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Abstract  
 In this paper we present three matrix models that express the 

relevance of studying Linear Algebra, trying to answer the question Why 

study Linear Algebra?, often asked by students.  Linear Algebra is 

fundamental within the mathematical modelling of phenomena, so we 

explore examples of models in which it is applied, in a simple manner as 

possible appropriated to the students’ knowledge. The models presented are 

Leontief Economic Model, Leslie Population Growth Model and Rating Web 

Pages Model. 
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Introduction 

 As mathematics teachers in study programmes whose scientific area 

is not Mathematics, but have Mathematics as a required curricular unit, we 

are faced with the question: Why study Linear Algebra? To answer it we feel 

the need to demonstrate to the students the relevance of studying Linear 

Algebra.  

 An important reason to study Linear Algebra, as is referred in [4], is 

“Linear Algebra allows and even encourages a very satisfying combination 

of both elements of mathematics – abstraction and application.” Also, Linear 

Algebra is essential in multiple areas of science in general. Indeed there are 

many references addressing elementary Linear Algebra applications. For 

example, in [3] the authors present 20 applications of linear algebra “drawn 

from business, economics, engineering, physics, computer science, 

approximation theory, ecology, sociology, demography, and genetics.”  

 In this paper we describe three well known models and how they are 

worked in the classroom. 

 The choice of the models was made according to the required math 

concepts: matrix operations, methods to solve systems of linear equations, 
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matrix inversion, eigenvalues and eigenvectors, matrix diagonalization 

which are all listed in syllabus of the curricular unit.  Furthermore the chosen 

models: Leontief Economic model, Leslie population growth model and 

Rating Web pages model, are associated with phenomena of the scientific 

area of the study programmes we teach, that generally is Biology, 

Informatics, Economics or Managements. 

 Usually, in classes, after introducing the mathematical abstract 

concepts, we describe and explore the models with examples.  

 

Leontief Matrix - Economic model  

 W. Leontief was awarded the Nobel Prize for his work in 1973. The 

model we present, based on his idea, is called input-output model.  

 In this model the economy of a country, region or industry, is divided 

into n sectors. Each of these sectors uses input from itself and other sectors 

to produce a product. In addition the sectors must satisfy an outside demand 

of their goods. 

 Suppose that there are n sectors, Si, i=1,2,...,n producing goods or 

services, which are consumed, marketed or invested; each sector produces a 

unique and exclusive good, that is, there is a one to one relationship between 

goods and sectors; each sector produces the corresponding good through the 

consumption of goods in fixed proportions.  

 Let us denote by A=[aij] the technical coefficients matrix, where aij is 

the value of the output of Si needed to produce one unit of Sj and by di the 

output of Si needed to satisfy the outside demand.  

 The purpose of this model is to find the total output, xi, of each 

sector, Si, i=1,2,...,n, in order to satisfy the intermediate and the outside 

demand, that is  

𝑥𝑖 = 𝑎𝑖1. 𝑥1 + 𝑎𝑖2. 𝑥2 +⋯+ 𝑎𝑖𝑛. 𝑥𝑛 + 𝑑𝑖 ,  for i = 1, 2, ..., n. 

 This system of equations can be written in matrix form: 

[

𝑥1
⋮
𝑥𝑛
] = [

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

] [

𝑥1
⋮
𝑥𝑛
] + [

𝑑1
⋮
𝑑𝑛

] ⇔ 𝑋 = 𝐴𝑋 + 𝐷 

 Thus, given A and D, the objective is to find X, production vector, 

that satisfies X=AX+D, with 𝑥𝑖 ≥ 0. 
 After describing the goal of the model, we explore with the students 

an example. 

 

Example 1.1 

 Consider a simple economy with three sectors: manufacturing, 

agriculture and services. Suppose that: 
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i. the production of one unit of manufacturing  requires 0,1 units of its 

own, 0,3 units of the agriculture sector and 0,3 units of the services 

sector. 

ii. the production of one unit of agriculture requires 0,2 units of its own, 

0,6 units of the manufacturing sector and 0,1 units of the services 

sector. 

iii. the production of one unit of services requires 0,1 units of its own, 

0,6 units of the manufacturing sector. 

