtx hhhh  . Here 
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stability of the difference scheme. 

 Now, we construct a sub grid in 
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0,1,2,...)=(i  , where 
iU , 

1iU  and iÛ  are approximate values of the 

function ),( txu  at  any point ),( ki tx , ),( 1 ki tx 
 and ),( ki tx  of the grid 

h, , respectively. 

 The initial and boundary conditions are  
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  Note: To realize of our algorithm (14), at first, 0Û  is found at point 

0x  by using Euler’s method, then the unknown values are found time level 

1)(= ktk
, 0,1,2,...)=(k  from algorithm (15).  The coefficients in (15) 

and other initial functions are calculated in time level 
kt . 

 Now we will investigate the consistence and convergence of difference 

scheme (14) to solution (12). 

Let ki , , ki ,  are the errors of approximation by the cubature formula of the 

integrals involving equation (12) by finite difference formulas. 
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  As it is seen from (16)-(19) it follows that difference scheme (14) is 

consist to (12) 

 

Numerical Experiments 
 In order to test the proposed method, we have used the data from 

paper [5]. The integral of 
0u  is calculated as follows  
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 Using algorithm  (15),  within the limit of initial condition (20) some 

computer experiments are carried out. As it is seen, obtained results 

approach sufficiently enough to exact solution, giving in paper [5]. 

Theoretical investigation of convergence and stability of finite difference 

scheme (15) will be a matter of next research.    
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