 If there is an outside demand of 18 units of manufacturing, we are 

going to calculate the total output necessary to satisfy it. 

 The students when constructing the technical coefficients matrix  

𝐴 = [
0,1 0,6 0,6
0,3 0,2 0
0,3 0,1 0,1

] 

recognize the importance of placing the matrix entries in the correct position. 

 To obtain the total output we have to solve the system X=AX+D with 

𝐷 = [
18
0
0
]. 

 To solve this system of linear equations the students can use one of 

these methods: Gaussian Elimination, Cramer’s rule and Matrix inversion. In 

the class the system is solved using the previous methods. 

 Using matrix inversion we have: 

𝑋 = 𝐴𝑋 + 𝐷 ⇔ 𝑋 − 𝐴𝑋 = 𝐷 ⇔ (𝐼 − 𝐴)𝑋 = 𝐷 ⇔ 𝑋 = (𝐼 − 𝐴)−1𝐷,  if I-A 

is invertible.  

In this case 𝐼 − 𝐴 = [
0,9 −0,6 −0,6
−0,3 0,8 0
−0,3 −0,1 0,9

], which inverse is (𝐼 − 𝐴)−1 =

[
 
 
 
 
20

9

50

27

40

27
5

6

35

18

5

9
5

6

5

6

5

3 ]
 
 
 
 

. 

Will be obtained  𝑋 = (𝐼 − 𝐴)−1𝐷 = [
40
15
15
]. 

 Thus the output of the manufacturing sector will be 40 units (4 for its 

own, 9 for agriculture, 9 for services and 18 for the outside demand); the 

output of the agriculture sector will be 15 units (12 for manufacturing and 3 

for its own) and the output of the services sector will be 15 units (12 for 

manufacturing, 1,5 for agriculture and 1,5 for its own). 

 After we suppose that the outside demand is 60, 20 and 20 units of 

manufacturing, agriculture and services, respectively.  
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 Then students conclude that, to obtain the new outputs, it is enough to 

multiply (𝐼 − 𝐴)−1 by the new D, since we already have calculated (𝐼 −
𝐴)−1. 

So the total output X required will be     

[
 
 
 
 
20

9

50

27

40

27
5

6

35

18

5

9
5

6

5

6

5

3 ]
 
 
 
 

[
60
20
20
] = [

200
100
100

]. 

 Naturally some questions arise:   

 is I-A always invertible? 

 is the production vector X  nonnegative? 

 In order to answer this question we present the next result. 

 Theorem 1.1 If A is a square matrix with nonnegative entries whose 

entries in each column sum less than one then (𝐼 − 𝐴)−1 exists and (𝐼 −
𝐴)−1 ≥ 0. 
 Proof: Let  𝜆  be the largest column sum in A. By hypothesis 0 <
𝜆 < 1 . Therefore each column sum is less than or equal to   𝜆.  

 We need to show that  (𝐼 − 𝐴)−1 exists and (𝐼 − 𝐴)−1 ≥ 0. To do so 

we are going to prove that the inverse of  𝐼 − 𝐴  is 𝐼 + 𝐴 + 𝐴2 +⋯. 

 The jth column of A2 is a linear combination of the columns of A with 

coefficients the entries of the jth column of A. Therefore, since each column 

sum in A is less than or equal to 𝜆, we conclude that each column sum in A2  

is less than or equal to 𝜆2. Similarly, each column sum in Am  is less than or 

equal to 𝜆𝑚, 𝑚 ∈ ℕ . Hence, since Am has nonnegative entries, we can 

conclude that every entry of  Am is less than or equal to 𝜆𝑚. 

 Since 0 < 𝜆 < 1  then 𝜆𝑚 → 0 as 𝑚 → ∞  therefore Am→ 0 (zero 

matrix). 

 In addition,  we have  𝐼 − 𝐴𝑚+1 = (𝐼 − 𝐴)(𝐼 + 𝐴 + 𝐴2 +⋯+ 𝐴𝑚) ,  
consequently             𝐼 = (𝐼 − 𝐴)(𝐼 + 𝐴 + 𝐴2 +⋯+ 𝐴𝑚)  as 𝑚 → ∞  that is 

that  (𝐼 − 𝐴)−1 exists and furthermore  (𝐼 − 𝐴)−1 ≥ 0.                  
  
 Being the technical coefficients matrix A a nonnegative matrix with 

each column sum less than one, then  (𝐼 − 𝐴)−1 exists, (𝐼 − 𝐴)−1 ≥ 0 and 

the production vector X≥ 0 since D≥ 0. 

 Given a technical coefficients matrix A, whose entries in each column 

sum less than one, the matrix (𝐼 − 𝐴)−1 is called the Leontief inverse matrix, 

which allows us to calculate the total outputs, X, of each sector for any 

outside demand D.  

 Remark: This proof suggests another way to calculate the 

approximate value of the production vector X doing 𝑋 ≅ 𝐷 + 𝐴𝐷 + 𝐴2𝐷 +
⋯𝐴𝑚𝐷   for  m sufficiently large. 

  



European Scientific Journal August 2015 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 

439 

2. Leslie Matrix – Population Model  

 In the study of the growth of a given population it is essential having 

in account the survival and reproduction rates of the individuals of that 

population. It is known, however, that these characteristics differ according 

to the age of the individuals, their size body or any other individual 

characteristics influencing survival and fertility. 

 The Leslie matrix model was invented by P. H. Leslie and describes 

the growth of the female portion of a human or animal population. In this 

model, the population is divided into groups based on age classes of equal 

duration.  

 The purpose is to project the population from time t to time t+1, in 

years or some other time unit, assuming that the unit of time is the same as 

the age class width (projection interval). A model with projection interval of 

one year will differ from one that projects from month to month or decade to 

decade.  

 Supposing that the individuals of the population are classified into k 

age classes, the population projection matrix, often referred as a Leslie 

matrix, is: 

𝐿 =

[
 
 
 
  
  𝑅1 𝑅2 𝑅3 … 𝑅𝑘−1 𝑅𝑘
𝑆1 0 0   … 0      0
   0   𝑆2 0   … 0      0

 ⋮                ⋮            ⋮
     0   0   0  …    𝑆𝑘−1 𝑆𝑘]

 
 
 
 

 

 Where Ri  is the reproduction rate and Si  is the survival rate, of age 

class i, for i=1,..., k. 

 In some models the last age class is assumed to be removed from the 

population after a time unit, so the entry, Sk , is 0 in the matrix L. 

 If the population at time t, distributed into the k classes is: 

𝑋(𝑡) =

[
 
 
 
 𝑥1
(𝑡)

𝑥2
(𝑡)

⋮

𝑥𝑘
(𝑡)
]
 
 
 
 

 where 𝑥𝑖
(𝑡)

 is the population, at time t, in age class i=1,..., k , 

then the population at time t+1, in age class i=1,..., k will be: 

𝑥1
(𝑡+1)

= 𝑅1𝑥1
(𝑡)
+ 𝑅2𝑥2

(𝑡)
+⋯+ 𝑅𝑘𝑥𝑘

(𝑡)
 , 

that is, the population in age class one must have originated from 

reproduction, and not be survivors of any other age class, between times t 

and t+1. 

𝑥𝑖+1
(𝑡+1)

= 𝑆𝑖 𝑥𝑖
(𝑡)

, for i=1,..., k-1, 

that is the population in age class i+1 will be the survivors of class i, between 

times t and t+1. 



European Scientific Journal August 2015 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 

440 

Using matrix notation the previous equations can be written as 𝑋(𝑡+1) =
𝐿𝑋(𝑡). 
After describing the model, we explore with the students an example. 

 

Example 2.1 

 Suppose that a female population has three age classes and the unit of 

time is five years. Assume that the reproduction rate in the second age class 

is 4 and in the third age class is 3. In addition suppose that the survival rate 

in the first class is 0,5 and 0,25 in the second class.  

 With this information the students can obtain the Leslie matrix for 

this population: 

𝐿 = [
0 4 3
0,5 0 0
0 0,25 0

]. 

 Assuming that the initial population is 10 in all age classes, when we 

ask the students to calculate the population in the next 15 years they do: 

𝑋(1) = 𝐿𝑋(0) = [
0 4 3
0,5 0 0
0 0,25 0

] [
10
10
10
] = [

70
5
2,5
] 

𝑋(2) = 𝐿𝑋(1) = [
0 4 3
0,5 0 0
0 0,25 0

] [
70
5
2,5
] = [

27,5
35
1,25

] 

𝑋(3) = 𝐿𝑋(2) = [
0 4 3
0,5 0 0
0 0,25 0

] [
27,5
35
1,25

] = [
143,75
13,75
8,75

] 

 Thus, since the unit of time is 5 years, after 15 years there are, nearly 

143 females in age class one, 13 in age class two and 8 in age class three.  

 After we observe that since 𝑋(𝑛) = 𝐿𝑋(𝑛−1) = 𝐿(𝐿𝑋(𝑛−2)) = ⋯ =

𝐿𝑛𝑋(0) we can calculate the population after n projection intervals knowing 

the initial population and powers of the Leslie matrix.  

 So, if we want to project the population after, for example 30 years, 

since the unit of time is 5 years, we can calculate  𝐿6 𝑋(0). 
 To calculate L6 we propose to use Cayley-Hamilton Theorem 95  that 

states that any matrix satisfies its characteristic equation.  

 The characteristic equation of L is:  

det(𝐿 − 𝜆𝐼) = 0 ⇔ |
−𝜆 4 3
0,5 −𝜆 0
0 0,25 −𝜆

| = 0 ⇔ −𝜆3 + 2𝜆 + 0,375 = 0. 

 By Cayley-Hamilton Theorem −𝐿3 + 2𝐿 + 0,375 𝐼 = 0, where I is 

the identity matrix of the same size of L, that is, 𝐿3 = 2𝐿 + 0,375 𝐼. 

                                                           
95 See, for exemple, [2], page 86 
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 We have 𝐿6 = 4𝐿2 + 1,5𝐿 + 0,140625 𝐼 =

[
8,140625 9 4,5
0,75 8,140625 6
0,5 0,375 0,140625

]. 

Then 𝑋(6) = 𝐿6𝑋(0) = [
216,40625
148,90625
10,15625

], that is after 30 years there are, nearly 

216 females in age class one, 148 in age class two and 10 in age class three. 

Following we observe that since we know 𝑋(3) and 𝑋(6) = 𝐿6𝑋(0) =
𝐿3(𝐿3𝑋(0)) = 𝐿3𝑋(3),  another way to obtain 𝑋(6) is: 

𝑋(6) = (2𝐿 + 0,375 𝐼)𝑋(3)  = [
0,375 8 6
1 0,375 0
0 0,5 0,375

] [
143,75
13,75
8,75

] =

[
216,40625
148,90625
10,15625

]. 

 After we suppose we want to project the population after a long 

period of time 

 To do this we introduce the following result. 

 Given a square matrix A we define the positive real number 𝜌(𝐴) =
𝑚𝑎𝑥{|𝜆|: 𝜆 ∈ 𝜎(𝐴)} where 𝜎(𝐴) is the set of the eigenvalues of A.  

 Theorem 2.1 If A is a nonnegative square matrix, then 𝜌(𝐴) is an 

eigenvalue of A, often called the dominant eigenvalue of A, and there is a 

positive vector 𝑋 such that AX= 𝜌(𝐴)𝑋. 

 The proof can be found in [2] page 503. 

 Since a Leslie matrix, L, is always nonnegative then 𝜌(𝐿) is the 

dominant eigenvalue of L, and exists a positive vector V such that LV=
 𝜌(𝐿)𝑉. 

 Assuming that L is diagonalizable, then exists P and D such that 𝐿 =
𝑃𝐷𝑃−1 , where D is a diagonal matrix whose entries are the eigenvalues of L 

and P is a matrix whose columns are the eigenvectors, therefore  𝐿𝑛 =
(𝑃𝐷𝑃−1)𝑛 = 𝑃𝐷𝑛𝑃−1. 

 Suppose L is a Leslie matrix, 3× 3, with eigenvalues 𝜆1 = 𝜌(𝐿),
𝜆2 ¸𝜆3 and the corresponding eigenvectors v1, v2 and v3. 

 Then 𝑋(𝑛) = 𝐿𝑛𝑋(0) =

[𝑣1 𝑣2 𝑣3] [

𝜆1
𝑛 0 0

0 𝜆2
𝑛 0

0 0 𝜆3
𝑛

] [𝑣1 𝑣2 𝑣3]−1 [

𝑥1
(0)

𝑥2
(0)

𝑥3
(0)

] . 

 Dividing by (𝜆1)n  we have:  
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1

𝜆1
𝑛 𝑋

(𝑛) = [𝑣1 𝑣2 𝑣3]

[
 
 
 
 
 
1 0 0

0 (
𝜆2
𝜆1
)
𝑛

0

0 0 (
𝜆3
𝜆1
)
𝑛

]
 
 
 
 
 

[𝑣1 𝑣2 𝑣3]−1 [

𝑥1
(0)

𝑥2
(0)

𝑥3
(0)

] 

 Since |
𝜆2

𝜆1
| , |

𝜆3

𝜆1
|   < 1 then 𝑙𝑖𝑚𝑛→∞ (

𝜆2

𝜆1
)
𝑛

= 𝑙𝑖𝑚𝑛→∞ (
𝜆3

𝜆1
)
𝑛

= 0, 

therefore  

𝑙𝑖𝑚𝑛→∞
1

𝜆1
𝑛 𝑋

(𝑛) = [𝑣1 𝑣2 𝑣3] [
1 0 0
0 0 0
0 0 0

] [𝑣1 𝑣2 𝑣3]−1 [

𝑥1
(0)

𝑥2
(0)

𝑥3
(0)

] ⇔  

⇔ 𝑙𝑖𝑚𝑛→∞
1

𝜆1
𝑛 𝑋

(𝑛) = [𝑣1 0 0][𝑣1 𝑣2 𝑣3]−1 [

𝑥1
(0)

𝑥2
(0)

𝑥3
(0)

] ⇔  

⇔ 𝑙𝑖𝑚𝑛→∞
1

𝜆1
𝑛 𝑋

(𝑛) = [𝑣1 0 0] [

𝑐1
𝑐2
𝑐3
] ⇔ 𝑙𝑖𝑚𝑛→∞

1

𝜆1
𝑛 𝑋

(𝑛) = 𝑐1[𝑣1] . 

 Thus   

𝑋(𝑛) ≅ 𝜆1
𝑛𝑐1[𝑣1] . 

 Also 𝑋(𝑛) ≅ 𝜆1 × 𝜆1
𝑛−1𝑐1[𝑣1] ≅ 𝜆1𝑋

(𝑛−1), that is, for large values of 

time, the population is directly proportional to the preceding population, at 

each age class. 

 According to the value of 𝜆1, the dominant eigenvalue of the Leslie 

matrix, we can observe:  

 If  𝜆1 > 1 the population is eventually increasing.  

 If  𝜆1 < 1 the population is eventually decreasing. 

 If  𝜆1 = 1 the population eventually stabilizes. 

 Returning to our example, the eigenvalues of L are the solutions of 

the charact eristic equation:  

−𝜆3 + 2𝜆 + 0,375 = 0 ⇔ 𝜆 = 1,5 ∨ 𝜆 =
−3 ± √5

4
 

 and the dominant eigenvalue of L is 1,5.  

 Since 𝜆1 = 1,5 > 1 the population is increasing, about 50%, in each 

of the three age classes, as well the total number of females.  

 In addition the eigenvectors are 
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𝑣1 = [
18
6
1
]   𝑣2 = [

7 + 3√5

−3 − √5
1

]   𝑣3 = [
7 − 3√5

−3 + √5
1

]  and  [𝑣1 𝑣2 𝑣3]−1 =

[

1

38

3

38

1

19

𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

] .96 

 Since [

𝑐1
𝑐2
𝑐3
] = [

1

38

3

38

1

19

𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

] [
10
10
10
], therefore 𝑐1 =

30

19
. 

 So 𝑋(𝑛) ≅ 1,5𝑛
30

19
[
18
6
1
]. 

 If, for example, n=20 we have 𝑋(20) ≅ [
94500
31500
5250

], that is, after 100 

years there are, nearly, 94500 females in age class one, 31500 in age class 

two and 5250 in age class three. 

Furthermore since 𝑋(𝑛) ≅ 𝑘 [
18
6
1
] , 𝑘 ∈ ℝ, for a long period of time we have: 

   
18

25
= 72%  of the females  are in age class one 

   
6

25
= 24%  of the females  are in age class two 

   
1

25
= 4%  of the females  are in age class three 

 

 3. Rating Web Pages Model 

 In order to measure the relative importance of web pages, Sergey 

Brin and Larry Page proposed in 1998 a method, PageRank, for computing a 

ranking for every web page based on the graph of the web. To test the utility 

of PageRank, they built a web search engine called Google. 

 The purpose of this model is to calculate the importance score 

(PageRank) of each web page. So the higher is the PageRank of one page, 

the higher is its chance of being found on Google. 

 Suppose we have a strongly connected web (that is, you can get from 

any page to any other page in a finite number of links) with n pages, Pi , 

i=1,…,n. 

 Denote by xi, the importance score of page Pi , i=1,…,n,   in the web.  

                                                           
96 We only present the first row of the inverse of the eigenvectors matrix, since the 

remaining entries are not used in calculations. 
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 If page Pj contains nj links, one of which links to page Pk , then page 

Pj contributes for the importance score of page Pk with 𝑥𝑗
1

𝑛𝑗
 . 

 Therefore 𝑥𝑘 = ∑   
𝑥𝑗

𝑛𝑗
𝑃𝑗∈𝐿𝑘

 where Lk  is the set of the pages which 

links to page Pk, k=1,…, n. 

 Using matrix notation the previous equations can be written as X=AX, 

where 𝐴 = [𝑎𝑖𝑗] with  

𝑎𝑖𝑗 = {

1

𝑛𝑗
,   𝑖𝑓  𝑃𝑗  links to 𝑃𝑖

0,     otherwise
    , for i ,j=1,…, n. 

 This matrix is called the link matrix for this web. 

 Notice that the jth column of A has nj non-zero entries, each equal to 
1

𝑛𝑗
 , thus, the entries in each column of A sum to 1. Furthermore, since all its 

entries are nonnegative, A is a column-stochastic matrix, and therefore has 1 

as an eigenvalue. In fact if we consider the column vector v with all its 

entries equal to one, we have 𝐴𝑇𝑣 = 𝑣 , that is 1 is an eigenvalue of  AT  and 

therefore also an eigenvalue of A.  Also if we denote by V1(A) the eigenspace 

for eigenvalue 1 of A then dim V1(A)=1, since the web is strongly 

connected.[1] 

 Then we are sure that the system, X=AX , has non-zero solutions, the 

eigenvectors associated to the eigenvalue 1, producing a unique ranking.  

Then we ask the students to represent in a directed graph a web with five 

pages (the vertices of the graph) and  where an arrow from page Pi to page 

Pj, i=1,…, 5, indicates a link from page Pi to page Pj. 
97 

 

Example 3.1 

 Suppose, for example, we have a web with five pages Pi, i=1,…,5, 

illustrated in the graph: 

                                                           
97 The students have some knowledge of graph theory obtained in another curricular unit. 
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 In this example we have 𝑛1 = 3, 𝑛2 = 2, 𝑛3 = 4, 𝑛4 = 2 and 𝑛5 = 2 

(in graph language ni is the out-degree of vertex  Pi ).  

 In first place we verify that the web (graph) is strongly connected, 

that is for every pair (Pi , Pj) of vertices there is a path from Pi to Pj .  

 To calculate xi, i=1,…,5, the importance score of page Pi in this web, 

we have to solve the system of linear equations. 

{
 
 
 

 
 
 𝑥1 =

1

2
𝑥2 +

1

4
𝑥3 +

1

2
𝑥5

𝑥2 =
1

3
𝑥1 +

1

4
𝑥3 +

1

2
𝑥4

𝑥3 =
1

3
𝑥1

𝑥4 =
1

4
𝑥3 +

1

2
𝑥5

𝑥5 =
1

3
𝑥1 +

1

2
𝑥2 +

1

4
𝑥3 +

1

2
𝑥4

⇔   

[
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 

=

[
 
 
 
 
 
 
 0

1

2

1

4
0

1

2
1

3
0

1

4

1

2
0

1

3
0 0 0 0

0 0
1

4
0

1

2
1

3

1

2

1

4

1

2
0 ]
 
 
 
 
 
 
 

[
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 

 

 We already know that the system has more than one solution, so we 

can’t use Cramer’s Rule neither matrix inversion.  The solutions of the 

previous system are 

[
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 

= 𝑘

[
 
 
 
 
 
 
10

11
2

3
10

33
19

33

1]
 
 
 
 
 
 

 , 𝑘 ∈ ℝ. 

 Since the eigenvectors are just scalar multiples of each other, we can 

choose any of them to be our PageRank vector. 
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 If we choose 𝑘 =
33

114
 we obtain 

[
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 

≅

[
 
 
 
 
0,26
0,19
0,09
0,17
0,29]

 
 
 
 

, the unique 

eigenvector with the sum of all entries equal to 1. 

 In this web the ranking is: P5 (29%), P1 (26%), P2 (19%),P4 (17%), 

P3(9%) .  

 

Remark 

If the web is not strongly connected, that is, there is, at least, one page Pk 

such that, there is no other page linking to Pk , the link matrix has, at least, 

one null line, and therefore yields non unique rankings. 

If the web has dangling nodes, that is, there is, at least, one page with no 

links, then the link matrix has one or more columns of zeros. 

In order to solve these problems, the model described is adapted, using, 

instead of A the matrix  𝑀 = (1 − 𝑝)𝐴 + 𝑝𝐵, with 0 < 𝑝 < 1 (usually 𝑝 =

0,15), A the link matrix and B the matrix whose entries are all equal to 
1

𝑛
. [1] 

 

Conclusion: 

 From our experience as mathematics teachers in Economics, Natural 

Sciences and Computer Science programs, we noticed that the students 

understand the mathematical concepts through the exploration of 

mathematical models, illustrated with examples of the respective study areas. 

In particular the students: 

 recognize the importance of placing the matrix entries in the correct 

position when constructing the matrix models of the examples ; 

 understand the meaning of matrix operations; 

 identify properties of a matrix just “looking” at its entries; 

 understand that eigenvalues are not only roots of characteristic 

equation;  

 admit the importance of knowing different ways of solving linear 

equation systems; 

 recognize the usefulness of  matrix inversion; 

 realize the potential of matrix diagonalization; 

 apply matrix theory and graph theory creating connections between 

two curricular units, 

combining abstraction and application.  
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